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1. The Feynman-Hellmann theorem (12 points)

(a) (6 points)

Consider differentiating the identity

En = <¢M|H|wm>

with respect to A. This yields

OFEn, OH
O\ = < ‘ a9y |wm> <

= <wm‘ |wm>+ my <¢m|¢m>

O, M

IHIwm> {Ym|H| =537

where we have used that 1, is normalized = (¢,,|¢;n) = 1. The above derivation applies

to any Hermitian operator and its eigenvalues.

(b) (6 points) We recall that for a simple harmonic oscillator, the Hamiltonian is H = T (x)+

V(z), where T (z) =

e We first take A = w. Using (3), we have

b=l 2V (@)ln).

(n+2

Multiplying by w/2 on both sides, we find

2B = (V@) n),

or (V(z)) = E.
e We now take A = fi. Applying (3), we have

(n+ 2w = <n\%T(x)\n>.

5)

E.

Using similar algebra, we can rewrite this as (T'(x)) = %

e We now take A = m. Equation (3) now gives us

0= (nlT(x) ~ V(x)ln),

2hm A and V(z) = m“’22127 and its eigenvalues are E,, = (n + 3)hw.

According to the Virial theorem, F = (T) = (V), which is exactly what we have derived

above.



2. Energy shift due to finite nuclear size (14 points)

(a) (4 points) Our charge distribution is p(r) = ;2% for r < R, and 0 for r > R. Using
Gauss’ law, we find the radial component of the Electric field to be

er

E(')") = ﬁ T<R
(&
= 3 r>R

Integrating to find the potential energy V (r) = —e froo E dr, we find

2

Vir) = f—er r>R
1 1
_ 2 2 2
= —e (2R3(R 7‘)—|—R> r < R.

(b) (7 points) We learned on the previous part of the problem that for » < R, the electrostatic

potential has been modified: V(r) = —é - eQ[R;EJZ + 5 — 2] = Vo(r) + AV(r). We will

treat AV as a perturbation. The first-order change in the ground state energy is AE%I) =
<wground|AV|wground>- USing '(/}ground =

We_”ao (ap = 5.3 x 1079 cm), this becomes
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The integrals above can be done exactly, using integration by parts, iterated as necessary.

However, since we are already approximating, and since R < ag, we can make our lives easier

by replacing ¥ (r) by ¥(0) since 1 does not change rapidly in this region. Then
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Plugging in numbers, AE%I) =3.8x 107%eV. Since E§O) = —%7 the ratio of the first-order

correction to the unperturbed ground state energy is

BRI

AEW| 4 2
AF, | <R> =2.8x10719,
ag

which is very small.

(¢) (3 points) The effect of finite nuclear size is most important for I = 0 states, as 1,,;(0) = 0
unless [ = 0. We can estimate the relative importance of the effect for [ = 1 states by
noting that the most important difference between 1,1 (r) and ¥,(r) is that 1,1 (r) contains
an additional factor of r/ag relative to ¥,o(r). This means that the first-order correction to
the energy for [ = 1 has an additional factor of (R/ag)? ~ 10710 relative to the first-order
correction to the energy for [ = 0.

3. Stark effect (16 points)



(a) Using first order perturbation theory, the correction to ground state energy is given by
AEWY = eE..(100]2]100) = eEm/d?’x th100/?2 = 0 (4)

The last equality is due to that |119g|? is symmetric under z — —z.
(b) The n = 2 states are 4-fold degenerate (we ignore spin in this problem). Since
[L.,HS] =0, H§ = eFEepz
using the lemma proved in lecture (p.28 of the class notes), we conclude that
(nlm|Hg|nl'm") o< 8 (5)
Also note that
(nlm|Hg|nlm) = eEep(nlm|z|nlm) = 0 (6)
since [11m|? is symmetric under z — —z. Ordering the 4 degenerate states as
1200), [210), [211), |21 —1)

and using (5) and (6), then the matrix for Hg in this degenerate subspace should have the

form
0 ¢ 00
Ll g
00 0 0
with
¢ = (200|H§|210) = eE.,+(200]2|210) = eEext/dgm Y3002%210 = —3€FEentag (8)

where ag is the Bohr radius. The eigenvalues of (7) give us the first order shifts in the energy:
—3eagFeyt,3€a0Ecyt,0,0. So n = 2 levels split into three levels: Eéo) + 3eagF.y: and Eéo)
(2-fold degenerate).

(c) The eigenvectors of Hg give us the correct un-perturbed wave functions. The eigenvectors

corresponding to the eigenvalues in (b), in that order, are:

1 1
V2 V2

Using (8) and (6), the electric dipole moment in the above states are given by

1) (1200) +1210)),  [2) (1200) = [210), [3) = [211), [4) =[21—1) (9)

<1|pe,zu> = 3eay, <2|pe,Z|2> = —3eay, <3‘p672‘3> = <4|pe,Z|4> =0 (10)

with p. . = —ez. All other components of p, are zero in all states due to a similar symmetry
argument as in (6).



4. Van der Waals Interaction (18 points)
[Note: The errors in Griffiths pointed out below only appear in an earlier printing of Griffiths.]

(a) (4 points) In cgs units we replace the factor of 4meg by 1. Construction of H' is quite
straight forward. Each term corresponds to coulombic interactions between four possible pairs
of particles. There are two attractive terms and two repulsive. [Note: Eqn. (6.97) and figure
6.14 are not in agreement. To do this, one can either interchange x; and zs in figure 6.14
or replace 1 and xo by —z; and —x4 respectively in eqn (6.97). However it really does not
change anything that subsequently follows as all the epressions obtained are invariant under

either tranformation.]

Expanding H' upto second order in z; and z»:

ez e? x 3 e2 To T3
R R< R+R2> R(+R+R2)
€2 T — To I% + x% — 22129
—(1- o(z?
—I-R ( 7 + Iz ) + O(z”)
- 2¢2x1 1
N 3
(b) (4 points) Using the change of variables,
ey ta) d (b £p-)
T10 = —(x T_ an = — _),
1,2 \/5 + P12 \/§ p+=xp
we can rewrite total Hamiltonian H as:
H = H'+H
1 1 1 1 1 1
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2¢% 1
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{2mp++2 ( RS)QE+ a2 PR ) T
But this is not enough. We further need to show that [z4,p+] = i¢h and [z4,py] = 0 in
order to show that (6.99) is indeed seperated into two independent harmonic oscillator. This
is easy but important. [Note: Eq. above differs from Eq. (6.99) in Griffiths by a factor of 2

in the coefficient of e2/R3, of course after subtituting 4mey = 1. So Grfitths has got it wrong
everywhere from (6.99) to (6.102). We will independently check it in part (d).]

(c) (4 points) Assuming that k > 2e?/R?, we expand wy to second order in 2e?/kR?:

k F2e?/R3
i =\
Y S
= Wwo :Fk:R3
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= Wo )




where wg = k/m. Therefore,

ho et

AV=F-FEy~ ————.
0 2m2w3 RS

Again this expression differs from (6.102) by a factor of 4 due to same error. But we will see

that our answer obtained here is consistent with independent calculation in part (d).

(d) (6 points) For our original unperturbed Hamiltonian H°, we denote eigenstates by |n1,n2)
and we can write x1 2 in terms of creation and annihilation operators /A/2mwq(a1,2 + al{z).

Hence we obtain,
he?

7 (R
mwoR3

(a1 + al)(az + al).

The first order perturbation to the ground state energy, (0,0/H’|0,0) = 0. In order to cal-
culate second order corrections we need to calculate the matrix element (0,0/H'|n,ng) =
—mZ‘ZQRa (0,0[(ay + al)(az + al)|n1, na). Since aJ{Q annihilates (0, 0], i.e. (O,O|a;2 = 0, there-
fore only term contributing to this matrix element will be corresponding to aias. Hence,

noticing that a|n) = y/n|n — 1), we obtain:

__he?
mwoR3
he?
= _mw0R3 /N1 N2 <0|77,1 - 1><0|TL2 - ].>
he?

mwoR3

(0,0|H'|n1,n2) (0,0|ataz|ny, n2)

5n1—1,0 §n2—1,0-

Now second order correction is given by,

2 (0, 0| H'[n1, ma)|?
B = X — (11 + no)hw
n1,m27#0 ! 2 0

ho et

a 2m2w RS’
which is indeed the same result as what we obtained in part (c).

Note: There is a serious flaw in this problem. If you expand Griffiths’ Eq. (6.97) to higher
order in 1/R you find, in addition to Eq. (6.98), terms that are of order 1/R*, 1/R®, and so
on. All the 1/R* terms and most of the 1/R5 terms share in common with the 1/R3 term the
feature that they do not contribute any first order correction. Their expectation value vanishes
in any of the unperturbed states. However, among the 1/R® terms, we find in addition a term

proportional to
2,22

e‘rixs

RS
whose expectation value in the unperturbed ground state is not zero. This term in H’ therefore
leads to a contribution to what Griffiths calls AV that is of order 1/R5, larger than what

Griffiths and you have calculated in Eq. (6.102), and in part (d) by second order perturbation

theory using the H’ of Eq. (6.98). The bottom line implication of this observation is that
Griffiths’ ball and spring model is not a good model for the real Van der Waals interaction
between atoms.



