
Quantum Physics III (8.06) Spring 2008
Assignment 3

Feb 19, 2008 Due Feb 26, 2008, 7pm

• Please remember to put your name and section time at the top of your paper.

Readings
The current reading assignment is:

• Supplementary notes on Canonical Quantization and Application to a Charged Particle
in a Magnetic Field.

• Griffiths Section 10.2.4 is an excellent treatment of the Aharonov-Bohm effect, but
ignore the connection to Berry’s phase for now. We will come back to this later.

• Cohen-Tannoudji Ch. VI Complement E

• Those of you reading Sakurai should read pp. 130-139.

Problem Set 3

Notes:

1. In this problem set, the following definitions are used throughout:

ωL ≡ qB

mc
, l0 ≡

√
h̄

mωL

=

√
h̄c

qB
(1)

vx =
1

m

(
px − q

c
Ax

)
, vy =

1

m

(
py − q

c
Ay

)
(2)

2. Problems in this set are designed to help you understand better various aspects of
Landau levels. Make sure to ask yourself what you have learned from each problem
after you finish them.

1. Gauge invariant operators (10 points)

Physical observables should be gauge invariant. Gauge invariant operators are her-
mitian operators whose expectation values in any states are gauge invariant. Check
whether the following quantities are gauge invariant or not:
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(a) 〈ψ|x̂i|ψ〉
(b) 〈ψ|p̂i|ψ〉
(c) 〈ψ|v̂i|ψ〉, where v̂i = 1

m

(
p̂i − q

c
Ai

)

(d) Energy expectation values (assuming that f is time-independent)

(e) Energy eigenvalues (assuming that f is time-independent)

2. Electromagnetic Current Density in Quantum Mechanics (12 points)

Way back in the 8.04 you derived the probability flux in quantum mechanics:

~S(~x, t) =
h̄

m
Im

[
ψ∗~∇ψ

]
. (3)

In the presence of electric and magnetic fields, the probability current is modified to

Si(~x, t) =
h̄

m
Im [ψ∗∂iψ]− q

mc
ψ∗ψAi = Re (ψ∗v̂iψ) (4)

This probability flux is conserved and when multiplied by q, the particle’s charge, it
can be interpreted as the electromagnetic current density, ~j ≡ q~S.

(a) (7 points) Derive the expression eq. (4) for the probability flux. [Hint: The deriva-
tion of eq. (4) is parallel to that of (3), i.e. you need to rewrite the Schrodinger
equation in a form

∂ρ

∂t
= −~∇ · ~S

with ρ = ψ∗ψ and ~S given by eq. (4). Note that the derivation does not require
choosing a gauge.]

(b) (2 points) Assuming that ψ has units 1/l3/2 as one would expect from the nor-

malization condition,
∫

d3xψ∗ψ = 1, show that ~j = q~S has units of charge per
unit area per unit time, which are the dimensions of current density.

(c) (3 points) Check that ~S has exactly the same form in any gauge, that is, show

that under gauge transformations, ~S ′ defined in terms of ~A′ and ψ′ is identical to
~S defined in terms of ~A and ψ.

[Note: The current density ~j ≡ q~S will play an important role in our discussion of the
quantum Hall effect.]
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3. Landau Levels: numerics (4 points)

Consider the quantum mechanical system of a charged particle of charge q and mass
m in a constant magnetic field B.

(a) Explain the physical meaning of the quantities h̄ωL and l0 defined in (1).

(b) Suppose B is a field of 15 Tesla and q = e (electron charge). (This is a very strong
magnetic field but is certainly one which can be created in the laboratory.) In a
15 Tesla magnetic field, what is h̄ωL in eV? What is `0 in cm?

Useful facts: 1 Tesla = 104 gauss. The gauss is the cgs unit of B. This turns
out to mean that if B is 1 gauss, then the force eB is 300 eV/cm. Also, h̄c =
197× 10−7eV cm. And, the mass of the electron is m = 0.511MeV/c2.

4. General aspects of quantum motion in a magnetic field (16 points)

The quantum motion for a particle in a magnetic field shows some resemblances to the
classical motion and also many important differences. The differences can be traced
to various commutators derived in this problem, in particular equations (5) and (8).

The questions in this problem should be derived without explicitly choosing a gauge.

(a) (4 points) In this part we consider an arbitrary magnetic field (not necessarily
constant). Find the commutator

[v̂x, v̂y] =? (5)

where v̂x,y are the velocity operator defined by (2). What can you conclude about
the motion of the particle from (5)?

(b) (4 points) In this and all parts below, we take ~E = 0 and

Bx = By = 0, Bz = B = const

and look at the motion in x − y plane only. Classically the particle travels in a
circle around a “center of orbit” (X,Y ), which can be expressed in terms of the
coordinates (x, y) and the velocities (vx, vy) of the particle as (recall prob. 4 (b)
of pset 2)

X = x +
vy

ωL

, Y = y − vx

ωL

. (6)

Motivated by the classical expressions (6) we introduce quantum operators

X̂ = x̂ +
v̂y

ωL

, Ŷ = ŷ − v̂x

ωL

(7)

Find the commutators
[X̂, Ŷ ] =? (8)

What can you say about the motion in x− y plane from (8)?
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(c) (2 points) Show that X̂ and Ŷ are gauge invariant (you can use the results from
Prob. 1).

(d) (6 points) Show that
[X̂, H] = [Ŷ , H] = 0 . (9)

Equations (8) and (9) imply that one of X̂ and Ŷ (or an arbitrary linear combina-
tion of them, but not both) can be diagonalized together with the Hamiltonian.

[Hint: It is convenient to write the Hamiltonian in a form H = 1
2
m(v̂2

x + v̂2
y) and

first find the commutators between X̂, Ŷ and v̂x, v̂y.]

[Note: Equation (9) is the quantum counterpart of the statement you proved in
prob. 4(c) of pset 2, i.e. classically (6) are constants of motion.]

5. Transformation between basis vectors of different gauges (18 points)

Consider a particle of charge q and mass m moving in a constant magnetic field ~B =
(0, 0, B). In the gauge

Ax = −By, Ay = Az = 0 (10)

we found in lecture that a basis of energy eigenvectors in the lowest Landau level is
given by (see equation (1) for notations)

ψ0(x, y; kx) = eikxxφ0(y − y0) (11)

where

φ0(y − y0) =
1

(πl20)
1
4

e
− (y−y0)2

2l2
0 (12)

is the ground state wave function for a harmonic oscillator of frequency ωL and

y0 = −ch̄kx

qB
= −l20kx .

(a) (3 points) Show that in gauge (10), (11) is an eigenvector of Ŷ introduced in (7).
Find the eigenvalue. Thus (11) diagonalize H and Y simultaneously.

(b) (4 points) Without doing any calculation, write down energy eigenvectors ψ′0(x, y; ky)
in the lowest Landau level for gauge choice

A′
y = Bx, A′

x = A′
z = 0 . (13)

Show that ψ′0(x, y; ky) are eigenvectors of X̂ introduced in (7) and thus diagonalize

H and X̂ simultaneously. [Note: in contrast to (11), ψ′0(x, y; ky) is a plane wave
in y-direction while a harmonic oscillator in x-direction.]
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(c) (2 points) Find the gauge transformation between (13) and (10).

(d) (2 point) From the result you obtained for (8), discuss how ψ′(x, y; ky) of (b) and
(11) should be related to each other1.

(e) (7 points) Check that ψ′(x, y; ky) can be written in terms of linear superpositions
of (11) as

ψ′0(x, y; ky) = e−
iq
h̄c

f l0√
2π

∫ ∞

−∞
dkx e−il20kxky ψ0(x, y; kx) (14)

where f is the gauge transformation you find from (c). The factor e−
iq
h̄c

f in (14)
comes from the gauge transformation. [Hint: To prove (14), it is convenient to
write equation (12) in terms of its Fourier transform

φ0(y − y0) =
l0

(πl20)
1
4

∫ ∞

−∞
dk√
2π

eik(y−y0)− l20k2

2

and use it in the right hand side of (14).]

[Note: The fact that energy eigenvectors look so different in different gauges is
due to the infinite degeneracy of each Landau level. Different choices of gauges
select different sets of basis.]

1Note: the answer to (8) is: [X̂, Ŷ ] = −il20 where l0 was defined in (1).
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