
Quantum Physics III (8.06) Spring 2007

FINAL EXAMINATION

Monday May 21, 9:00 am

You have 3 hours.

There are 10 problems, totalling 180 points. Do all

problems.

Answer all problems in the white books provided.

Write YOUR NAME on EACH white book you use.

Budget your time wisely, using the point values as

a guide. Note also that shorter problems may not

always be easier problems.

No books, notes or calculators allowed.
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Some potentially useful information

• Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉

For an energy eigenstate ψ of energy E

ψ(t) = e−
i
~Etψ(0)

and the Schrodinger equation reduces to an eigenvalue equation

Hψ = Eψ

• Harmonic Oscillator

Ĥ =
1

2m
p̂2 +

1

2
mω2x̂2

where

[x̂, p̂] = i~ .

This Hamiltonian can be rewritten as

Ĥ = ~ω
(

N̂ +
1

2

)

where N̂ = â†â, and the operators â and â† are given by

â =
1√

2mω~
(mωx̂ + ip̂) , â† =

1√
2mω~

(mωx̂− ip̂) ,

and satisfy

[â, â†] = 1 .

Conversely

x̂ =

√
~

2mω
(â + â†), p̂ =

1

i

√
~mω

2
(â− â†)

The action of â and â† on eigenstates of N̂ is given by

â†|n〉 =
√

n + 1|n + 1〉 , â|n〉 =
√

n|n− 1〉 .

The ground state wave function is

〈x|0〉 =
(mω

π~

)1/4

exp
(
−mω

2~
x2

)
.

2



• Natural units

In the natural units, the dimension of any physical quantity can be written as

Ea~bcd

where E denotes energy whose unit is normally taken to be eV . Some examples

[m] = E/c2

[L] = ~cE−1

[t] = ~E−1

• Particle in an Electric and/or Magnetic Field:

The Hamiltonian for a particle with charge q in a magnetic field and electric

field

~B = ~∇× ~A, ~E = −~∇φ− 1

c

∂ ~A

∂t

is:

H =
1

2m

(
~p− q

c
~A
)2

+ qφ (1)

Gauge invariance:

If ψ(~x, t) solves the Schrödinger equation defined by the Hamiltonian (1), then

ψ′(~x, t) = exp

(
− iq

~c
f(~x, t)

)
ψ(~x, t)

solves the Schrödinger equation obtained upon replacing ~A by ~A′ = ~A − ~∇f

and replacing φ by φ′ = φ + (1/c)∂f/∂t.

• Electron in a magnetic field: spin Hamiltonian

The Hamiltonian for the spin is given by

H =
e

m
~S · ~B = µB~σ · ~B

where
~S =

~
2
~σ, µB =

e~
2m

and

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
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• Time independent perturbation theory:

Suppose that

H = H0 + H ′

where we already know the eigenvalues E0
n and eigenstates |ψ0

n〉 of H0:

H0|ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 .

Then, the eigenvalues and eigenstates of the full Hamiltonian H are:

En = E(0)
n + H ′

nn +
∑

m6=n

|H ′
nm|2

E
(0)
n − E

(0)
m

+ . . . (2)

|ψn〉 = |ψ(0)
n 〉+

∑

m6=n

H ′
mn

E
(0)
n − E

(0)
m

|ψ(0)
m 〉+ . . . (3)

where H ′
nm ≡ 〈ψ(0)

n |H ′|ψ(0)
m 〉.

If H0 has degeneracy at E
(0)
n , first diagonalize H ′ in the corresponding degener-

ate subspace, then use equations (2) and (3). In particular |ψ(0)
n 〉 (“good states”)

should be one of the eigenvectors of H ′ in the degenerate subspace.

• Connection Formulae for WKB Wave Functions:

At a turning point at x = a at which the classically forbidden region is at x > a:

2√
p(x)

cos

[
1

~

∫ a

x

p(x′)dx′ − π

4

]
← 1√

κ(x)
exp

[
−1

~

∫ x

a

κ(x′)dx′
]

1√
p(x)

cos

[
1

~

∫ a

x

p(x′)dx′ +
π

4

]
→ 1√

κ(x)
exp

[
+

1

~

∫ x

a

κ(x′)dx′
]

At a turning point at x = b at which the classically forbidden region is at x < b:

1√
κ(x)

exp

[
−1

~

∫ b

x

κ(x′)dx′
]

→ 2√
p(x)

cos

[
1

~

∫ x

b

p(x′)dx′ − π

4

]

1√
κ(x)

exp

[
+

1

~

∫ b

x

κ(x′)dx′
]

← 1√
p(x)

cos

[
1

~

∫ x

b

p(x′)dx′ +
π

4

]

• Bohr-Sommerfeld quantization condition

∫ b

a

dx p(x)dx = (n− 1

2
)π~, n = 1, 2, · · · (4)
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where a, b are classical turning points. If the potential has a sharp wall on one

side, equation (4) becomes

∫ b

a

dx p(x) = (n− 1

4
)π~, n = 1, 2, · · · (5)

If the potential has sharp walls on both side, equation (4) becomes

∫ b

a

dx p(x) = nπ~, n = 1, 2, · · · (6)

• Barrier tunnelling

P ∼ e−
2
~

∫ b
a dx κ(x)

with

κ(x) =
√

2m(V (x)− E)

and a, b are classical turning points.

• Adiabatic evolution

Under adiabatic change of parameters ~R of a Hamiltonian H(~R), if the system

is initially in the n-th energy eigenstate, it stays in the same energy eigenstate

as the parameters change and acquires a phase factor

ψ(t) = e−iθn(t)+iγn(t)|ψn(~R(t))〉

with

θn =
1

~

∫ t

0

dt′ En(~R(t′))

and

γn(t) = i

∫ t

0

dt′ 〈ψn(~R(t′))|∂t′ψn(~R(t′))〉 .

The geometric phase for a spin-1
2

particle in a magnetic field: for the spin up

state

γ+ = −1

2
ΩC

where ΩC is the solid angle subtended at the origin by the closed curve C traced

by the rotating magnetic field .

• Time Dependent Perturbation Theory

Consider a system with the Hamiltonian

H(t) = H0 + H ′(t) .

5



Denote the matrix element of H ′ between eigenstates of H0 named |a〉 and |b〉
by H ′

ab. If the system is initially in state |a〉 at t = t0, the probability that it is

in the state |b〉 at time t is:

Pa→b = |cb(t)|2

with

cb(t) =
1

i~

∫ t

t0

dt′ H ′
ba(t

′)eiωbat′ , ωba =
Eb − Ea

~
If H ′ is periodic in time, i.e.

H ′ = V (~r) cos ωt

then the transition rate from a → b in the t →∞ limit is

Ra→b =
π

2~2
|Vab|2δ(ω − ωab)

• Scattering:

– In three dimensions, the wave function ψ(~r) of a particle scattering off a

potential V (~r) satisfies the asymptotic boundary condition

ψ(~r) → eikz +
eikr

r
f(θ, φ), r →∞ (7)

(r, θ, φ) are spherical coordinates with the scattering center located at r = 0

and θ the angle between ~r and z-axis.

– Born Approximation to Scattering Amplitude

f(θ, φ) = f(~q) = − m

2π~2

∫
d3r exp(−i~q · ~r)V (~r)

where ~q = ~k′ − ~k is the momentum transfer. If V (~r) is central, then

f(θ) = −2m

~2q

∫ ∞

0

dr rV (r) sin qr

with

q = 2k sin
θ

2

– Partial wave expansion: for spherically symmetric potential V (r), the scat-

tering amplitude can be written as

f(θ) =
∞∑

l=0

(2l + 1)flPl(cos θ)
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where fl can be expressed in term the phase shift of the effective one-

dimensional problem as

fl =
e2iδl − 1

2ik
=

eiδl

k
sin δl

The total cross section is

σtot =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl

• Spherical coordinates in three dimension

x = r sin θ cos φ; y = r sin θ sin φ; z = r cos θ

• Legendre Polynomials

P0(z) = 1, P1(z) = z, P2(z) =
3z2 − 1

2
, P3(z) =

5z3 − z

2
(8)

• Useful integrals ∫ +∞

−∞
dx exp

(−ax2
)

=

√
π

a
∫ +∞

−∞
dx x2 exp

(−ax2
)

=
1

2

√
π

a3

∫
dx x

1
2 =

2

3
x

3
2
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1. Short answer questions (20 points):

(a) (2 points) In using the Born-Oppenheimer approximation to study a molecule

system, we solve the dynamics of electrons first assuming all nuclei are

fixed.

(b) (2 points) In the Born-Oppenheimer approximation, electrons play no role

in the dynamics of the nuclei.

(c) (2 points) All excited states of the hydrogen atom have zero electric dipole

moment.

(d) (2 points) Partial wave expansion is normally used for high energy scat-

terings.

(e) (2 points) A charged particle in an electric and magnetic filed has an

expectation value of p that is the same in any gauge.

(f) (2 points) Aharonov-Bohm effect demonstrates that gauge invariance can

not be true in quantum mechanics since the wave function of an electron

is affected by the vector potential even in the absence of a magnetic field.

(g) (2 points) The induced magnetic moment due to the orbital motion of an

electron in a magnetic field is in the same direction as the applied field.

(h) (2 points) In an external magnetic field, to minimize energy, the direction

of the spin magnetic moment of an electron is opposite to that of the

applied field.

(i) (2 points) The main physical mechanism underlying Laser is spontaneous

emission of light by an excited atom.

(j) (2 points) The variational method cannot be used to calculate excited

states of a system.
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2. Hydrogen spectrum (16 points)

Consider n = 2 states of a hydrogen atom. Electron spin should be considered

in this problem. (You can ignore Lamb shift below.)

(a) (2 points) Including fine structure, what is CSCO?

(b) (6 points) List the n = 2 eigenstates of the Hamiltonian, including fine

structure. Specify which states are degenerate.

(c) (2 points) Now turn on a very strong magnetic field along z direction.

Ignore the fine structure, and assume that the magnetic field dependent

term in the Hamiltonian is proportional to ~B · (~L + 2~S). What is CSCO?

(d) (6 points) List all n = 2 states and specify the degeneracies.
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3. Electron in a one-dimensional box (20 points)

Consider a spin-1
2

particle (e.g. electron) confined in a one-dimensional infinite

square well along x-direction (no motion in y and z directions),

V = 0, 0 < x < 2a

= ∞, otherwise (9)

(a) (5 points) Write down the energy eigenfunctions and eigenvalues for the

system. What are the degeneracies?

(b) (5 points) Find the lowest order relativistic correction to the ground state

energy. When do relativistic corrections become important?

Note that the lowest order relativistic correction gives rise to the following

additional term in the Hamiltonian:

H ′ = − p4

8m3c2
.

(c) (10 points) Apply a magnetic field to the system with

~B(x) = B ~ez, 0 < x < a

= B ~ex, a < x < 2a (10)

where B is constant. This generates a new term in the Hamiltonian given

by

H ′ = µ~B(x) · ~σ (11)

where µ is a constant and ~σ are Pauli matrices. Treating H ′ as a small

perturbation, find the new ground state energy to lowest order in µB. (In

this part, ignore relativistic corrections.)
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4. Born approximation (12 points)

Consider a particle of mass m and initial momentum ~k = k~ez scattering off the

potential

V (~r) = V0 [δ(~r − ~a) + δ(~r + ~a)] (12)

where

~a = a~ex

is a constant vector.

(a) (3 points ) What is the definition of scattering differential cross section?

How is it related to the scattering amplitude f(θ, φ)?

(b) (6 points) What is the scattering amplitude f(θ, φ) in the first Born ap-

proximation.

(c) (3 points) Write down the expression for the total cross section in the first

Born approximation. (Do NOT evaluate the integrals.)
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5. Partial wave expansion (16 points)

In a scattering experiment of particles of energy E = ~2k2

2m
, one finds that the

differential cross section can be written as

dσ

dΩ
=

1

k2

(
1

3
+ cos θ +

9

4
cos2 θ

)
(13)

The number multiplying the second term was wrongly calculated.

The correct number should be 1.7.

(a) (2 point) What can you say about symmetry properties of the scattering

potential? Why?

(b) (2 points) What partial waves (i.e. waves with what values of orbital

angular momentum quantum number l) are scattering?

(c) (8 points) What are the corresponding phase shifts for partial waves in (b)?

(d) (4 points) What is the total cross section?
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6. A time-dependent two-state system (21 points)

Consider a two-state system with basis vectors |1〉 =

(
1
0

)
and |2〉 =

(
0
1

)
. In

this basis the Hamiltonian is

H = E

(
cos

(
πt
2T

)
sin

(
πt
2T

)
sin

(
πt
2T

) − cos
(

πt
2T

)
)

(14)

where E and T are constants. Suppose at t = 0 the system is in state |1〉.
Denote the state at time t by |ψ(t)〉.

(a) (3 points) What condition must T satisfy in order for the time evolution

to be well-approximated as adiabatic?

Below assume the criterion of part (a) is satisfied.

(b) (6 points) What is the probability that the system is in state |1〉 at time

t = T?

(c) (3 points) What is the probability that the system is in state |1〉 at time

t = 2T?

(d) (3 points) Given an example of a physical system which is described

by (14).

(e) (6 points) What is |ψ(4T )〉? Make sure to include the correct overall phase.

(Hint: You do NOT need to do extensive calculations for this part. Use

part (d).)
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7. Particle production in an expanding and contracting universe (10

points)

Consider a harmonic oscillator system with time-dependent frequencies

H =
p2

2m
+

1

2
mω2(t)x2 . (15)

where

ω2(t) = ω2 + λω2e−
t2

T2 . (16)

Treat the dimensionless parameter λ as very small.

If at t = −∞, the system is in the ground state of the harmonic oscillator, what

is the probability that the system is in n-th state at t = +∞ (to lowest order

in λ)? You should give explicit expressions for all n ≥ 1.

[Note: this problem can be used to model particle production in an expansion

and contracting universe.]
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8. A theorem of one-dimensional Schrodinger systems (16 points)

Consider two one-dimensional bounded quantum systems

H1 =
p2

2m
+ V1(x), H2 =

p2

2m
+ V2(x)

Suppose that V1(x) > V2(x) for all x. We will denote the energy eigenvalues of

two systems by E
(1)
n and E

(2)
n respectively, with n = 1, 2, · · ·.

(a) (8 points) Use the variational method to prove that the ground state en-

ergies of two systems satisfy

E
(1)
1 > E

(1)
2 .

(b) (8 points) Use Feynman-Hellman theorem to show that E
(1)
n > E

(2)
n for

all n.

Feynman-Hellman theorem: Suppose H(λ) depends on some parameter λ

and

H(λ)ψn(λ) = En(λ)ψn(λ),

then
∂En(λ)

∂λ
= 〈ψn|∂H(λ)

∂λ
|ψn〉

15



9. The Bouncing Ball (22 points)

Consider the quantum mechanical analogue to the classical problem of a ball of

mass m bouncing elastically on the floor, under the influence of a gravitational

potential which can be written as V (x) = Fx (F is a constant). The motion is

one-dimensional and is restricted to x ≥ 0.

(a) (8 points) What is the dimension of F (either cgs or natural units is fine)?

Use dimensional analysis to express an energy eigenvalue E in terms of

parameters F, m, ~ up to an overall constant.

(b) (8 points) Find the energy eigenvalues using the WKB approximation. For

convenience of notation: in part (b) and (c) set m = 1
2
, F = 1 and

~ = 1.

(c) (6 points) Write down a trial wave function with an undetermined param-

eter. Outline the steps you would use to find a variational estimate of the

ground state energy. (You do NOT need to do or simplify the integrals.

But write them down explicitly.)
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10. WKB approximation for one-dimensional scattering (27 points)

Consider a potential barrier of the form indicated in the above figure.

(a) (5 points) Consider an incident plane wave coming from x = −∞ with

energy E1 = V0−K (K > 0). The solution to schrodinger equation should

satisfy

ψ(x) = eikx + re−ikx, x < 0

= teikx, x > b . (17)

Use the WKB approximation to estimate |t|2. (You only need to eval-

uate the exponential part. You do NOT need to derive the tun-

nelling formula.)

(b) (10 points) Consider an incident plane wave coming from x = −∞ with

energy E2 = V0 +K (K > 0). The solution to schrodinger equation should

still have the form (17). Since now E2 > V0 we expect r ≈ 0 and |t| ≈ 1.

Thus we can write t as a phase factor

t = eiδ

Use the WKB approximation to determine the phase δ.
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(c) (12 points) Now consider a one-dimensional potential of the form

V (x) = 0, x < 0

= v(x), x > 0 (18)

where v(x) is some function with the property that v(x) →∞ as x →∞
and v(0) = 0, as indicated in above figure. In x < 0 region the solution to

Schrodinger equation can be written as

ψ(x) = eikx + e2iδe−ikx (19)

with k =
√

2mE
~2 . The first term in (19) is an incident wave and the second

term is the reflected wave. Use the WKB approximation to determine δ

in (19). [Hint: You will need to use connection formulas for this

part.]
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