Quantum Physics III (8.06) Spring 2008
Solution Set 8

April 18, 2008

1. Tunneling and the Stark effect (18 points)

(a) (3 points) For an infinitely deep square well of width d, the energy of the ground state
is Foo,0 = % (this is the amount by which ground state energy is above the bottom of the

K22

potential well). Therefore, we estimate Fy = 5.7

— Vo. Full credit will be given on writing
only Fu .

To show that true ground state is lower than this, use variational principle. Consider potential
V(z) = 0 for |z| < d/2 but V(x) = Vp for |x| > d/2. Take the trial wavefunctions to be
Y(x) = /2/dcos(mz/d) for |z| < d/2 and 0 everywhere else. Of course this is the exact
ground state wavefunction for the infinite well potential and indeed (¢|H|y)) = Fw o, where
H is hamiltonian corresponding to the potential mentioned above, which is nothing but the
square well potential of this problem shifted by Vj. Therefore the true ground state must be

lower than E o, as the variational method gives us an upper bound to the energy.

(b) (2 points) A sketch of the potential is in figure 1.
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Figure 1: A square well potential in a constant electric field.

The potential no longer binds states because it is unbounded from below; a particle trapped

in the well can reduce its energy by tunneling out to x = oco.

(c) (4 points) To use semiclassical approximation to find the tunneling probability, we first



need to find the classical turning point. This occurs at
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The tunneling probability is given semi-classically by
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Since e£d < Vy, the barrier is very wide, and we do indeed have x; > d:
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(d) (5 points) Classically, the time associated with this particle is ¢ty = %, the time it takes
to bounce back and forth once. Here the velocity is v = 4/ ZE#"’O = %. So, if we have N

particles in the box, all N hit the right wall in time ¢, therefore in time dt, Ndt/to particles
hit the right wall and escape with the probability T'. Hence, differential rate of loss of particle
number is given by:

dN = -TN ﬂ,
to
and therefore
N = Nge~Tt/to,
where Ny is the initial number of particles. The lifetime of the bound state is thus,
_to 2md?
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(e) (2 points) Plugging in the given numbers, tq = 2.2 x 10716 s, T' = ¢787225_ This gives the
lifetime of 7 = 4.8 x 10378%% s —which is unbelievably long! The age of the universe is 13.7
billion years, which is 4.3 x 10'7 s.

(f) (2 points) Since we found that 7' = exp(—const./€), and 7 o &, we have already demon-
strated that the lifetime goes like exp(1/E€). If we Taylor expand e~ '/€ about £ = 0, we get
zero to any finite order in £, and hence you cannot see tunneling at any order in perturbation

theory.



2. Quantum Mechanics of a Bouncing Ball (8 points)
(a) (4 points) For this potential, the appropriate quantization condition is fowt dx \/2m(E, — mgx) =
(n—$)7h (see e.g. Griffiths equation (8.47) on p. 330), as one side of the potential is a vertical

wall. The classical turning point here is z; = E,, /(mg). Doing the integral,

Tt 2 2
/ dz2m(E, — mgx)'/? = \/ — g3,
0

m 3g
We therefore find

3 1 2/3
E, = (4 (n — 4) Thv 2mg> .

(b) (2 points) The quantum mechanical ground state of neutron (n = 1 and m = 1.67 x
1072"Kg = 9.4 x 108 eV/c?) will have energy

2/3
By = ((3/4)27rh\/2mg) =139 x 10712 eV

This is tiny, as expected—gravity is a very weak force.

(¢) (2 points) Classically, the energy of the dropped ball is E. = mgxg. With g = 1 m,
m =1 g, thisis E, = 9.8 x 1073J. We would like to find n such that E,, = 9.8 x 102 J. This

works out to the huge value, n = 8.9 x 103!

3. Application of the Semiclassical Method to the Double Well Potential (20 points)

(a) and (b) (9 points) The steps suggested by Griffiths are: work out the wave function ; in
region (i); from 1 use the connection formulae at x2 to obtain the wave function 15 in regions
(ii); use 1 and the connection formulae at x; to obtain the wave function 5 in region (iii).
(8.59) can be found by requiring that 13 should satisfy ¢5(0) = 0 or ¢5(0) = 0 at = 0.

Here we will use the approach suggested in the problem set. The purpose is for you to see an
alternative approach, which has its own advantages. We use the symmetry condition to write
down the wave function 3 in region (iii) directly. The wave function 5 in region (ii) then
can be obtained using two ways: from %; in region (i) via connection formulae at x5, or from
3 in region (iii) via connection formulae at ;. The equality of two wave functions leads to
equation (8.59) of Griffiths. Here are details of this approach.

The wave function must satisfy two conditions, namely that (1) it must go to 0 at oo, and
(2) since the potential is even, the wave function must be either even, (x) = ¢(—z), or odd,
P(x) = —p(—x). These two conditions tell us that the WKB wave function in the three regions

must have the following forms:
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At the classical turning point z2, we apply the connection formula to ¢ (eq (4)) to find the
wave function in region (ii)

Po(z) = %cos {/hpda:— ﬂ .

Defining

and

we can rewrite ¥y as

1/12(37)2?/2%5 (I—i—%—@). (7)

We now turn our attention to the classical turning point x;. First, we define

1
? :/ pdx.
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In terms of ¢, the wave function (5) in region 3 is

D i L e
Py = —— [e¢/26 RSl g 2t ) dxp} ; (8)
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where the plus sign holds when the wave function is even, and the minus sign when the wave
function is odd. We now use both connection formulae to (8) at z; conclude that in region (ii)

Pa(x) = D [2645/2 cos (I - I) + e %2 cos (I + E)} . (9)
2¢/Ip| 4 4
We are allowed to use both connection formula in this case—that is, we are allowed to use
one connection formula “against the arrow”— because the symmetry of the potential tells
us exactly which linear combinations of growing and dying exponentials we have in region
3. Ordinarily, we are not allowed to use the second connection formula against the arrow
because if the wave function contains any component which grows exponentially, then our
approximation is not sensitive enough to tell us whether there is also a component of the wave
function which decays exponentially, and if so what the relative weight of each part of the
wave function is. In this case, however, we know that we must have either a sinh or a cosh, as

the potential is even.

By setting equation (7) equal to equation (9), we find
D [26¢/2 sin (I + g) + e %2 cos (I + %)} =4A {cos (I—|— %) cos f + sin (I + %) sin@} ,
which tells us that D = e~%/22Asin 6, and, more importantly, that

tan§ = +2¢®.
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Figure 2: Double well potential
(c) (2 points) Writing 6 = (n + $)7 + €, we find
(=1)"cose 1
tanf = —————— ~ ——.
an (=1)ntlsine €
Therefore the quantization condition becomes
1
—= =42
€
and therefore
1 1 —¢
9:(n+§)ﬂ'$§e . (10)

(d) (3 points) The potential is sketched in figure 2. For this potential, using F = %mwz(xt —
2

a)? (which defines x;) we have

Tt mw b
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withy=2—aand b=z —a =/ 772152 The last integral in (11) can be integrated to give

”TZ’Q, which leads to
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The first part of this expression is, of course, the familiar harmonic oscillator energy levels;

the second part is an offset due to the barrier.



(e) (3 points) The wave function for a particle that starts out in the right well is
P(w,t) = 1 (w—&-e—iE,J{t/h + w—e—iE;t/n) .
b \/i n n

The probability density coming from this wave function is

-9
e, = 5 (0 o P 2 cos (5.

When cos (@) = —1, then the particle has hopped to the other well, since at that time
i1 |1/J($»t71)|2 = %|¢I(CE, 0) - 1/);(;C,O)|2.
The period of oscillation between the two wells is therefore 7 = %e‘b. Note that a large

barrier corresponds to a very long period, which makes physical sense.

(f) (3 points) We have for this specific potential

¢:2mTw/ dz/(z — a)? — (z1 — a)2.
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Using the integral
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In the limit where V(0) = $mw?a® > E, the above expression reduces to

we find

mwa2

¢~ —

. Adiabatic Spin Rotation (5 points)

The adiabatic theorem tells us that, provided we change the magnetic field slowly enough,
the particle will remain in the same (slowly varying) energy level provided that the particle
never reaches a point in its trajectory where energy levels become degenerate. (The proof
of the adiabatic theorem relies on being able to choose timescales larger than #/(AE); when
AFE = 0, this is impossible. There is no way to suppress the transition amplitudes between
exactly degenerate states.) The residual field 6B = (B,, B,,0) ensures that at t = By/(3, the
two spin states are still non degenerate. This is all that we need to know to conclude that at
ty the particle’s final state is | |), independent of the details of 65, provided that we change

B, slowly enough.

The closest splitting between the two energy levels occurs at ¢ = By/(. Here the difference
in the energy between the two states is AE = 2u|dB|, and so the shortest timescale of the
system is t; = h/(2uo|0B|). The amount of time that the system spends in this “dangerous”

region is of the order of t; = QI%Bl, since this is the length of time during which the residual




magnetic field § B is larger than the magnetic field By — 3t. We therefore identify the adiabatic
timescale as t;. For the adiabatic theorem to apply, we must have t; > t,, or

piol0B|?
g < o

(Here I have dropped numerical factors of order unity.) This result shows why, in magnetic
traps, one does not allow the magnetic fields to be 0. When B = 0, the two spin states become
degenerate, and the adiabatic theorem breaks down. This means that the spins can flip, and

atoms can leak out of the traps.

. Engineering Adiabatic Transitions (9 points)
(a) (2 points) In the basis {|+),]0),|—)}, the spin matrices are

5 010 5 0 —i 0 1 0 0
Se=—4=1] 1 0 1 |, Sy=—=| 1 0 —i |, S.=h| 0 0 O
V2 V2 ‘
010 0 ¢« 0 0 0 -1
These matrices satisfy [S;,S;] = i€;;xhSk, as any self-respecting set of angular momentum

matrices must.

(b) (5 points) The Hamiltonian has the form

—2p10(Bo — Bt) — ¢ —V2p0B, 0
H= _\/§MOB$ 0 _\/inBx
0 7\ﬁﬂoBz 2‘LLO(B0 — ﬁt) —C

We need to sketch the behavior of the energy levels of the system as we vary the time t. The
hierarchy of energies that we are given, poBg > ¢ > uoBy, tells us that we can get a rough
picture of the energy levels by temporarily ignoring B,. Without the contributions of the
B, fields, the energy levels of the system vary with time as shown in figure 3. Notice that if
B, were 0, we could not use the adiabatic theorem to analyze this system, because it is not
applicable when the eigenvalues cross each other.

The contributions of the B, term (which we can treat as a perturbation) become important
when the differences between the eigenvalues of Hy = —Q%SZBZ - B%Sg are small. We can
see from figure 3 that we will need to take the B, perturbation into account at all three places
where the unperturbed energy levels intersect; the effect of the perturbation will be to lift the

(instantaneous) degeneracies at these intersections.

When 8t = By — ¢/(2p0), |0) and |—) are degenerate. To find the correction to the energy
levels from the nonzero B,, we need to diagonalize the instantaneous Hamiltonian within the

degenerate subspace at this crossing point,

0 1
H:—ﬁuoBz<l 0).

The eigenvalues of the above Hamiltonian are £+/249 B, and therefore the effect of the nonzero

B, here is to open up a gap of width 2v/2uB, between the two energy levels.
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Figure 3: The energy levels of the system without B,.

When St = By, the energy levels |[+) and |—) are degenerate. Diagonalizing the Hamiltonian
at t = Bo/f tells us that a gap of 8u3B2/c opens up between the degenerate energy levels at
this point. Notice that this is only a small gap when ¢ > poB,;.

Therefore, the effect of the magnetic field B, is to open up gaps between energy levels that,
in the absence of B,, would intersect. The energy levels of the system as a function of time
look like the sketch in figure 4.

(c) (2 points) If we begin in the state |—) at ¢ = 0, then the smallest gap we will encounter as
we vary the magnetic field has a width of AE = 2v/2u9B,. The statement B, > h3/B, in
the given hierarchy of energies is precisely the adiabatic condition for this gap, as we can see
by reasoning similar to what we used on problem 4. As before, the adiabatic timescale is the
amount of time that the system spends traversing the dangerous region near the small gap,
to = B, /f. This time needs to be much larger than the timescale determined by the energy
difference, t; = h/AFE. This condition, t, > ts, is precisely the statement that 1B, > h3/B,.
Therefore, the variation of the magnetic field is sufficiently slow compared to the gap for the
adiabatic theorem to apply. Thus, a particle that begins in the state |—) initially will follow
the top level in the sketch of figure 4 without making any transitions to other energy levels.
We can conclude that this particle will evolve to a state first approximately equal to |0) and
then |+).

To have this particle end up in the state |0), we could stop varying the magnetic field once we
reach the point ¢t = By/[.



|—> |+>
w gap of 2 2H By

>
10 |0>
2.2
\L gap of 74“ng
+> -

Figure 4: Sketch of the evolution of the energy levels.



