9.49 / 9.490 Neural Circuits for Cognition
Homework 3
Due: Friday November 1, by midnight.

In this assignment, we will explore random recurrent networks and neural networks for
feedback control and function learning.

1) Random recurrent networks and chaos. Consider the case of a simple rate-based
network with dynamics given by
T@:—s%—wf(s)—l—b (1)
dt
where W is a set of random weights (chosen independently and identically from a
Gaussian distribution with mean 0 and variance g2/n; set your seed to a fixed value
when generating these random weights so that on different runs you get exactly the
same random matrix). Let the neural transfer function f be the hyperbolic tangent,
f(z) = tanh(z), and let 7 = 10 ms. Using n = 500 neurons, b = 0 and the Euler
step-size dt (dt = 0.2 ms), we are going to explore the dynamics of this network.

a. Visualization of the state-space dynamics of the system. Set g = 1.1, and set
your initial condition s(0) to be independently sampled from a uniform random
distribution over the [0, 1] interval. Set a different fixed seed for this random
initial condition so you have the same initial condition every time (important for
the parts below). Run the simulation for a duration of 8s. Setup your code to
generate a 2D projection to visualize state-space activity of the network, in the
three following ways: i) Generate one plot of s;(t) versus s;(t) where ¢, j are two
cells chosen at random. ii) Generate two random vectors v; and vy of dimension
n, and plot vi's(t) versus vi's(t); this is based on the Johnson-Lindenstrauss
lemma as covered briefly in class; iii) Plot s;(t) versus s;(t + T'), where T is
at least a few times larger than 7 (experiment with a few values of T' for good
visualization of the response of the network); this is based on Takens’ embedding
theorem as covered briefly in class.

b. The periodic regime and transition to non-periodic irregular responses with in-
creasing coupling strength. Step ¢ (in steps of 0.1, from 0.9 to 1.6), and ob-
serve the changes in the behavior of the state-space trajectories (show your re-
sults). In these runs, also plot the summed autocorrelation ). C;(T") where
Ci(T) = Y, si(t)si(t + T) of the responses of all neurons; for computational
speed, do this for lags T from -2s to 2s. Observe that even in the irregular re-
sponse regime, there is a characteristic time-scale that looks a little like periodic



behavior. In the next part, we will plot a metric more diagnostic of chaotic
behavior.

¢. The Lyapunov exponent quantifies how quickly two infinitesimally close trajec-
tories diverge from each other. The exponent A is defined by:

[ds(t)] = ds(0)]e*.

If the states remain within a bounded region of state space while the Lyapunov
exponent is positive, it is a signature of chaotic behavior. To practically estimate
the Lyapunov exponent of your random network: for a few coupling strengths g
(9 ={0.9,1.1,1.2,1.4,1.6}), run your code and save s(t); then run it a second
time, adding a small perturbation pulse b = 0.0051, where 1 is the vector of n
ones, for a duration lms starting at time ¢t = 5s. Call the resulting states spe,(t),
and define |ds(t)| = D, [si(t) — Sipert(t)].

Plot ds(t) for each g, and see how the state difference diverges exponentially for
large g. To estimate A for each g, plot |ds(¢)| in a semilog plot (log axes in |ds|
and linear in t) and obtain the best least-mean-square linear fit over the interval
t = [5.05,6.05]s. Plot these values of A\ as a function of g, highlighting when A
is positive. For these cases, verify that the states remain in a bounded region of
state space by plotting 1 3", |s;(¢)|. Thus, the network dynamics are consistent
with chaotic behavior.

2) Feedback control-based learning with a chaotic reservoir.

a. Download code from the class website (either forceexternalfeedbackloop.m
or forceexternalfeedbackloop.py), and run it. This code a. sets up a random
recurrent network exactly as in Problem 1 above, b. specifies a target function ft
(in this case, it’s a sum of four sine waves over a fixed time-interval), c. constructs
a linear readout z of the recurrent network with plastic readout weights wo; the
readout is also fed back into the network as an input, d. uses recursive least
squares (RLS) acting on the error e between z and ft to train the plastic readout
weights. The weight changes are large and rapid: RLS computes the desired
weights to produce zero error at that moment; it is not an incrementally learning
gradient rule. Thus, from the moment learning is turned on, the instantaneous
weight changes make the output z equal the target function ft. The chaotic
dynamics perturb the output in each time-step so the learning rule has to keep
making weight adjustments. After some amount of learning, the network can
reproduce the target with its learned weights held fixed (the test phase). Submit
the output plots, together with a few-sentence explanation in your own words of



how the network works. Which parts of the learning rules for P and wo depend
on the error?

. The role of chaos: Modify the recurrent network parameter g so that the dy-
namics are periodic rather than chaotic (it’s the same parameterization as in
Problem 1, so you know what this regime is). Verify that this is true by plot-
ting the network activities, since this network has n = 1000 neurons. With
non-chaotic dynamics, how well does the network learn compared to when the
dynamics are chaotic? Try changing the learning rate and the learning time to
see if this improves learning. Try to interpret your findings.

. Train the network simultaneously on two target output functions, f1t = ft and
a new target f2¢t using two different sets of readout weights wl and w2 that
are trained in parallel. Let the target functions have the same frequency content
(the same four sine waves summed with different amplitude mixture), and modify
both weights simultaneously using two different error functions el and e2. Plot
the results during training for both target functions, and then during testing.

. Do the same as in c. above, but let f2¢ have distinct frequency content from f1t.
Specifically, f1t contains frequencies w x {1,2, 3,4} where w is some underlying
frequency; let f2t¢ contain frequencies 0.8w x {1,2,3,4}. Does it still work? Why
do you think you see what you do?

. Bonus questions: Is it possible to train the network as desired in d. above, if the
readout weights w1 and w2 each only see and are each trained on non-overlapping
halves of the outputs of the recurrent network? In other words, the recurrent
network has n neurons, but the update rules for wl and w2 can each see only
half of the recurrent units, and can only construct linear combinations of these?
On the one hand, we are trying to reduce interference by asking different subsets
of the recurrent neurons to produce different frequencies; on the other hand, the
the recurrent network is not modular. You can experiment with another piece of
code, supplied as a matlab file, in which the recurrent weights of the network are
also trained. Does the network do better with learning two distinct functions in
this case?



