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1. The Feynman-Hellmann theorem (12 points)

(a) (6 points)

Consider differentiating the identity

Em = 〈ψm|H|ψm〉

with respect to λ. This yields

∂Em

∂λ
= 〈ψm|∂H

∂λ
|ψm〉+ 〈∂ψm

∂λ
|H|ψm〉+ 〈ψm|H|∂ψm

∂λ
〉 (1)

= 〈ψm|∂H

∂λ
|ψm〉+ Em

∂

∂λ
〈ψm|ψm〉 (2)

= 〈ψm|∂H

∂λ
|ψm〉 (3)

where we have used that ψm is normalized =⇒ 〈ψm|ψm〉 = 1. The above derivation applies
to any Hermitian operator and its eigenvalues.

(b) (6 points) We recall that for a simple harmonic oscillator, the Hamiltonian is H = T (x)+
V (x), where T (x) = − ~2

2m
d2

dx2 and V (x) = mω2x2

2 , and its eigenvalues are En = (n + 1
2 )~ω.

• We first take λ = ω. Using (3), we have

(n +
1
2
)~ = 〈n| 2

ω
V (x)|n〉.

Multiplying by ω/2 on both sides, we find

1
2
En = 〈n|V (x)|n〉,

or 〈V (x)〉 = 1
2E.

• We now take λ = ~. Applying (3), we have

(n +
1
2
)ω = 〈n|2

~
T (x)|n〉.

Using similar algebra, we can rewrite this as 〈T (x)〉 = 1
2E.

• We now take λ = m. Equation (3) now gives us

0 =
1
m
〈n|T (x)− V (x)|n〉,

or 〈T (x)〉 = 〈V (x)〉.

According to the Virial theorem, 1
2E = 〈T 〉 = 〈V 〉, which is exactly what we have derived

above.
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2. Energy shift due to finite nuclear size (14 points)

(a) (4 points) Our charge distribution is ρ(r) = 3e
4πR3 for r ≤ R, and 0 for r > R. Using

Gauss’ law, we find the radial component of the Electric field to be

E(r) =
er

R3
r < R

=
e

r2
r ≥ R

Integrating to find the potential energy V (r) = −e
∫∞

r
E dr, we find

V (r) = −e2

r
r > R

= −e2

(
1

2R3
(R2 − r2) +

1
R

)
r < R.

(b) (7 points) We learned on the previous part of the problem that for r < R, the electrostatic
potential has been modified: V (r) = − e2

r − e2[R2−r2

2R3 + 1
R − 1

r ] ≡ V0(r) + ∆V (r). We will
treat ∆V as a perturbation. The first-order change in the ground state energy is ∆E

(1)
1 =

〈ψground|∆V |ψground〉. Using ψground = 1
(πa3

0)
1/2 e−r/a0 (a0 = 5.3× 10−9 cm), this becomes

∆E
(1)
1 =

∫ R

0

r2dr

(
−4e2

a3
0

)
e−2r/a0

[
R2 − r2

2R3
+

1
R
− 1

r

]
.

The integrals above can be done exactly, using integration by parts, iterated as necessary.
However, since we are already approximating, and since R ¿ a0, we can make our lives easier
by replacing ψ(r) by ψ(0) since ψ does not change rapidly in this region. Then

∆E
(1)
1 '

(
−4e2

a3
0

) ∫ R

0

dr

[
r2(R2 − r2)

2R3
+

r2

R
− r

]

=
4e2R2

10a3
0

.

Plugging in numbers, ∆E
(1)
1 = 3.8 × 10−9 eV. Since E

(0)
1 = − e2

2a0
, the ratio of the first-order

correction to the unperturbed ground state energy is

|∆E
(1)
1 |

|E(0)
1 |

=
4
5

(
R

a0

)2

= 2.8× 10−10,

which is very small.

(c) (3 points) The effect of finite nuclear size is most important for l = 0 states, as ψnl(0) = 0
unless l = 0. We can estimate the relative importance of the effect for l = 1 states by
noting that the most important difference between ψn1(r) and ψn0(r) is that ψn1(r) contains
an additional factor of r/a0 relative to ψn0(r). This means that the first-order correction to
the energy for l = 1 has an additional factor of (R/a0)2 ∼ 10−10 relative to the first-order
correction to the energy for l = 0.

3. Stark effect (16 points)
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(a) Using first order perturbation theory, the correction to ground state energy is given by

∆E
(1)
1 = eEext〈100|z|100〉 = eEext

∫
d3x |ψ100|2z = 0 (4)

The last equality is due to that |ψ100|2 is symmetric under z → −z.

(b) The n = 2 states are 4-fold degenerate (we ignore spin in this problem). Since

[Lz,H
′
S ] = 0, H ′

S = eEextz

using the lemma proved in lecture (p.28 of the class notes), we conclude that

〈nlm|H ′
S |nl′m′〉 ∝ δmm′ (5)

Also note that

〈nlm|H ′
S |nlm〉 = eEext〈nlm|z|nlm〉 = 0 (6)

since |ψnlm|2 is symmetric under z → −z. Ordering the 4 degenerate states as

|200〉, |210〉, |211〉, |21− 1〉

and using (5) and (6), then the matrix for H ′
S in this degenerate subspace should have the

form

H ′
S =




0 c 0 0
c 0 0 0
0 0 0 0
0 0 0 0


 (7)

with

c = 〈200|H ′
S |210〉 = eEext〈200|z|210〉 = eEext

∫
d3x ψ∗200zψ210 = −3eEexta0 (8)

where a0 is the Bohr radius. The eigenvalues of (7) give us the first order shifts in the energy:
−3ea0Eext, 3ea0Eext, 0, 0. So n = 2 levels split into three levels: E

(0)
2 ± 3ea0Eext and E

(0)
2

(2-fold degenerate).

(c) The eigenvectors of H ′
S give us the correct un-perturbed wave functions. The eigenvectors

corresponding to the eigenvalues in (b), in that order, are:

|1〉 =
1√
2
(|200〉+ |210〉), |2〉 =

1√
2
(|200〉 − |210〉), |3〉 = |211〉, |4〉 = |21− 1〉 (9)

Using (8) and (6), the electric dipole moment in the above states are given by

〈1|pe,z|1〉 = 3ea0, 〈2|pe,z|2〉 = −3ea0, 〈3|pe,z|3〉 = 〈4|pe,z|4〉 = 0 (10)

with pe,z = −ez. All other components of ~pe are zero in all states due to a similar symmetry
argument as in (6).
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4. Van der Waals Interaction (18 points)

[Note: The errors in Griffiths pointed out below only appear in an earlier printing of Griffiths.]

(a) (4 points) In cgs units we replace the factor of 4πε0 by 1. Construction of H ′ is quite
straight forward. Each term corresponds to coulombic interactions between four possible pairs
of particles. There are two attractive terms and two repulsive. [Note: Eqn. (6.97) and figure
6.14 are not in agreement. To do this, one can either interchange x1 and x2 in figure 6.14
or replace x1 and x2 by −x1 and −x2 respectively in eqn (6.97). However it really does not
change anything that subsequently follows as all the epressions obtained are invariant under
either tranformation.]

Expanding H ′ upto second order in x1 and x2:

H ′ =
e2

R
− e2

R

(
1− x1

R
+

x2
1

R2

)
− e2

R

(
1 +

x2

R
+

x2
2

R2

)

+
e2

R

(
1− x1 − x2

R
+

x2
1 + x2

2 − 2x1x2

R2

)
+O(x3)

≈ −2e2x1x2

R3
.

(b) (4 points) Using the change of variables,

x1,2 =
1√
2
(x+ ± x−) and p1,2 =

1√
2
(p+ ± p−),

we can rewrite total Hamiltonian H as:

H = H0 + H ′

H =
1

2m

(
1
2
(p+ + p−)2 +

1
2
(p+ − p−)2

)
+

1
2k

(
1
2
(x+ + x−)2 +

1
2
(x+ − x−)2

)

−2e2

R3

1
2
(x+ + x−)(x+ − x−)

=
[

1
2m

p2
+ +

1
2

(
k − 2e2

R3

)
x2

+

]
+

[
1

2m
p2
− +

1
2

(
k +

2e2

R3

)
x2
−

]
.

But this is not enough. We further need to show that [x±, p±] = i~ and [x±, p∓] = 0 in
order to show that (6.99) is indeed seperated into two independent harmonic oscillator. This
is easy but important. [Note: Eq. above differs from Eq. (6.99) in Griffiths by a factor of 2
in the coefficient of e2/R3, of course after subtituting 4πε0 = 1. So Grfitths has got it wrong
everywhere from (6.99) to (6.102). We will independently check it in part (d).]

(c) (4 points) Assuming that k À 2e2/R3, we expand ω± to second order in 2e2/kR3:

ω± =

√
k ∓ 2e2/R3

m

= ω0

√
1∓ 2e2

kR3

= ω0

[
1∓ e2

kR3
− 1

8

(
2e2

kR3

)2

+O
(

2e2

kR3

)3
]

,
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where ω2
0 = k/m. Therefore,

∆V ≡ E − E0 ≈ − ~
2m2ω3

0

e4

R6
.

Again this expression differs from (6.102) by a factor of 4 due to same error. But we will see
that our answer obtained here is consistent with independent calculation in part (d).

(d) (6 points) For our original unperturbed Hamiltonian H0, we denote eigenstates by |n1, n2〉
and we can write x1,2 in terms of creation and annihilation operators

√
~/2mω0(a1,2 + a†1,2).

Hence we obtain,

H ′ = − ~e2

mω0R3
(a1 + a†1)(a2 + a†2).

The first order perturbation to the ground state energy, 〈0, 0|H ′|0, 0〉 = 0. In order to cal-
culate second order corrections we need to calculate the matrix element 〈0, 0|H ′|n1, n2〉 =
− ~e2

mω0R3 〈0, 0|(a1 + a†1)(a2 + a†2)|n1, n2〉. Since a†1,2 annihilates 〈0, 0|, i.e. 〈0, 0|a†1,2 = 0, there-
fore only term contributing to this matrix element will be corresponding to a1a2. Hence,
noticing that a|n〉 =

√
n |n− 1〉, we obtain:

〈0, 0|H ′|n1, n2〉 = − ~e2

mω0R3
〈0, 0|a1a2|n1, n2〉

= − ~e2

mω0R3

√
n1n2 〈0|n1 − 1〉〈0|n2 − 1〉

= − ~e2

mω0R3
δn1−1,0 δn2−1,0.

Now second order correction is given by,

E
(2)
0 =

∑

n1,n2 6=0

|〈0, 0|H ′|n1, n2〉|2
−(n1 + n2)~ω0

= − ~
2m2ω3

0

e4

R6
,

which is indeed the same result as what we obtained in part (c).

Note: There is a serious flaw in this problem. If you expand Griffiths’ Eq. (6.97) to higher
order in 1/R you find, in addition to Eq. (6.98), terms that are of order 1/R4, 1/R5, and so
on. All the 1/R4 terms and most of the 1/R5 terms share in common with the 1/R3 term the
feature that they do not contribute any first order correction. Their expectation value vanishes
in any of the unperturbed states. However, among the 1/R5 terms, we find in addition a term
proportional to

e2x2
1x

2
2

R5
,

whose expectation value in the unperturbed ground state is not zero. This term in H ′ therefore
leads to a contribution to what Griffiths calls ∆V that is of order 1/R5, larger than what
Griffiths and you have calculated in Eq. (6.102), and in part (d) by second order perturbation
theory using the H ′ of Eq. (6.98). The bottom line implication of this observation is that
Griffiths’ ball and spring model is not a good model for the real Van der Waals interaction
between atoms.
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