
Quantum Physics III (8.06) Spring 2007
Midterm Solution

Mar 23, 2007

1. True or false (10 points)

(a) (2 points) T

(b) (2 points) T

(c) (2 points) F

(d) (2 points) T or F (both correct since the sentence was somewhat ambiguously
stated.)

(e) (2 points) F
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2. Short answer questions (15 points)

(a) (3 points) If the ground state of a solid have a partially-filled band, it is a con-
ductor. If all bands are either full or empty, the solid is an insulator or semi-
conductor. The difference between an insulator and a semi-conductor is that a
semi-conductor has a relatively small band gap so that some electrons can be
relatively easily excited to a higher band and become conducting electrons.

(b) (2 points) The degeneracy D of a Landau level is D = BA
Φ0

with Φ0 = hc
e
.

(c) (5 points) One could use a double slit experiment with a solenoid hidden behind
the screen to measure the Aharonov-Bohm effect (3 points). The Aharonov-Bohm
effect measures the fractional part of (1 point) Φ

Φ0
with Φ the total flux of the

solenoid (1 point). Note that Φ =
∮
C

~A · d~l , where C is any curve enclosing the
solenoid, and Φ0 = hc

q
(q is the charge of the particle used in the experiment).

(d) (2 points) No (1 point). In Integer Quantum Hall Effect, the presence of impu-
rities (1 point) are crucial for the appearance of plateaus in the plot of σH as
a function of the filling ratio, which is not captured by a free electron gas in a
electric and magnetic field.

(e) (3 points) The Chandrasekhar mass is the critical mass beyond which the de-
generate electron gas pressure can no longer balance the gravity of the star (2
points). If one dumps matter into a white dwarf with a mass smaller than the
Chandrasekhar mass to make its mass bigger than the Chandrasekhar mass, it
will either collapse to form a neutron star or a black hole (1 point).
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3. Free fermions in a box and spin polartization (18 points)

Consider N non-relativistic spin-1
2

fermions with mass m in a cubic box of dimension
L× L× L. Assume that the wave functions satisfy periodic boundary conditions.

The single particle wave functions are given by

ψ~n(~x) =
1√
L3

ei~k·~x, ~k =
2π

L
(n1, n2, n3), ni ∈ Z . (1)

Note that ni are arbitrary integers. The energy is

En1n2n3 =
h̄2~k2

2m

which is the same for a spin-up or a spin-down particle.

(a) (6 points)

The ground state of the system is obtained by filling N fermions to lowest possible
single-particle states (1). When N is very large, the ground state can be describe
by a sphere (since ni in (1) can be both positive or negative) in k-space, inside
which the states are filled and outside which the states are unfilled (2 points).

The radius of the sphere kF is given by

2
4π
3

k3
F

(2π
L

)3
= N (2)

where the factor 2 is due to spin degeneracy and (2π
L

)3 is the volume occupied by
a state in k-space. Equation (2) leads to

kF =
(
3π2N

V

) 1
3

, V = L3 . (3)

(b) (5 points) The ground state energy density is given by

E0

L3
=

1

L3
2

∫ kF

0

4πk2dk

(2π
L

)3

h̄2k2

2m
=

h̄2

10π2m
k5

F =
h̄2

10π2m

(
3π2N

V

) 5
3

(4)

where the factor 2 is again due to spin degeneracy.

(c) (3 points) With a constant magnetic field along z direction, the energy for a
spin-up particle is

E+ = −µB +
h̄2k2

2m
, (5)

while for a spin down particle is

E− = +µB +
h̄2k2

2m
. (6)
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Thus in finding the ground state we first fill the energy levels of a spin-up particle
and start filling the energy levels of a spin-down particle only when k in (5) reaches
a value kB defined by

h̄2k2
B

2m
= 2µB (7)

at which E+(kB) = E−(k = 0).

If B is big enough we may fill all N particles in spin-up states without reaching
kB.

(d) (4 points) The minimal value of B that this happens is determined from

2µBmin =
h̄2k̃2

F

2m
, (8)

where k̃F is the location of Fermi surface for N spin up particles, given by

4π
3

k̃3
F

(2π
L

)3
= N ⇒ k̃F =

(
6π2N

V

) 1
3

. (9)

Note in the LHS of the first equation in (9) there is no factor 2 compared with
(2), since here we are only filling spin-up particles.

Thus we find

Bmin =
h̄2

4mµ

(
6π2N

V

) 2
3

(10)
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4. Particle on a Ring (22 points)

(a) (4 points) With periodic boundary condition, the energy-eigenstates are

ψ(0)
n =

1√
2π

einφ, n = 0,±1,±2, · · · (11)

with energy

E(0)
n =

h̄2n2

2K
(12)

States with n 6= 0 are doubly degenerate.

(b) (7 points)

The 1st order correction to ground state energy is (2 points)

E
(1)
0 = 〈ψ0|H ′|ψ0〉 = − λ

2π

∫ 2π

0
dφ cos 2φ = 0 . (13)

The second order corrections is given by

E
(2)
0 =

∞∑

n=±1

|〈ψ(0)
0 |H ′|ψ(0)

n 〉|2
E

(0)
0 − E

(0)
n

(14)

Note that (2 points)

〈ψ(0)
0 | cos 2φ|ψ(0)

n 〉 =
1

2π

∫ 2π

0
dφ einφ cos 2φ =

1

2
(δn,2 + δn,−2) (15)

Using (15) in (14) we find that (3 points)

E
(2)
0 = 2 · λ2

4

1

0− 4h̄2

2K

= −λ2K

4h̄2 (16)

(c) (3 points) The first order correction to ground state wave function is

ψ
(1)
0 =

∞∑

n=±1

〈ψ(0)
n |H ′|ψ(0)

0 〉
E

(0)
0 − E

(0)
n

ψ(0)
n =

λK

4h̄2

(
ψ

(0)
2 + ψ

(0)
−2

)
(17)

where we have used (15).

(d) (8 points) The next lowest energy states of H0 are ψ
(0)
±1 which are doubly degen-

erate. We thus need to use degenerate perturbation.

Note that (4 points)

〈ψ(0)
1 | cos 2φ|ψ(0)

1 〉 = 〈ψ(0)
−1| cos 2φ|ψ(0)

−1〉 = 0 (18)

while

〈ψ(0)
1 | cos 2φ|ψ(0)

−1〉 =
1

2π

∫ 2π

0
dφ e−2iφ cos 2φ =

1

2
(19)
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Thus we find that in this degenerate space

H ′ =
1

2

(
0 −λ
−λ 0

)
(20)

Thus the energy shift are E
(1)
+ = −1

2
λ, corresponding to (2 points)

ψ
(0)
+ =

1√
2
(ψ

(0)
1 + ψ

(0)
−1) =

1√
π

cos φ (21)

and E
(1)
− = +1

2
λ, corresponding to (2 points)

ψ
(0)
− =

1√
2
(ψ

(0)
1 − ψ

(0)
−1) =

i√
π

sin φ (22)
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5. Particle in a magnetic field (15 points)

Consider a particle with charge q and mass m in a constant magnetic field field ~B =
(0, 0, B). The particle is restricted to move in the (x, y) plane.

Define the velocity operator

~v =
1

m

(
~p− q

c
~A
)

(23)

(a) (3 points)

[vx, vy] =
1

m2
[px − q

c
Ax, py − q

c
Ay] =

ih̄q

m2c
(∂xAy − ∂yAx) =

ih̄qB

m2c
= i

h̄ωL

m
(24)

where we used
B = Bz = ∂xAy − ∂yAx (25)

and the definition

ωL =
qB

mc
(26)

(b) (6 points) The Hamiltonian of the system

H =
1

2m

(
~p− q

c
~A
)2

=
1

2
m(v2

x + v2
y) (27)

Equation (24) implies that vx and vy behave like conjugate position and momen-
tum. In particular introduce

X =
vx

ωL

, P = mvy (28)

then
[X, P ] = ih̄ (29)

Equation (27) can be written in terms of X and P as

H =
P 2

2m
+

1

2
mω2

LX2 (30)

which is the Hamiltonian for a Harmonic oscillator with frequency ωL. Thus we
find energy eigenvalues

En = (n +
1

2
)h̄ωL, n = 0, 1, 2 · · · (31)

(c) (6 points) Expand ψ(x, y) in terms of a complete sets of energy eigenstates

ψ(x, y) =
∑
α

cαψα

where
∑

α sums over the complete set of energy eigenstates. Then at time t we
find that

Ψ(x, y, t) =
∑
α

cαe−
i
h̄

Entψα
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with En given by (31). Now let t = lT with l an integer and T = 2π
ωL

, we then
find that

Ψ(x, y; lT ) = (−1)lψ(x, y)

Thus up to an irrelevant overall phase factor (−1)l (which is universal for all wave
functions) Ψ(x, y; t) is periodic in t with a period T .
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