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1. Brick in a Square Well (8 points)

The ground state and first excited state wavefunctions of the unperturbed system are:

2
Yo = \/7$in(7rx/a) (1)
a
2
P = \/7$1n(27rx/a), (2)
a
respectively. The relevant off-diagonal matrix element is Hy, = Oa/ % da % sin(rz/a) sin(2rx/a) =

43%. Note that in this case the diagonal matrix elements are also non-zero: Hj; = Hjy = Vp/2.

Hence the appropriate equations to use are [9.19], [9.20], [9.21] of Griffiths 2nd edition, instead
of [9.13]. The phase ¢ is zero since Hy, and H), are equal. Therefore d; and dy obey exactly
the same equations as ¢; and ¢3 would obey if we had zero diagonal matrix elements (equation
[9.13]).

So dy(T) = —+ fOT dt Hjye™2'! | where w1 = (B — E1) = 367> Doing the integral, we find

2ma? "’
8ma?Vy (3m=2\p . . 3k
do(T) = — 0372 © ($2) 2i sin 4ma2T .

Since do and co only differ by a phase which does not contribute to the probabilities, the
probability of measuring the energy to be Fs is

16ma2Vy\ > 3k
_ 2 _ 0 )
P =|dy|* = (97r3h2 ) sin (4 a2T> .

2. A Time-Dependent Two State System (14 points)

(a) (4 points) Perturbation theory gives

1 [ ;
cl1 = % . dt’l}(t)GQZEt/h,

and therefore the transition probability is (to lowest order)

1 2

P:?

/ dtv(t)e%Et/h

(b) (10 points) When E = 0, the eigenstates of the Hamiltonian are |4+) = %Hl) +12)] and
-) =

%Hl) —[2)]. To evolve them in time, we have

_i td i f‘d
[+)e=e hft’ tv(t)|+>t’, | =) =e" ft’ tv(t)|—>t'.



Since |1); = %“‘Ht + |—)¢], and similarly for |2);, we find that the overlap o (1]2)_c is

1 [eg f:’; dto(t) e;—f fj; dtv(t):|
2

= san(L [ at).

The exact transition probability is thus

P =sin? (;i /o:o dtv(t)> .

The perturbative calculation of part (a) yields in this case

P k([ )

This is the first term in a small-v expansion of the exact result above. (Actually, strictly

00 (112) 00

speaking, we need not only v but also [ dtv to be small.)

. Excitation of a Hydrogen atom (10 points)

We choose the z-axis along Eo, so that the perturbing Hamiltonian is H' = —eFyze™"t. We
need the matrix elements (100|H’|21m). But we know (from previous problem sets) that the
matrix element (100|z|21m) = 0 vanishes for all m besides m = 0, so we only need to calculate

(100|H'|210). Letting ¢ = 2;\5/5 (you do not need to compute this number), this matrix element

works out to be
/ _ —~t
Hig9p0 = —CaoeEpe™ 7"

Then, to first order,
1/t .
Copo = E/O dt (—CaOeEO)e*(V*lwm)t,

with hwey = Fy — E1 = %. Performing the integral, we have
€0
Ciaero ( —(y—i
¢ _ y—iwa1)t _ 1)
ex0(t) Aiws — ) \
GageFy iy — wa1
3 as t — oo.
h 4wy

The transition probability is thus

lc ‘2 _ (CaU€E0)2
2w0l” = 55
: h* (72 + w}y)

. Decay of the Three Dimensional Harmonic Oscillator (14 points)

(a)(2 points) In CGS units, the transition rate due to spontaneous emission is given by

_ 4w?|(1s]gr2p)[?

A
3hce3



Here, of course, the frequency of the harmonic oscillator w is exactly the same as the frequency
determined by the energy difference between the two states, wp,.

(b) (8 points) The eigenstates of definite angular momentum L, with one excitation are

1
m=1 = —=([100) +¢|010
bmer = 5 (100) + i010)
1
o1 = ——(|100) —[010)),
bt = 5 (100) = 010)
while ¢5 = |000). It is now straightforward to see that |(1s|¢7|2p)|? is independent of m.: since
z; =/ 5= (a; + a;-[), we find
(000[F001) = /2
N 2mw
(000|7(|100) + ¢]010)) = e (& +149)
N 2mw v
(000[7 (1100) — i|010Y) = 1/ —"— (& — ig)
N 2mw v
and therefore
2 ¢°h
1 2 =
(1slarl2p)|” = 5 ——,

independent of m,. (We could have proved this in a more abstract fashion by appealing to the

isotropy of the potential, but it is instructive to work it out explicitly as we have here.)
(c) (2 points) Plugging the result of part (b) into that of part (a), we find
_ 2
3med
(d) (2 points) The lifetime is given by the inverse of the transition rate, so

1 3mc?

A7 2t

Top =

. A wavefront crossing a bound particle (14 points)

(a) (4 points) To first order,

I -
o= = dtewﬁt/ dz ad(x — ct)uj (z)ug(z)

o0

%/_OO dt e“rituf (ct)uy(ct).

The transition probability is then

a\? > iweiy/c, * ?
Pr=les = (o) | [ dve i)

— 00




b) (5 points) Setting V,,(z) = 2e™*/¢ we can write
(b) (5p g . :

ad(xz —ct) = / ;l—wVw(x)efi”t.
T

With this expansion for V', we find

1 dt .
— | 2 i(wpi—w)t *
Clw ih/27re /da: Vo (z)u (x)uys(x)
1
= 0w — W)L,
Now, ¢y = f dwcy,,, and the integral is trivial because of the J-function, so we find

ef = o (T,

which is indeed the same result that we got in part (a).

The moral of the story is that we can reduce (almost) every problem, using Fourier transforms,

to a sum of harmonic oscillator problems that we know how to do.

(c) (5 points) Using the square well wave functions, the matrix element (f|e?si%/¢|i) becomes

2 [ - TY 2my 16i6(1 + €2mP)
z dyeriv/cgin (22 ) sin [ 222 ) = — )
d/o e Sm( d )Sm( d ) (9 — 4032 + 1687

thus, the transition probability is

P74;«2 B2 cos? w3
2 (%_%52_,_&1)2

We maximize the above to find that P, occurs at § = 0.97. (I used Mathematica.) This

makes physical sense: the natural timescale of the system is %’T, while the time it takes light to
d

cross the system is 7 = ¢ = # So, when (8 ~ 1, the two time scales are approximately equal,
there is maximal overlap between the pulse and the system, and the probability of making a

transition is amplified.



