Quantum Physics III (8.06) Spring 2007

FINAL EXAMINATION
Monday May 21, 9:00 am
You have 3 hours.

There are 10 problems, totalling 180 points. Do all

problems.

Answer all problems in the white books provided.

Write YOUR NAME on EACH white book you use.
Budget your time wisely, using the point values as
a guide. Note also that shorter problems may not

always be easier problems.

No books, notes or calculators allowed.



Some potentially useful information

Schrodinger equation

d
ih—|¥(8)) = H (D) (1))

For an energy eigenstate 1 of energy F

and the Schrodinger equation reduces to an eigenvalue equation

Hvy = Ev
Harmonic Oscillator
A 1 1
H = %ﬁ2 + 577%025%2
where
[z, p| = ih .

This Hamiltonian can be rewritten as
~ |
H=h N+ =
2
where N = ata, and the operators @ and a' are given by

1 L At 1
(mwz +1ip) , a' =
2mwh 2mwh

a= (mwz —ip) ,

and satisfy
[a,a'] =1 .

Conversely
h
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The action of @ and a' on eigenstates of N is given by

a'ln) =vn+1n+1), an)=+vnln—1).

The ground state wave function is

0 = (22) o (3)



e Natural units

In the natural units, the dimension of any physical quantity can be written as
EoRbce

where E denotes energy whose unit is normally taken to be eV. Some examples

[m] = E/¢?
[L] = hcE7!
[t] = hE~!

e Particle in an Electric and/or Magnetic Field:

The Hamiltonian for a particle with charge ¢ in a magnetic field and electric
field

; = (7 qff>2—i— ¢ (1)
-~ 2m P c 1
Gauge invariance:

If ¢ (&, t) solves the Schrodinger equation defined by the Hamiltonian (1), then
/[ = /Lq — —
V(@) = e (L@ ) utao

solves the Schrodinger equation obtained upon replacing A by A =A-V f
and replacing ¢ by ¢' = ¢ + (1/c)0f/0t.

e Electron in a magnetic field: spin Hamiltonian

The Hamiltonian for the spin is given by

m
where
5—; h - eh
= —C0 = —
9 ) UB m
and



e Time independent perturbation theory:

Suppose that
H=Hy+ H'

where we already know the eigenvalues E° and eigenstates |¢)0) of HY:
Holt?) = EP D) .
Then, the eigenvalues and eigenstates of the full Hamiltonian H are:

E,=EY+H Z (2)

m#n ”

1Oy + ... (3)

[thn) = [ + 3

m#n

E(o> E(o>

where H' = (V| H'|%).

If Hy has degeneracy at EY(LO), first diagonalize H' in the corresponding degener-
ate subspace, then use equations (2) and (3). In particular W,@) (“good states”)
should be one of the eigenvectors of H' in the degenerate subspace.

e Connection Formulae for WKB Wave Functions:

At a turning point at z = a at which the classically forbidden region is at x > a:

2 1, 5 1 1 [
cos | — 2 dx' — — — ex ——/ Kz dx’}
= G — o5 [ )
1 1, 7r 1 1 e
cos | — x dw'—l——} ex [+—/ k(' dz’}
— [h/xpm . o | [ )
At a turning point at x = b at which the classically forbidden region is at x < b:
1 1, } 2 {1 v w}
——exp |—= | w(Z)dx' —  ———cos —/ 2Ndx' — —
— p{h/mm 2 eos | [t

:(x) exp [% / b/i(x’)dx’} - pl(x) cos [% /b ' p(x’)dx’+ﬂ

e Bohr-Sommerfeld quantization condition

!

/ dx p(z)dr = (n — %)ﬂ'h, n=12--- (4)



where a, b are classical turning points. If the potential has a sharp wall on one
side, equation (4) becomes

/ drp(x) = (n — i)ﬂ'h, n=12--- (5)

If the potential has sharp walls on both side, equation (4) becomes
b
/ dx p(x) = nrh, n=12--- (6)

Barrier tunnelling
P~ e—% f; dx k()

with

k(z) = /2m(V(z) — E)

and a, b are classical turning points.

Adiabatic evolution

Under adiabatic change of parameters R of a Hamiltonian H (ﬁ), if the system
is initially in the n-th energy eigenstate, it stays in the same energy eigenstate
as the parameters change and acquires a phase factor

wlt) = e OOy, (R(D)

with .
1 R
0, = —/ dt" E,(R(t"))
h Jo

and

lt) = i / at' (0 (R |0rin(R(2))) .

The geometric phase for a spin—% particle in a magnetic field: for the spin up
state

1
=—=0
Y+ 5 C

where {2¢ is the solid angle subtended at the origin by the closed curve C' traced
by the rotating magnetic field .

Time Dependent Perturbation Theory

Consider a system with the Hamiltonian
H(t) = Ho+ H'(t) .
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Denote the matrix element of H' between eigenstates of Hy named |a) and |b)
by H!,. If the system is initially in state |a) at t = ¢, the probability that it is
in the state |b) at time ¢ is:

Pa—y = |es(t)]?
with

1 /[t o
op(t) = . / dt’ Hj,(t")e™v" Wha
to

If H' is periodic in time, i.e.
H' =V () coswt

then the transition rate from ¢ — b in the ¢ — oo limit is

™

Hamt = op2

|Vab|2(5(w — wab)

e Scattering:

— In three dimensions, the wave function 1 (7) of a particle scattering off a
potential V' (7) satisfies the asymptotic boundary condition

O = ™ T f(0,0), oo (7)

(r,0, ¢) are spherical coordinates with the scattering center located at r = 0
and 6 the angle between 7 and z-axis.

— Born Approximation to Scattering Amplitude

m

f(07¢) = f((D = _27Th2

/ &r exp(—iq - 7)V (7)

where ¢ = k' — k is the momentum transfer. If V() is central, then

o

f0) =—— drrV (r)singr

with 0
= 2k sin —
q sin 5

— Partial wave expansion: for spherically symmetric potential V' (r), the scat-
tering amplitude can be written as

F(6) = (2L +1)fiPi(cos )

=0

(=}



where f; can be expressed in term the phase shift of the effective one-
dimensional problem as

eQ’i(Sl _ 1 eiél

fi=

_ ind
2k g
The total cross section is
47 & . 9
Otot = ﬁ Z(2l + 1) S111 (Sl
=0

e Spherical coordinates in three dimension

r=rsinfcos¢p; y=rsinfsing; z=rcosb

e Legendre Polynomials

322 -1 523 — 2
Po(z) =1, Pi(z) = z, Py(z) =

e Useful integrals
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1. Short answer questions (20 points):

(a) (2 points) In using the Born-Oppenheimer approximation to study a molecule
system, we solve the dynamics of electrons first assuming all nuclei are
fixed.

(b) (2 points) In the Born-Oppenheimer approximation, electrons play no role
in the dynamics of the nuclei.

(c) (2 points) All excited states of the hydrogen atom have zero electric dipole
moment.

(d) (2 points) Partial wave expansion is normally used for high energy scat-
terings.

(e) (2 points) A charged particle in an electric and magnetic filed has an
expectation value of p that is the same in any gauge.

(f) (2 points) Aharonov-Bohm effect demonstrates that gauge invariance can
not be true in quantum mechanics since the wave function of an electron
is affected by the vector potential even in the absence of a magnetic field.

(g) (2 points) The induced magnetic moment due to the orbital motion of an
electron in a magnetic field is in the same direction as the applied field.

(h) (2 points) In an external magnetic field, to minimize energy, the direction
of the spin magnetic moment of an electron is opposite to that of the
applied field.

(i) (2 points) The main physical mechanism underlying Laser is spontaneous
emission of light by an excited atom.

(j) (2 points) The variational method cannot be used to calculate excited
states of a system.



2. Hydrogen spectrum (16 points)

Consider n = 2 states of a hydrogen atom. Electron spin should be considered
in this problem. (You can ignore Lamb shift below.)

(a) (2 points) Including fine structure, what is CSCO?

(b) (6 points) List the n = 2 eigenstates of the Hamiltonian, including fine
structure. Specify which states are degenerate.

(¢) (2 points) Now turn on a very strong magnetic field along z direction.
Ignore the fine structure, and assume that the magnetic field dependent
term in the Hamiltonian is proportional to B - (L + 2S). What is CSCO?

(d) (6 points) List all n = 2 states and specify the degeneracies.



3. Electron in a one-dimensional box (20 points)

Consider a spin-3 particle (e.g. electron) confined in a one-dimensional infinite

square well along z-direction (no motion in y and z directions),

(a)

(b)

V =0, 0<z<2a

= o0, otherwise (9)

(5 points) Write down the energy eigenfunctions and eigenvalues for the
system. What are the degeneracies?

(5 points) Find the lowest order relativistic correction to the ground state
energy. When do relativistic corrections become important?

Note that the lowest order relativistic correction gives rise to the following
additional term in the Hamiltonian:
4

b
H=--r
8m3c2

(10 points) Apply a magnetic field to the system with

B(z) = Bé., 0<z<a
= DBeé,, a<x<2a (10)

where B is constant. This generates a new term in the Hamiltonian given
by
H =uB(z)-& (11)

where p is a constant and ¢ are Pauli matrices. Treating H' as a small
perturbation, find the new ground state energy to lowest order in uB. (In
this part, ignore relativistic corrections.)

10



4. Born approximation (12 points)

Consider a particle of mass m and initial momentum k= ke, scattering off the
potential

V() =W [6(F—ad)+ d(F+ @) (12)

where

Sl

I
Q
8

1S a constant vector.

(a) (3 points ) What is the definition of scattering differential cross section?
How is it related to the scattering amplitude f (6, ¢)?

(b) (6 points) What is the scattering amplitude f(6, ¢) in the first Born ap-
proximation.

(¢) (3 points) Write down the expression for the total cross section in the first
Born approximation. (Do NOT evaluate the integrals.)

11



5. Partial wave expansion (16 points)

In a scattering experiment of particles of energy F = %
differential cross section can be written as

do 1 (1 9
d—Q—E(g‘FCOS@—FZcos 9)

thQ, one finds that the
(13)

The number multiplying the second term was wrongly calculated.
The correct number should be 1.7.
(a) (2 point) What can you say about symmetry properties of the scattering

potential? Why?
(b) (2 points) What partial waves (i.e. waves with what values of orbital

angular momentum quantum number 1) are scattering?

(c) (8 points) What are the corresponding phase shifts for partial waves in (b)?

(d) (4 points) What is the total cross section?
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6. A time-dependent two-state system (21 points)

Consider a two-state system with basis vectors |1) = (é) and |2) = ((1)) In

this basis the Hamiltonian is

H_E (C‘OS (%—) sin (—) (14)

where E and T are constants. Suppose at ¢ = 0 the system is in state |1).
Denote the state at time ¢ by [¢(1)).

(a) (3 points) What condition must 7" satisfy in order for the time evolution
to be well-approximated as adiabatic?

Below assume the criterion of part (a) is satisfied.

(b) (6 points) What is the probability that the system is in state |1) at time

t=1T7
(c) (3 points) What is the probability that the system is in state |1) at time
t=2T7

(d) (3 points) Given an example of a physical system which is described
by (14).

(e) (6 points) What is [¢/(4T))? Make sure to include the correct overall phase.
(Hint: You do NOT need to do extensive calculations for this part. Use

part (d).)
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7. Particle production in an expanding and contracting universe (10
points)

Consider a harmonic oscillator system with time-dependent frequencies

P 1
where ,
Wi(t) = w? + e T . (16)

Treat the dimensionless parameter A as very small.

If at t = —o0, the system is in the ground state of the harmonic oscillator, what
is the probability that the system is in n-th state at ¢ = 400 (to lowest order
in A\)? You should give explicit expressions for all n > 1.

[Note: this problem can be used to model particle production in an expansion
and contracting universe. |

14



8. A theorem of one-dimensional Schrodinger systems (16 points)
Consider two one-dimensional bounded quantum systems

2 2
=L 1vi@), H=2 1w

2m 2m
Suppose that Vi(x) > Va(x) for all 2. We will denote the energy eigenvalues of
two systems by EY and E? respectively, with n =1,2,-- ..

(a) (8 points) Use the variational method to prove that the ground state en-
ergies of two systems satisfy

B > BV

b) (8 points) Use Feynman-Hellman theorem to show that ET(LU > E ) for
( p y
all n.

Feynman-Hellman theorem: Suppose H(\) depends on some parameter A

and
H(A)Yn(A) = En(M)dn(N),
then OB, () ( )
22— Gl S5 )
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9. The Bouncing Ball (22 points)

Consider the quantum mechanical analogue to the classical problem of a ball of
mass m bouncing elastically on the floor, under the influence of a gravitational
potential which can be written as V' (z) = Fa (F is a constant). The motion is
one-dimensional and is restricted to z > 0.

(a) (8 points) What is the dimension of F' (either cgs or natural units is fine)?
Use dimensional analysis to express an energy eigenvalue E in terms of
parameters F,m,h up to an overall constant.

(b) (8 points) Find the energy eigenvalues using the WKB approximation. For
convenience of notation: in part (b) and (c) set m =3, F =1 and
h=1.

(¢) (6 points) Write down a trial wave function with an undetermined param-
eter. Outline the steps you would use to find a variational estimate of the
ground state energy. (You do NOT need to do or simplify the integrals.
But write them down explicitly.)

16



10. WKB approximation for one-dimensional scattering (27 points)

Consider a potential barrier of the form indicated in the above figure.

(a)

(5 points) Consider an incident plane wave coming from z = —oo with
energy £y = Vo — K (K > 0). The solution to schrodinger equation should
satisfy
P(x) = e etk x <0
= tetke, xr>b. (17)

Use the WKB approximation to estimate |t|2. (You only need to eval-
uate the exponential part. You do NOT need to derive the tun-
nelling formula.)

(10 points) Consider an incident plane wave coming from z = —oo with
energy Fy = Vo+ K (K > 0). The solution to schrodinger equation should
still have the form (17). Since now Ey > V; we expect r ~ 0 and [t| ~ 1.
Thus we can write ¢ as a phase factor

t=c¢e

Use the WKB approximation to determine the phase d.

17



v(x)

(¢) (12 points) Now consider a one-dimensional potential of the form

V(z)= 0, x <0
= v(z), x>0 (18)

where v(x) is some function with the property that v(z) — 0o as r — o
and v(0) = 0, as indicated in above figure. In = < 0 region the solution to
Schrodinger equation can be written as

w(x) — eikz + €2i66—z‘k:c (19)

with k = {/2%E. The first term in (19) is an incident wave and the second
term is the reflected wave. Use the WKB approximation to determine o
in (19). [Hint: You will need to use connection formulas for this
part.]
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