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1. Brick in a Square Well (8 points)

The ground state and first excited state wavefunctions of the unperturbed system are:

ψ0 =

√
2
a

sin(πx/a) (1)

ψ1 =

√
2
a

sin(2πx/a), (2)

respectively. The relevant off-diagonal matrix element is H ′
21 =

∫ a/2

0
dx 2V0

a sin(πx/a) sin(2πx/a) =
4V0
3π . Note that in this case the diagonal matrix elements are also non-zero: H ′

11 = H ′
22 = V0/2.

Hence the appropriate equations to use are [9.19], [9.20], [9.21] of Griffiths 2nd edition, instead
of [9.13]. The phase φ is zero since H ′

11 and H ′
22 are equal. Therefore d1 and d2 obey exactly

the same equations as c1 and c2 would obey if we had zero diagonal matrix elements (equation
[9.13]).

So d2(T ) = − i
h̄

∫ T

0
dt H ′

21e
iω21t, where ω21 = 1

h̄ (E2 − E1) = 3h̄π2

2ma2 . Doing the integral, we find

d2(T ) = −8ma2V0

9π3h̄2 e
i
(

3h̄π2

4ma2

)
T 2i sin

(
3h̄π2

4ma2
T

)
.

Since d2 and c2 only differ by a phase which does not contribute to the probabilities, the
probability of measuring the energy to be E2 is

P = |d2|2 =
(

16ma2V0

9π3h̄2

)2

sin2

(
3h̄π2

4ma2
T

)
.

2. A Time-Dependent Two State System (14 points)

(a) (4 points) Perturbation theory gives

c1 =
1
ih̄

∫ ∞

−∞
dt v(t)e2iEt/h̄,

and therefore the transition probability is (to lowest order)

P =
1
h̄2

∣∣∣∣
∫ ∞

−∞
dt v(t)e2iEt/h̄

∣∣∣∣
2

.

(b) (10 points) When E = 0, the eigenstates of the Hamiltonian are |+〉 ≡ 1√
2
[|1〉 + |2〉] and

|−〉 ≡ 1√
2
[|1〉 − |2〉]. To evolve them in time, we have

|+〉t = e
− i

h̄

∫ t

t′
dt v(t)|+〉t′ , |−〉t = e

i
h̄

∫ t

t′
dt v(t)|−〉t′ .
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Since |1〉t = 1√
2
[|+〉t + |−〉t], and similarly for |2〉t, we find that the overlap ∞〈1|2〉−∞ is

∞〈1|2〉−∞ =
1
2

[
e

i
h̄

∫∞
−∞

dt v(t) − e
−i
h̄

∫∞
−∞

dt v(t)
]

= i sin
(

1
h̄

∫ ∞

−∞
dt v(t)

)
.

The exact transition probability is thus

P = sin2

(
1
h̄

∫ ∞

−∞
dt v(t)

)
.

The perturbative calculation of part (a) yields in this case

P =
1
h̄2

(∫ ∞

−∞
dt v(t)

)2

.

This is the first term in a small-v expansion of the exact result above. (Actually, strictly
speaking, we need not only v but also

∫
dt v to be small.)

3. Excitation of a Hydrogen atom (10 points)

We choose the z-axis along ~E0, so that the perturbing Hamiltonian is H ′ = −eE0ze−γt. We
need the matrix elements 〈100|H ′|21m〉. But we know (from previous problem sets) that the
matrix element 〈100|z|21m〉 = 0 vanishes for all m besides m = 0, so we only need to calculate
〈100|H ′|210〉. Letting ζ = 27√2

35 (you do not need to compute this number), this matrix element
works out to be

H ′
1s;2p0 = −ζa0eE0e

−γt.

Then, to first order,

c2p0 =
1
ih̄

∫ t

0

dt (−ζa0eE0)e−(γ−iω21)t,

with h̄ω21 = E2 − E1 = 3h̄2

8mea2
0
. Performing the integral, we have

c2p0(t) =
ζia0eE0

h̄(iω21 − γ)

(
e−(γ−iω21)t − 1

)

→ ζa0eE0

h̄

iγ − ω21

γ2 + ω2
21

as t →∞.

The transition probability is thus

|c2p0|2 =
(ζa0eE0)2

h̄2(γ2 + ω2
21)

.

4. Decay of the Three Dimensional Harmonic Oscillator (14 points)

(a)(2 points) In CGS units, the transition rate due to spontaneous emission is given by

A =
4ω3|〈1s|q~r|2p〉|2

3h̄c3
.
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Here, of course, the frequency of the harmonic oscillator ω is exactly the same as the frequency
determined by the energy difference between the two states, ωba.

(b) (8 points) The eigenstates of definite angular momentum Lz with one excitation are

φm=0 = |001〉
φm=1 =

1√
2

(|100〉+ i|010〉)

φm=−1 =
1√
2

(|100〉 − i|010〉) ,

while φs = |000〉. It is now straightforward to see that |〈1s|q~r|2p〉|2 is independent of mz: since

xi =
√

h̄
2mω (ai + a†i ), we find

〈000|~r|001〉 =

√
h̄

2mω
ẑ,

〈000|~r (|100〉+ i|010〉) =

√
h̄

2mω
(x̂ + iŷ) ,

〈000|~r (|100〉 − i|010〉) =

√
h̄

2mω
(x̂− iŷ) ,

and therefore

|〈1s|q~r|2p〉|2 =
q2h̄

2mω
,

independent of mz. (We could have proved this in a more abstract fashion by appealing to the
isotropy of the potential, but it is instructive to work it out explicitly as we have here.)

(c) (2 points) Plugging the result of part (b) into that of part (a), we find

A =
2q2ω2

3mc3
.

(d) (2 points) The lifetime is given by the inverse of the transition rate, so

τ2p =
1
A

=
3mc3

2q2ω2
.

5. A wavefront crossing a bound particle (14 points)

(a) (4 points) To first order,

cf =
1
ih̄

∫ ∞

−∞
dt eiωfit

∫ ∞

−∞
dx aδ(x− ct)u∗i (x)uf (x)

=
a

ih̄

∫ ∞

−∞
dt eiωfitu∗i (ct)uf (ct).

The transition probability is then

Pf = |cf |2 =
( a

h̄c

)2
∣∣∣∣
∫ ∞

−∞
dy eiωfiy/cu∗i (y)uf (y)

∣∣∣∣
2

.
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(b) (5 points) Setting Vω(x) = a
c eiωx/c, we can write

aδ(x− ct) =
∫

dω

2π
Vω(x)e−iωt.

With this expansion for V , we find

cf,ω =
1
ih̄

∫
dt

2π
ei(ωfi−ω)t

∫
dxVω(x)u∗i (x)uf (x)

=
1
ih̄

δ(ω − ωfi)〈f |Vω|i〉.

Now, cf =
∫

dωcf,ω, and the integral is trivial because of the δ-function, so we find

cf =
a

ih̄c
〈f |eiωfix/c|i〉,

which is indeed the same result that we got in part (a).

The moral of the story is that we can reduce (almost) every problem, using Fourier transforms,
to a sum of harmonic oscillator problems that we know how to do.

(c) (5 points) Using the square well wave functions, the matrix element 〈f |eiωfix/c|i〉 becomes

2
d

∫ d

0

dy eiωfiy/c sin
(πy

d

)
sin

(
2πy

d

)
= − 16iβ(1 + e2πiβ)

(9− 40β2 + 16β4)π
.

thus, the transition probability is

P =
4α2

π2

β2 cos2 πβ

( 9
16 − 5

2β2 + β4)2
.

We maximize the above to find that Pmax occurs at β = 0.97. (I used Mathematica.) This
makes physical sense: the natural timescale of the system is 2π

ω , while the time it takes light to
cross the system is τ = d

c = 2πβ
ω . So, when β ' 1, the two time scales are approximately equal,

there is maximal overlap between the pulse and the system, and the probability of making a
transition is amplified.
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