
CHAPTER 4 Stress, Strain, Stress-Strain
4.1 The Concept of Stress — An Introduction

We have talked about internal forces, distributed them uniformly over an area and they
became a normal stress acting perpendicular to some internal surface, or a shear stress
acting tangentially, in plane. Up to now, we have said little about how these normal and
shear stresses might vary with position throughout a solid.1 Up to now, the choice of
planes, their orientation within a solid, was dictated by the geometry of the solid and the
nature of the loading. We have said nothing about how these stress components might
change if we looked at a set of planes of another orientation.

Now we consider a more general situation, an arbitrarily shaped solid. We are going to lift our gaze
up from the world of crude structural elements such as truss bars in tension, shafts in torsion, or beams in
bending to view these “solids” from a more abstract perspective. They all become special cases of more gen-
eral stuff we call a solid continuum.

We will address two questions:

•How might stresses vary from one point to another throughout a continuum;

•How do the normal and shear components of stress acting on a plane at a given point change
as we change the orientation of the plane at the point.

The first bullet introduces the notion of stress field; the second concerns the transformation of com-
ponents of stress at a point.

To begin with the first bullet we re-examine the case of a bar suspended vertically and loaded by its
own weight, a case considered in section 3.2, page 62. (Note, I have changed the orientation of the reference

1. The beam is the one exception. There we explored how different normal stress distributions over a
rectangular cross-section could be equivalent to a bending moment and zero resultant force.
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The Concept of Stress — An Introduction
axes). We will construct a differential equation which governs how the axial stress varies as we move up and

down the bar. We will solve this differential equation, not forgetting to apply an appropriate boundary con-
dition and determine the axial stress field.

We see that for equilibrium of the differential element of the bar, of planar cross-sectional area A
and of weight density γ, we have

If we assume the tensile force is uniformly distributed over the cross-sectional area, and dividing by the area
(which does not change with the independent spatial coordinate y) we can write

Chanting “...going to the limit, letting ∆y go to zero”, we obtain a differential equation fixing how σ(y), a
function of y, varies throughout our continuum, namely

We solve this ordinary differential equation easily, integrating once and obtain

The Constant is fixed by a prescribed condition at some y surface; If the end of the bar is stress free, we indi-
cate this writing

If, on another occasion, a weight of magnitude P0 is suspended from the free end, we would have

Here then are two stress fields for two different loading conditions1. Each stress field describes
how the normal stress σ(x,y,z) varies throughout the continuum at every point in the continuum. I show the
stress as a function of x and z as well as y to emphasize that we can evaluate its value at every point in the
continuum, although it only varies with y. That the stress does not vary with x and z was implied when we

1. A third loading condition is obtained by setting the weight density γ to zero;
our bar then is assumed weightless relative to the end-load P0.
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The Concept of Stress — An Introduction
stipulated or assumed that the internal force, F, acting upon any y plane was uniformly distributed over that
plane. This example is a special case in another way; not only is it one-dimensional in its dependence upon
spatial position, but it is the simplest example of stress at a point in that it is described fully by a single com-
ponent of stress, the normal stress acting on a plane perpendicular to the y axis.

The figure below is meant to illustrate a more general, indeed, the most general state of stress at a
point. It requires some explanation:

The odd looking structural element, fixed to the ground at bottom and to the left, and carrying what
appears to be a uniformly distributed load over a portion of its bottom and a concentrated load on its top, is
meant to symbolize an arbitrarily loaded, arbitrarily constrained, arbitrarily shaped solid continuum. It could
be a beam, a truss, a thin-walled cylinder though it looks more like a potato — which too is a solid contin-
uum. At any arbitrarily chosen point inside this object we can ask about the internal stress state. But what
stress component?

For there are more than one; in fact they come in sets of three. One set acts upon what we call an x
plane, another upon a y plane, a third set upon a z plane. Which plane is which is defined by its normal: An
x plane has its normal in the x direction, etc. Each set includes three scalar components, one normal stress
component acting perpendicular to its reference plane, with its direction along one coordinate axis, and two
shear stress components acting in plane in the direction of the other two coordinate axes.

That’s a grand total of nine stress components to define the stress at a point. To fully define the
stress field throughout a continuum you need to specify how these nine scalar components vary from one
point in the continuum to another. That’s a tall order.

Fortunately, equilibrium requirements applied to a differential element of the continuum, what we
will call a “micro-equilibrium” consideration, will reduce the number of independent stress components at a
point from nine to six. We will find that the shear stress component σxy acting on the x face must equal its
neighbor around the corner σyx acting on the y face and that σzy = σyz and σxz = σzx accordingly.

Fortunately too, in most of the engineering structures you will encounter, diagnose or design, only
two or three of these now six components will matter, will be significant. And, as in the example just treated
of a bar suspended vertically and loaded by its own weight and/or by an end load, often variations of the
stress components in one, or more, of the three coordinate directions may be uniform. But perhaps the most
important simplification is a simplification in modeling, made at the outset of our encounter. One particu-
larly useful model, applicable to many structural elements is called Plane Stress and, as you might infer from
the label alone, it restricts our attention to variations of stress in two dimensions.
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Plane Stress
4.2 Plane Stress

If we assume our continuum has the form of a thin plate of uniform thickness but of arbi-
trary closed contour in the x-y plane, our previous arbitrarily loaded, arbitrarily con-
strained continuum (we don’t show these again) takes the planar form below.

Because the plate is thin in the z direction, (h/L << 1 ) we will assume that variations of the stress
components with z is uniform or, in other words, our stress components will be at most functions of x and y,
σ(x,y). We also take it that the z boundary planes are unloaded, stressfree. These two together imply that
the set of three “z” stress components that act upon any arbitrarily located z plane within the interior must
also vanish. We will also take advantage of the micro-equilibrium consequences, yet to be explored but
noted previously, and set σyz and σxz to zero. Our state of stress at a point is then as it is shown on the
exploded view of the point - the block in the middle of the figure - and again from the point of view of look-
ing normal to a z plane at the far right. This special model is called Plane Stress.

A Word about Sign Convention:

The figure at the far right seems to include more stress compo-
nents than necessary; after all, if, in modeling, we eliminate the
stress components acting on a z face and σyz and σxz as well, that
should leave, at most, four components acting on the x and y
faces. Yet there appear to be eight in the figure. No, there are
only at most four components; we must learn to read the figure.

To do so, we make use of another sketch of stress at a point, the
point A. The figure at the top is meant to indicated that we are
looking at four faces or planes simultaneously. When we look at
the x face from the right we are looking at the stress
components on a positive x face — it has its outward normal in
the positive x direction — and a positive normal stress, by con-
vention, is directed in the positive x direction. A positive shear
stress component, acting in plane, also acts, by convention, in a
positive coordinate direction - in this case the positive y direc-
tion.

On the positive y face, we follow the same convention; a positive
σy acts on a positive y face in the positive y coordinate direction;
a positive σyx acts on a positive y face in the positive x coordi-

nate direction.
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Plane Stress
We emphasize that we are looking at a point, point A, in these figures. More precisely we are look-
ing at two mutually perpendicular planes intersecting at the point and from two vantage points in each case.
We draw these two views of the two planes as four planes in order to more clearly illustrate our sign conven-
tion. But you ought to imagine the square having zero height and width: the σx acting to the left, in the nega-
tive x direction, upon the negative x face at the left, with its outward normal pointing in the negative x
direction is a positive component at the point, the equal and opposite reaction to the σx acting to the right,
in the positive x direction, upon the positive x face at the right, with its outward normal pointing in the posi-
tive x direction. Both are positive as shown; both are the same quantity. So too the shear stress component
σxy shown acting down, in the negative y direction, on the negative x face is the equal and opposite internal
reaction to σxy shown acting up, in the positive y direction, on the positive x face

A general statement of our sign convention, which holds for all nine components of stress, even in
3D, is as follows: A positive component of stress acts on a positive face in a positive coordinate direc-
tion or on a negative face in a negative coordinate direction.

***

An Example:

We might model the end-loaded cantilever with rel-
atively thin rectangular cross-section as a plane stress prob-
lem. In this, b is the “thin” dimension, i.e., b/L <1.

If we assume a normal stress distribution over an x
face is proportional to some odd power of y, as we did in sec-
tion 3.2, exercise 3.5, our state of stress at a point might look
like that shown in figure (c). In this, σx would have the form

where C(n,b,h) is a constant which depends upon the cross-
sectional dimensions of the beam and the odd exponent n.
(See page 57). The factor W(L-x) is the magnitude of the
internal bending moment at the location x measured from the
root. See figure (b).

But this is only one component of our stress field.
What are the other eight components of stress at point A?

Our plane stress model allows us to claim that the
three z face components are zero and if we take σyz and σxz to
be zero, that still leaves σxy, σyx, and σy in addition to σx.

Now, in fact, we are doomed from the start; we
know that the problem is statically indeterminate so we are
not going to be able to construct a unique solution to the
equilibrium requirements and specify all nine components of
our stress field. Still we can experiment taking advantage of
the indeterminacy at our disposal.

For example, we know that a shear force of magni-
tude W acts at any x section. In this case it does not vary with x. We might assume, then, that the shear force
is uniformly distributed over the cross-section and set

      Our stress at a point at point A would then look like figure (d).
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Plane Stress
We could, of course, posit other shear stress distributions at any x station, e.g., some function like
where m is an integer and the constant is determined from the requirement that the

resultant force due to this shear stress distribution over the cross section must be W.

But this is about as far as we can go with our fabrication of a stress field. There are other matters,
matters of equilibrium at the micro scale, that must be addressed prerequisite to establishing a useful
description of the stress field within a continuum. Yet even with this the problem remains statically indeter-
minate. We have yet to consider the requirements of continuity of displacement and compatibility of defor-
mation.

σxy Cons t ym⋅tan=
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Stress Fields & “Micro” Equilibrium
4.3 Stress Fields & “Micro” Equilibrium

We return and pick up on the example of a bar hanging under its own weight and explore
the consequences of equilibrium when applied to a differential element of an arbitrarily
shaped two dimensional, plane stress continuum. We call this “micro” equilibrium consid-
erations to distinguish it from the “macro” equilibrium considerations of the last chapter.
There we isolated large chunks of structure.

Think now, of a differential element in 2D;
for example, of the cantilever beam: We show such
on the right. Note now we are no longer focused on
two intersecting, perpendicular planes at a point but
on a differential element of the continuum. Now we
see that the stress components may very well be dif-
ferent on the two x faces and on the two y faces.

We allow the x face components, and those
on the two y faces to change as we move from x to
x+∆x (holding y constant) and from y to y+∆y (hold-
ing x constant).

We show two other arrows on the figure, Bx

and By. These are meant to represent the x and y com-
ponents of what is called a body force. A body force
is any externally applied force acting on each ele-
ment of volume of the continuum. It is thus a force
per unit volume. For example, if we need consider
the weight of the beam, By would be just

where the negative sign is necessary because we take
a positive component of the body force vector to be
in a positive coordinate direction.

Bx would be taken as zero.

We now consider force and moment equilibrium for this differential element, our micro isolation.
We sum forces in the x direction which will include the shear stress component σyx, acting on the y face in
the x direction as well as the normal stress component σx acting on the x faces. But note that these compo-
nents are not forces; to figure their contribution to the equilibrium requirement, we must factor in the areas
upon which they act.

I present just the results of the limiting process which, we note, since all components may be func-
tions of both x and y, brings partial derivatives into the picture.
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Stress Fields & “Micro” Equilibrium
For example, the change in the stress component ∆σx may be written

and the force due to this “unbalanced” component in the x direction is

where the product, ∆y ∆z, is just the differential area of the x face.

The contribution of the body force (per unit volume) to the sum of force components in the x direc-
tion will be Bx(∆x∆y∆z) where the product of deltas is just the differential volume of the element. We see
that this product will be a common factor in all terms entering into the equations of force equilibrium in the
x and y directions.

The last equation of moment equilibrium shows that, as we forecast, the shear stress component on
the y face must equal the shear stress component acting on the x face. The differential changes in the shear
stress components are of lower order and drop out of consideration in the limiting process, as we take ∆x
and ∆y to zero.

We leave this topic to the side for the moment and turn now to the second item on our agenda —
the transformation of components of stress at a point.

∆σx x∂
∂σx ∆x⋅=

x∂
∂σx ∆x ∆y∆z( )⋅⋅
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Transformation of Components of Stress
4.4 Transformation of Components of Stress

While realizing that stress can vary from point to point in a solid continuum, and even if
we can find the solution to the micro equations of equilibrium for the normal and shear
stress components throughout, that still may not be enough to define when the solid might
fracture or yield when subject to some applied and prescribed load. The reason is that the
values of the stress components at a point change with respect to the orientation of the
axis, or what is the same, the orientation of the planes we choose to view at the point.

To proceed, we consider our simple example of a bar suspended vertically but now take the weight
of the bar to be negligible relative to the weight suspended at its free end and explore how the normal and
shear stress components at a point vary as we change, not the position of the point, but the orientation of a
plane through the point.

Exercise 4.1 –The solid column of rectangular cross section
measuring a × b supports a weight W. Show that both a normal
stress and a shear stress must act on any inclined interior face.
Determine their respective values assuming that both are uni-
formly distributed over the area of the inclined face. Express
your estimates in terms of the ratio (W/ab) and the angle φ.

For equilibrium of the isolation of a section of the column
shown at the right, a force equal to the suspended weight (we
neglect the weight of the column itself) must act upward. We
show an equivalent force system — or, if you like, its compo-
nents consisting of two perpendicular forces, one directed nor-
mal to the inclined plane, the other with its line of action in the
plane inclined at the angle φ. We have

Now if we assume these are distributed uniformly over the
section, we can construct an estimate of the normal stress and the shear stress acting on the inclined face.
But first we must establish the area of the inclined face Aφ. From the geometry of the figure we see that the
length of the inclined plane is b/cosφ so the area is

With this we write the normal and shear stress components as

These results clearly illustrate how the values for the normal and shear stress components of a force
distributed over a plane inside of an object depends upon how you look at the point inside the object in the
sense that the values of the shear and normal stresses at a point within a continuum depend upon the
orientation of the plane you have chosen to view.

Why would anyone want to look at some arbitrarily oriented plane in an object, seeking the normal
and shear stresses acting on the plane? Why do we ask you to learn how to figure out what the stress compo-
nents on such a plane might be?
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Transformation of Components of Stress
The answer goes as follows: One of our main concerns as a designer of structures is failure —frac-
ture or excessive deformation of what we propose be built and fabricated. Now many kinds of failures ini-
tiate at a local, microscopic level. A minute imperfection at a point in a beam where the local stress is very
high initiates fracture or plastic deformation, for example. Our quest then is to figure out where, at what
points in a structural element, the normal and shear stress components achieve their maximum values. But
we have just seen how these values depend upon the way we look at a point, that is, upon the orientation of
the plane we choose to inspect. To ensure we have found the maximum normal stress at a point for example,
we would then have to inspect every possible orientation of a plane passing through the point.1

 This seems a formidable task. But before taking it on, we pose a prior question:

Exercise 4.2 What do you need to know in order to determine the normal and shear stress compo-
nents acting upon an arbitrarily oriented plane at a point in a fully three dimensional object?

The answer is what we might anticipate from our original definition of six stress components for if
we know these six scalar quantities2, the three normal stress components σx, σy, and σz, and the three shear
stress components σxy, σyz, and σxz, then we can find the normal and shear stress components acting upon
an arbitrarily oriented plane at the point. That is the answer to our need to know question.

To show this, we derive a set of equations that will enable you to do this. But note: we take the six
stress components relative to the three orthogonal, let’s call them, x,y,z planes as given, as known quantities.
Furthermore, again we restrict our attention to two dimensions - the case of Plane Stress. That is we say that
the components of stress acting on one of the planes at the point - we take the z planes - are zero. This is a
good approximation for certain objects — those which are thin in the z direction relative to structural ele-
ment’s dimensions in the x-y plane. It also, makes our derivation a bit less tedious, though there is nothing
conceptual complex about carrying it through for three dimensions, once we have it for two.

In two dimensions we can draw a simpler picture of the state of stress at a point. We are not talking
differential element here but of stress at a point. The figure below shows an arbitrarily oriented plane,
defined by its normal, the x’ axis, inclined at an angle φ to the horizontal. In this two dimensional state of

stress we have but three scalar components to specify to fully define the state of stress at a point: σx, σy and
σyx = σxy. Knowing these three numbers, we can determine the normal and shear stress components acting
on any plane defined by the orientation φ as follows.

1.  Much as we have done in the preceding exercise. Equations 68 and 69 show that the maximum
normal stress acts on the horizontal plane, defined by φ =0. The maximum shear stress, on the other hand acts
on a plane oriented at 45o to the horizontal. The factor cosφ sin φ has a maximum at φ = 45o.

2.  We take advantage of moment equilibrium and take σ yx = σ xy, σzx = σxz, and σzy = σyz.
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Transformation of Components of Stress
Consider equilibrium of the shaded wedge shown. Here we let Aφdesignate the area of the inclined
face at a point, A

x
and A

y
the areas of the x face with its outward normal pointing in the -x direction and of

the y face with its outward normal pointing in the -y direction respectively. In this we take a unit depth into
the paper. We have

That takes care of the relative areas. Now for force equilibrium, in the x and y directions we must
have:

-

If we multiply the first by cosφ, the second by sinφ and add the two we can eliminate σ’
xy

. We obtain

which, upon expressing the areas of the x,y faces in terms of the area of the inclined face, can be written
(noting Aφ becomes a common factor).

In much the same way, multiplying the first equilibrium equation by sinφ, the second by cosφbut subtracting
rather than adding you will obtain eventually

We deduce the normal stress component acting on the y’ face of this rotated frame by replacing φ in
our equation for σ’

x
by φ + π/2. We obtain in this way:

The three transformation equations for the three components of stress at a point can be expressed,
using the double angle formula for the cosine and the sine, as

Here we have the equations to do what we said we could do. Think of the set as a machine: You
input the three components of stress at a point defined relative to an x-y coordinate frame, then give me the
angle φ,and I will crank out -- not only the normal and shear stress components acting on the face with its
outward normal inclined at the angle φwith respect to the x axis, but the normal stress on the y’ face as well.
In fact I could draw a square tilted at an angle φ to the horizontal and show the stress components σ’x, σ’y

and σ’xyacting on the x’ and y’ faces.

To show the utility of these relationships consider the following scenario:

Ax Aϕ φcos⋅= and Ay Aφ φsin⋅=

σx Ax⋅– σxy Ay⋅ σ'x φcos⋅ σ'xy φsin⋅–( ) Aφ⋅+– 0=

and

σxy Ax⋅– σy Ay⋅ σ'x φsin⋅ σ'xy φcos⋅+( ) Aφ⋅+– 0=

σ'xAφ σx φAxcos– σxy φAycos– σxy φAx σy φAysin–sin– 0=

σ'x σx φcos 2 σy φsin 2 2σxy φsin φcos+ +=

σ'xy σy σ– x( ) φsin φcos σxy φcos 2 φsin 2–( )+=

σ'y σy φcos 2 σx φsin 2 2σxy– φsin φcos+=

σ'x
σx σy+( )

2
-----------------------

σx σy–( )
2

---------------------- 2φcos⋅ σxy 2φsin+ +=

σ'y
σx σy+( )

2
-----------------------

σx σy–( )
2

---------------------- 2φcos⋅– σxy– 2φsin=

σ'xy

σx σy–( )
2

----------------------– 2φsin⋅ σxy 2φcos+=
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Transformation of Components of Stress
Exercise 4.3 – An solid circular cylinder made of some brittle material is subject to pure torsion
—a torque Mt. If we assume that a shear stress τ(r) acts within the cylinder, distributed over any cross sec-
tion, varying with r according to

where n is a positive integer, then the maximum value of τ, will occur at the outer radius of the shaft.

But is this the maximum value? That is, while certainly rn is maximum at the outermost radius,
r=R, it may very well be that the maximum shear stress acts on some other plane at that point in the cylin-
der.

Show that the maximum shear stress is indeed that which acts on a plane normal to the axis of the
cylinder at a point on the surface of the shaft.

Show too, that the maximum normal stress in the cylinder acts

• at a point on the surface of the cylinder

•  on a plane whose normal is inclined 45o to the x axis and its value is

We put to use our machinery for computing the
stress components acting upon an arbitrarily oriented
plane at a point. Our initial set of stress components for
this particular state of stress is

defined relative to the x-y coordinate frame shown top
right. Our equations defining the transformation of com-
ponents of stress at the point take the simpler form

To find the maximum value for the shear stress
component with respect to the plane defined by φ, we set
the derivative of σ’

xy
to zero. Since there are no “bound-

aries” on  φ to worry about, this ought to suffice.

So, for a maximum, we must have

Now there are many values of φwhich satisfy this requirement, φ=0, φ=π/2, ...... But all of these roots just
give the orientation of the of our initial two mutually perpendicular, x-y planes. Hence the maximum shear
stress within the shaft is just τ at r=R.

τ r( ) c rn⋅=

σ'x max
τ R( )=
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σxy τ R( )=

σ'x τ 2φsin⋅=
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Transformation of Components of Stress
To find the extreme, including maximum, values for the normal stress, σ’
x

we proceed in much the
same way; differentiating our expression above for σ’x with respect to φ yields

(EQ 1)

Again there is a string of values of φ, each of which satisfies this requirement.

We have 2φ = π/2, 3π/2    .......   or φ = π/4, 3π/4

At φ = π/4 (= 45o), the value of the normal stress is σ’
x
= + τ sin2φ = τ. So the maximum nor-

mal stress acting at the point on the surface is equal in magnitude to the maximum shear stress component.

Note too that our transformation relations say that the nor-
mal stress component acting on the y’ plane, with φ=π/4 is nega-
tive and equal in magnitude to τ. Finally we find that the shear
stress acting on the x’-y’ planes is zero! We illustrate the state of
stress at the point relative to the x’-y’ planes below right.

Backing out of the woods in order to see the trees, we
claim that if our cylinder is made of a brittle material, it will frac-
ture across the plane upon which the maximum tensile stress acts. If
you go now and take a piece of chalk and subject it to a torque until
it breaks, you should see a fracture plane in the form of a helical
surface inclined at 45 degrees to the axis of the cylinder. Check it
out.

Of course it’s not enough to know the orientation of the
fracture plane when designing brittle shafts to carry torsion. We
need to know the magnitude of the torque which will cause fracture.
In other words we need to know how the shear stress does in fact
vary throughout the cylinder.

This remains an unanswered question. So too for the beam: How do the normal stress (and shear
stress) components vary over a cross section of the beam? We have claimed that to answer these questions
we must go beyond the concepts and principles of static equilibrium. This we do now, looking first at simple
indeterminate systems, then on to the indeterminate truss, the beam in bending and beyond.

φd

dσ'x 2τ 2φcos⋅ 0= =

y

xσxy

σxy

σ’xy= 0

σ’x= +τ(R)σ’y= −τ(R)

φ = 45o

σxy

σxy=

x’

x

+τ(R)

original
     state of stress
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4.5 Strain

The study of the elastic behavior of statically determinate or indeterminate truss structures
serves as a paradigm for the modeling and analysis of all structures in so far as it illus-
trates

• the isolation of a region of the structure prerequisite to imagining internal forces;

• the application of the equilibrium requirements relating the internal forces to one another
and to the applied forces;

•  the need to consider the displacements and deformations if the structure is redundant; 1

•  and how, if displacements and deformations are introduced, then the constitution of the
material(s) out of which the structure is made must be known so that the internal forces can be
related to the deformations.

We are going to move on, with these items in mind, to study the elastic behavior of shafts in torsion
and of beams in bending with the aim of completing the task we started in an earlier chapter – among other
objectives, to determine when they might fail. To prepare for this, we step back and dig in a bit deeper to
develop more complete measures of deformation, ones that are capable of taking us beyond uniaxial exten-
sion or contraction. We then must relate these measures of deformation, the components of strain at a point
to the components of stress at a point through some stress-strain equations. We address that task in the next
chapter.

We will proceed without reference to truss members, beams, shafts in torsion, shells, membranes
or whatever structural element might come to mind, but for an arbitrarily shaped body, a continuous solid
body, a solid continuum. We put on another special pair of eyeglasses, a pair that enables us to imagine what
transpires at a point in a solid subjected to a load which causes it to deform and engenders strain as well
internal forces, now stresses. In our derivations that follow, we limit our attention to two dimensions: We
first construct a set of strain measures in terms of the x,y (and z) components of displacement at a point. We
then develop a set of stress/strain equations for a linear, isotropic, homogenous, elastic solid.

1.  We of course must consider the deformations even of a determinate structure if we wish to esti-
mate the displacements of points in the structure when loaded.
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4.6 Strain at a Point

When a body displaces as a rigid body, points etched on the body will move through space
but any arbitrarily chosen point will maintain the same distance from any other point–just
as the stars in the sky maintain their position relative to other all other stars, night after
night, as the heavens rotate about the earth Except, of course, for certain “wandering
stars” which do not maintain fixed distances among themselves or from the others.

But when a body deforms, points move relative to one another and distances between points
change. For example, when the bar shown below is pulled with an end load P along its axis we know that the
end will displace to the right, say a distance uL, relative to the fixed, left end of the bar.

Assuming the bar is homogenous, that is, its constitution does not change as we move in from the
end of the bar, we anticipate that the displacement will decrease. At the wall it must be zero; at the mid point
we might anticipate it will be uL/2. Indeed, this was the essence of our story about the behavior of an elastic
rod in a uniaxial tension test.

There we had

The stiffness k is inversely proportional to the length of the rod so that, if the same end load is
applied to bars of different length, the displacement of the ends will be proportional to their lengths, and the
ratio of δ to L will be constant.

In our mind, then, we can imagine the horizontal rod shown above cut through at its midpoint. As
far as the remaining, left portion is concerned, it is fixed at its left end and sees an a load P at its right end.
Now since it has but half the length, its end will displace to the right but uL/2.

We can continue this thought experiment from now to eternity; each time we make a cut we will
obtain a midpoint displacement which is one-half the displacement at the right end of the previously imag-
ined section. This of course assumes the bar is uniform in its cross-sectional area and material properties —
that is, the bar is homogeneous. We summarize this result neatly by writing

where the factor, (uL/L), is a measure of the extensional strain of the bar, defined as the ratio of the change in
length of the bar to its original length.

This brief thought experiment gives us a way to define a measure of extensional strain at a point.
We say, at any point in the bar, that is, at any x,

P

L

P

L

uL

P AE L⁄( ) δ⋅ k δ⋅= =

u x( ) uL L⁄( ) x⋅=
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For the homogenous bar under end load P we see that ε
x

is a constant; it does not vary with x. We
might claim that the end displacement, uL is uniformly distributed over the length; that is, the relative dis-
placement of any two points, equidistant apart in the undeformed state, is a constant; but this is not the usual
way of speaking nor, other than for a truss element, is it usually the case.

The partial derivative implies that, u, the displacement component in the x direction can be a func-
tion of spatial dimensions other than x alone, that is, for an arbitrary solid, with things changing as one
moves in any of the three coordinate directions, we would have u= u(x,y,z). We turn to this more general sit-
uation now.

Exercise 4.4 – What do I need to know about the displacements of points in a solid in order to com-
pute the extensional strain at the point P, arbitrarily taken, in the direction of to, also arbitrarily chosen, as
the body deforms from the state indicated at the left to that at the right?

We designate the extensional strain at P in the direction of t0 by ε
PQ

. Our task is to see what we
need to know in order to evaluate the limit

To do this, we draw another picture of the undeformed and deformed
differential line element, PQ. together with the displacements of its
endpoints. Point P’s displacement to P’ is shown as the vector, u, while
the displacement of point Q, some small distance away, is designated
by u+∆u.

This now looks very much like the representation used in the last chap-
ter to illustrate and construct an expression for the extension of a truss
member as a function of the horizontal and vertical components of dis-
placement at its two ends. That’s why I have introduced the vectors L

o
,

and L for the directed line segments PQ, P’Q’ respectively though they
are in fact meant to be small, differential lengths. Proceeding in the
same way as we did in our study of the truss, we write, as a conse-
quence of vector addition,

which yields an expression for ∆ u in terms of the vector difference of the two directed line segments,
namely

We now introduce a most significant constraint, We assume, as we did with the truss, that displace-
ments and rotations are small – displacements relative to some characteristic length of the solid, rotations
relative to a radian. This should not to be read as implying our analysis is of limited use. Most structures
behave, i.e., deform, according to this constraint and, as we have seen in our study of a truss structure, it is
entirely consistent with our writing the equilibrium equations with respect to the undeformed configuration.
In fact not to do so would be erroneous.

εx ∆u ∆x⁄( ) εx⇒
∆x 0→
lim

x∂
∂u= =

y

z

x

φ

Q

P
Before Deformation                After Deformation

φ

Q’

P’

to
Q

P

P

Q

εPQ P'Q' PQ–( ) PQ( )⁄
PQ 0→
lim=

y

x

φ
P

P’

to After

Q

u + ∆u

u Lo

L

t

Before

Q’

u L+ u ∆u L0+ +=

∆u L L0–=
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Explicitly this means we will take

With this we can claim that the change in length of the directed line segment, PQ, in moving to
P’Q’, is given by the projection of ∆u upon PQ that is, since

where to is, as before, a unit vector in the direction of PQ.

From here on in, constructing an expression for ε
PQ

requires the machine-like evaluation of the
scalar product, t0 * ∆u, the introduction of the partial derivatives of the scalar components of the displace-
ment taken with respect to position, and the manipulation of all of this into a form which reveals what’s
needed in order to compute the relative change in length of the arbitrarily oriented, differential line segment,
PQ. We work with respect to a rectangular cartesian coordinate frame, x,y, and define the horizontal and ver-
tical components of the displacement vector u to be u,v respectively. (In the following be careful to distinguish

between the scalar u and the vector u; the former is the x component of the latter). That is, we set

where the coordinates x,y label the position of the point P. The differential change in the displacement vec-
tor in moving from P to Q, a small distance which in the limit will go to zero, may then be written

Carrying out the scalar product, we obtain for the change in length of PQ:

We next approximate the small changes in the horizontal and vertical, scalar components of dis-
placement by the products of their slopes at P taken with the appropriate differential lengths along the x and
y axes as we move to point Q. That is1

and

We have then

1. It is easy to be confused in the midst of all these partial derivatives. It’s worth taking five minutes
to try to sort them out.

t t0≈ so that L t L• t0 L•≈=

P'Q' PQ– L L0–=

we have

P'Q' PQ– t0 L• t0 L0•– t0 L L0–( )• t0 ∆u•= = =

u u x y,( ) i⋅ v x y,( ) j+=

∆u ∆u x y,( ) i⋅ ∆v x y,( ) j⋅+=

P'Q' PQ– t0 ∆u• ∆ u( ) φcos⋅ ∆v( ) φsin⋅+= =

∆u x y,( )
x∂

∂u
 
  ∆x

y∂
∂u

 
  ∆y+≈

∆v x y,( )
x∂

∂v
 
  ∆x

y∂
∂v

 
  ∆y+≈

P'Q' PQ–( ) PQ( )⁄
x∂

∂u
 
  ∆x

y∂
∂u

 
  ∆y+ φcos Lo⁄( )

x∂
∂v

 
  ∆x

y∂
∂v

 
  ∆y+ φsin Lo⁄( )+≈
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where I have introduced L
o
 for the original length PQ.

This is an approximate relationship because the changes in the horizontal and vertical components
of displacement are only approximately represented by the first partial derivatives. In the limit, however, as
the distance PQ, and hence as ∆x, ∆y approaches zero, the approximation may be made as accurate as we
like. Note also, that the ratios ∆ x/L

o
, ∆ y/L

o
 approach cosφ and sinφ respectively.

We obtain, finally, letting PQ go to zero, the following expression for the extensional strain at the
point P in the direction PQ:

It appears that in order to compute ε
PQ

in the direction φ we need to know the four first partial
derivatives of the scalar components of the displacement at the point P. In fact, however, we do not need to
know all four partial derivatives since it is enough to know the three bracketed terms appearing above Think
of computing ε

PQ
for different values of φ; knowing the values for the three bracketed terms will enable you

to do this.

The relationship above is a very important piece of machinery. It tells us how to compute the exten-
sional strain in any direction, defined by φ, at any point, defined by x,y, in a body. In what follows, we call
the three quantities within the brackets  the three scalar components of strain at a point.  But first observe:

• If we set φequal to zero in the above, which is equivalent to setting PQ out along the x axis,
we obtain, as we would expect, that ε

PQ
= ε

x
, the extensional strain at P in the x direction, i.e.,

• Our machinery is thus consistent with our previous definition of ε
x

for uniaxial loading of a
bar fixed at one end and lying along the x axis.

• If, in the same way, we set φ equal to a right angle, we obtain

 which can be read as the extensional strain at P in the direction of a line segment along the y
axis. We call this ε

y
. That is

• The meaning of the term is best extracted from a sketch; below we show how the
term   can be interpreted as the angle of rotation, about the z axis, of a line segment PQ
along the x axis. For small rotations we can claim

εPQ x∂
∂u

 
  φcos2

y∂
∂u

x∂
∂v+ 

  φ φ
y∂

∂v
 
  φsin2+sincos+=

εx x∂
∂u

 
 =

εPQ y∂
∂v

 
 =

εy y∂
∂v

 
 =

y∂
∂u

x∂
∂v+

x∂
∂v
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∂v
Similarly, the term δ u/δ y can be inter-
preted as the angle of rotation of a line segment
along the y axis, but now, if positive, about the neg-
ative z axis. The figure below shows the meaning
of both terms.

The sum of the two terms is the change in the
right angle, PQR at point P. If it is a positive
quantity, the right angle of the first quadrant
has decreased. We define this sum to be a
shear strain component at point P and label it
with the symbol γ

xy
.

• Building on the last figure, we define a rotation at the point P as the average of the rotations
of the two, x,y, line segments. That is we define

Note the negative sign to account for the different directions of the two line segment rotations. If, for exam-
ple, δ v/δ x is positive, and δ u/δ y = - δ v/δ x then there is no shear strain, no change in the right angle, but
there is a rotation, of magnitude δ v/δ x positive about the z axis at the point P.

These three quantities ε
x
,γ

xy
,ε

y
 are the three components of strain at a point.

If we know the way ε
x
(x,y), γ

xy
(x,y), and ε

y
(x,y) vary, we say we know the state of strain at any

point in the body. We can then write our equation for computing the extensional strain in any arbitrary direc-
tion in terms of these three strain components associated with the x,y frame at a point as:

Finally, note that if we are given the displacement components as continuous functions x and y we
can, by taking the appropriate partial derivatives, compute a set of strain functions, also continuous in x,y.
On the other hand, going the other way, given the three strain components, ε

x
, γ

xy
, ε

y
as continuous func-

tions of position, we cannot be assured that we can determine unique, continuous functions for the two dis-
placement components from an integration of the strain-displacement relations. We say that the strains
represent a compatible state of deformation only if we can do so, that is, only if we can construct a continu-
ous displacement field from the strain components.

Exercise 4.5–For the planar displacement field defined by

P Q

Q’

(δv/δx)∆x

(δu/δx)∆x∆x

α = (δv/δx)
y

x

∆u

α αtan∼ x∂ 
  ∆x

∆x
-------------------=

Q

Q’

∆x
(δv/δx)

R
R’

y
x

P,P’

(δu/δy)

ωxy 1 2⁄( )
x∂

∂v



y∂
∂u


–=

εx x∂
∂u γxy x∂

∂v



y∂
∂u


 εy y∂

∂v≡+≡≡

εPQ εx φcos 2⋅ γxy φ φsincos⋅ εy φsin 2⋅+ +=

u x y,( ) κ xy⋅–= v x y,( ) κ x2 2⁄( )⋅=
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where κ = 0.25, sketch the locus of the edges of a 2x2 square, centered
at the origin, after deformation and construct expressions for the strain
components ε

x
, ε

y
, and γ

xy

We start by evaluating the components of strain; we obtain

We see that the only non zero strain is the extensional strain
in the x direction at every point in the plane. In particular, right angles
formed by the intersection of a line segment in the x direction with
another in the y direction remain right angles since the shear strain vanishes. The average rotation of these
intersecting line segments at each and every point is found to be

We sketch the locus of selected points and line segments below:

Focus first, on the figure at the left above which shows the deformed position of the points that
originally lay along the x axis, at y=0. The vertical component of displacement v describes a parabola in the
deformed state. Furthermore, the points along the x axis experience no horizontal displacement.

On the other hand, the points off the x or the y axis all have a horizontal component of displace-
ment - as well as vertical. Consider now the figure above right. For example the point (1,1) moves to the left
a distance 0.25 while moving up a distance 0.125. Below the x axis, however, the point originally at (1,-1)
moves to the right 0.25 while it still displaces upward the same 0.125. The shaded lines are meant to indi-
cate the u at each point.

Observe

• The state of strain does not vary with x, but does so with y.

• Right angles formed by x-y line segments remain right angles, that is the shear strain is zero.

• The average rotations of these right angles does vary with x but not with y. Note too that we
have seemingly violated the assumption of small rotations. We did so in order to better illus-
trate the deformed pattern.

+1

+1

-1

-1
x

y

0
εx x∂

∂u κy–= γxy x∂
∂v




y∂
∂u


 κx– κy+ 0= = εy y∂

∂v≡+≡≡ 0=

ωxy 1 2⁄( )
x∂

∂v



y∂
∂u


– κx= =

+1

+1

-1

-1
x

y

+1

+1

-1

-1
x

y

0
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4.7 Transformation of Components of Strain

The axial stress in a truss member is related to the extensional strain in the member
through an equation that looks very much like that which relates the force in a spring to its
deflection. We shall relate all stress and strain components through some more general
constitutive relations — equations which bring the specific properties of the material into
the picture. But stress and strain are “relations” in another sense, in a more abstract, math-
ematical way: They are both the same kind of mathematical entity. The criterion and
basis for this claim is the following: The components of stress and strain at a point
transform according to the same relations. By transform we mean change; by change
we mean change due to a rotation of our reference axis at the point.

Our study of how the components of strain and stress transform is motivated as much by the useful-
ness of this knowledge in engineering practice as by visions of mathematical elegance and sophistication.
For, although this section could have been labeled the transformation of symmetric, second-order tensors,
we have already seen an example, back in our study of stress, an example suggesting the potential utility of
the component transformation machinery. We do an exercise very similar to that we tackled before to
refresh our memory.

Exercise 4.6 – Three strain gages, attached to the surface of a solid shaft in torsion in the direc-
tions x, y, and x’ measure the three extensional strains

Estimate the shear strain γxy.

Let’s work backwards. No one says you have to
work forward from the “givens” straight through to the
answer1. We are given the values of three extensional strains
measured at a point on the surface of the shaft. It’s not really a point but a region about the size of a small coin.

The task is to determine the shear strain at the point from the three, measured extensional strains.

From the previous section we know that the extensional strain in the x’ direction - thinking of that
direction as "PQ" - can be expressed as

,

which tells me how to compute the extensional strain in some arbitrarily oriented direction at a point, as
defined by the angle φ, given the state of strain at the point as defined by the three components of strain with
respect to an x,y axis.

1. This is characteristic of most work, not only in engineering but in science as well. The desired end
state – the answer to the problem, the basic form of a design, the theorem to be proven, the character of the data
to be collected – is usually known at the outset. There are really very few surprises in science or engineering in
this respect. What is surprising, and exciting, and rewarding is that you can manage to construct things to come
out right and they work according to your expectations.

εx 0= εy 0= and εx' 0.00032˙=

Mt

45
x

x’y

εPQ εx φcos 2⋅ γxy φ φsincos⋅ εy φsin 2⋅+ +=
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But, working backwards, I will use this to compute the shear strain γ
xy

given knowledge of the
extensional strain ε

PQ
where PQ is read as the direction of the gage x’ oriented at 45o to the axis of the shaft

and pasted to its surface. Now both ε
x
  and ε

y
 are zero1 so this equation gives

Observe:

• If the strains ε
x

and ε
y

were different from zero we would still use this relationship to obtain
an estimate of the shear strain. The former would provide us with direct estimates of any axial
or hoop strain.

•  I can graphically interpret this equation for determining the shear strain by constructing a
compatible (continuous) displacement field from the strain components εx, εy, and γxy. Note
this is not the only displacement field I might generate that is consistent with these strain com-
ponents but it will serve to illustrate the relationship.

With the shaft oriented horizontally and twisted as shown, I take the displacement component,
u(x,y) to be zero and v(x,y) to be proportional to x but independent of y. Then the points a and b both dis-
place vertically a distance ∆v with respect to points 0 and c. The extension of the diagonal 0b is, for small
displacements and rotations, the projection of ∆v at b upon the diagonal itself. So the change in length is
given by ∆v (1/√ 2). Its original length is √ 2∆x so we can write

But, again for small rotations, ∆ v/∆ x = γxy the decrease in the right angle, the shear strain. Thus, as
before,

1.   More realistic values would be some small, insignificant numbers due to noise or slight imbal-
ance in the apparatus used to measure, condition, and amplify the signal produced by the strain gage. Even so, if
the shaft was subject to forms of loading other than, and in addition to the torque we seek to estimate, and these
engendered significant strains in the a and c directions we would still make use of this relationship in estimating
the shear strain.

0.000032 γxy 1 2⁄( )⋅= or γxy 0.00064=

∆x0
x

y

45
45

b

t
t = (1/√ 2) i + (1/√ 2) j

∆v(√ 2/2)=change in length of ob

c

∆v

∆v

a

∆v

εx' εob
∆v ∆x⁄( )

2
----------------------= =

εx' γxy 1 2⁄( )⋅=
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This exercise illustrates an application of the rules governing
the transformation of the components of strain at a point. That’s now the
way we read the equation we in the previous section – as a way to obtain
the extensional strain along one axis of an arbitrarily oriented coordi-
nate frame at a point in terms of the strain components known with
respect to some reference coordinate frame.

For example, if I let the arbitrarily oriented frame be labeled x’-y’, then
the extensional strain components relative to this new axis system can
be written in terms of the strain components associated with the original,
x-y frame as

In obtaining the expression for the extensional strain in the y’ direction, I substituted φ+ π/2 for φ in the first
equation.

But there is more to the story. I must construct an equation that allows me to compute the shear
strain, γ

xy
’ relative to the arbitrarily oriented frame, x’y’. To do so I make use of the same graphical meth-

ods of the previous section.

The figure below left shows the orientation of my reference x-y axis and the orientation of an arbi-
trarily oriented frame x’-y’. PQ is a differential line element in the undeformed state lying along the x’ axis.
t is a unit vector along PQ; e is a unit vector perpendicular to PQ in the sense shown. ∆x, ∆y are the horizon-
tal and vertical coordinates of Q relative to the origin of the reference frame.

On the right we show the position of PQ in the deformed state as P’Q’. The displacement of point
Q relative to P is shown as ∆ uQ. The angle α is the (small) rotation of the line element PQ. This is what we
seek to express in terms of the strain components ε

x
, ε

y
and γ

xy
at the point. We will also determine the rota-

tion of a line element along the y’ axis. Knowing these we can compute the change in the right angle QPR ,
the shear strain component with respect to the x’-y’ system which we will mark with a “prime”, γ

xy
’.

The angle α is given approximately by    where j’ is perpendicular to PQ.

y

x

y'

x'
φ

ε'x εx φcos 2⋅ γxy φ φsincos⋅ εy φsin 2⋅+ +=

ε'y εx φcos 2⋅ γxy φ φsincos⋅– εy φsin 2⋅+=

y

x

j

i

φ

∆x

∆y

Q

P

x’

y'

j' = - sinφi + cosφj

∆x

∆uR

R’

R

α

β

Before     After
P,P’

Q’

y

x

φ
∆y
Q x’

y'R

∆uQ

α ∆u j' PQ( )⁄•=
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The displacement vector we write as which, to first order may be written in
terms of the partial derivatives of the scalar components of the relative displacement of Q.

and the unit vector is

Carrying out the scalar, dot product, noting that

we obtain

Or collecting terms

I obtain the angle β the rotation of a line segment PR originally oriented along the y’ axis most sim-
ply by letting φ go to φ +π/2 in the above equation for the angle α. Thus

the diminution in the right angle QPR is just α - β so I obtain:

which, in terms of the strain components associated with the x,y axes becomes

With this I have all the machinery I need to compute the components of strain with respect to one
orientation of axes at a point given their values with respect to another. I summarize below, making use of
the double angle identities for the cosφ and the sinφ, namely, cos 2φ =cos2φ - sin2φ and sin2φ =2sinφcosφ.

∆u ∆u i⋅ ∆v+= j⋅

∆u ∆x
x∂

∂u ∆y
y∂

∂u
+ 

  i= ∆x
x∂

∂v ∆y
y∂

∂v
+ 

 + j

j' φsin i⋅– φcos j⋅+=

∆y PQ⁄ φcos= and ∆y PQ⁄ φsin=

α φ φcos
x∂

∂u φsin
y∂

∂u
+ 

 sin– φ φcos
x∂

∂v φ
y∂

∂v
sin+ 

 cos+≈

α φ φcos
y∂

∂v
x∂

∂u– 
 sin φcos2

x∂
∂v φ

y∂
∂u

sin2–+≈

β φ φcos
y∂

∂v
x∂

∂u– 
 sin– φsin2

x∂
∂v φ

y∂
∂u

cos2–+≈

γ'xy 2 φ φcos
y∂

∂v
x∂

∂u– 
 sin φcos2 φsin2–( )+≈

x∂
∂v

y∂
∂u– 

 

γ'xy 2 εy εx–( ) φ φcossin⋅ γxy φcos 2 φsin 2–( )⋅+=

ε'x
εx εy+( )

2
---------------------

εx εy–( )
2

-------------------- 2φcos⋅ γxy 2⁄( ) 2φsin+ +=

ε'y
εx εy+( )

2
---------------------

εx εy–( )
2

-------------------- 2φcos⋅– γxy 2⁄( )– 2φsin=

γ'xy 2⁄( )
εx εy–( )

2
--------------------– 2φsin⋅ γxy 2⁄( ) 2φcos+=
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I have introduced a common factor of (1/2) in the equation for the shear strain for the following
reasons: If you compare these transformation relationships with those we derived for the components of
stress, back in section 3.6, you will see they are identical in form if we identify the normal strain compo-
nents with their corresponding normal stress components but we must identify τxy with γxy/2.

One additional relationship about deformation follows from our analysis: If I average the angular
rotations of the two orthogonal line segments PQ and PR, I obtain an expression for what we define as the
rotation of the x’-y’ axes at the point. This produces

This, we note, is identical to ω
xy

which is what justifies labeling this measure of deformation a
rigid body rotation. It is also invariant of the transformation; regardless of the orientation of the coordinate
frame at the point, you will always get the same number for this measure of rotation.

Exercise 4.7 – A “bug” in my graphics software distorts the image appearing on my monitor. Hor-
izontal lines are stretched 1%; vertical lines are compressed 5% and there is a distortion of the right angles
formed by the intersection of horizontal and vertical lines of approximately 3o – a decrease in right angle in
the first quadrant. Estimate the maximum extensional distortion I can anticipate for an arbitrarily oriented
line drawn by my software. What is the orientation of this particular line relative to the horizontal?

I seek a maximum value for the extensional strain at a point — the extensional strain of an arbi-
trarily oriented line segment which is maximum. Any point on the screen will serve; we are working with a
homogeneous state of strain, one which does not vary with position. I also of course want to know the direc-
tion of this line segment. The equation above for ε

x
’ shows the extensional strain as a function of φ; we dif-

ferentiate with respect to φ seeking the value for the angle which will give a maximum (or minimum)
extensional strain. I have:

which I manipulate to

Now the three x,y components of strain are ε
x
=0.01, ε

y
= -0.05, and γ

xy
= 3/57.3 = 0.052. The above

relationship, because of the behavior of the tangent function, will give me two roots within the range 0 < φ
< 360o, hence two values of φ.

I obtain two possibilities for the angle of orientation of maximum (or minimum) extensional strain,
φ = 20.6o and φ = 20.6 + 90o= 110.6o One of these will correspond to a maximum extensional strain, the
other to a minimum. Note that we can read the second root as an extensional strain in a direction perpendic-
ular to that associated with the first root. In other words, if we evaluate both ε

x
’ and ε

y
’for a rotation of φ =

20.6o we will find one a maximum the other a minimum. This we do now.

Taking then, φ= 20.6o I obtain for the extensional strain in that direction, ε
I
 = 0.0197

about two percent extension. The extensional strain at right angles to this I obtain from the equation for ε
y
’,

a strain along an axis 110.6o around from the horizontal, ε
II

 = - 0.0597,

ω'xy
1
2
--- 

  α β+( ) 1
2
--- 

 
x∂

∂v
y∂

∂u– 
  ωxy= = =

φd

dε'x εy εx–( ) 2φ γxy 2φcos⋅+sin– 0= =

2φtan γxy εy εx–( )⁄=
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Transformation of Components of Strain
about six percent contraction. This latter is the maximum extensional distor-
tion, a contraction of 5.97%. We illustrate the situation below.

Observe

• We call this pair of extreme values of extensional strain at a
point, one a maximum, the other a minimum, the principal strains;
the axes they are associated with are called the principal axes.

•  The shear strain associated with the principal axes is zero,
always. This follows from comparing the equation we derived by
setting the derivative of the arbitrarily oriented extensional strain with respect to angle of rota-
tion, namely

                                      tan(2φ) = γ
xy

/(ε
x
 - ε

y
)

with the equation for the transformed component γ
xy

’. If the former is satisfied then the shear-
must vanish.

y

x

20.6o

II

I
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Mohr’s Circle
4.8 Mohr’s Circle

Our working up of the transformation relations for stress and for strain and our explora-
tion of their meaning in terms of extreme values has required considerable mathematical
manipulation. We turn now to a graphical rendering of these relationships called Mohr’s
Circle1. I will set out the rules for constructing the circle for a particular state of stress,
(note that we could just as well use strain as a vehicle for this exposition), show how to
read the pattern, then comment about its legitimacy.

First, I repeat the transformation equations for a two-dimensional state of stress. They look just like
the transformation relations for strain, which we recently derived, if we replace half the shear strain with the
corresponding shear stress:

To construct Mohr’s Circle, given the state of stress σ
x

= 7, τ
xy

= 4, and σ
y

= 1 we pro-
ceed as follows: Note that I have dropped all pretense of reality in this choice of values for the components
of stress. As we shall see, it is their relative magnitudes that is important to this geometric construction.
Everything will scale by any common factor you please to apply. You could think of these as σx =7x10

3

KN/m
2
...etc., if you like.

1. Lay out a horizontal axis and label it σ positive to the right.

1.  Studying Mohr’s Circle is customarily the final act in this first stage of indoctrination into Engi-
neering Mechanics. Your uninitiated colleagues may be able to grasp the concepts of a truss member in tension
or compression, a beam in bending, a shaft in torsion using their common sense knowledge of the world around
them and some prompting from you, but Mohr’s Circle will appear as a complete mystery, an unfathomable rit-
ual of signs, circles, and greek symbols. Although it does not tell us anything new, over and above all that we
have done up to this point in the chapter, once you’ve mastered the technique it will set you apart from the crowd
and shape your very well being. It may also provide you with a useful aid to understanding the transformation of
stress and strain at a point on occasion.

σ'x
σx σy+( )

2
-----------------------

σx σy–( )
2

---------------------- 2φcos⋅ σxy 2φsin+ +=

σ'y
σx σy+( )

2
-----------------------

σx σy–( )
2

---------------------- 2φcos⋅– σxy– 2φsin=

σ'xy

σx σy–( )
2

----------------------– 2φsin⋅ σxy 2φcos+=

σ
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Mohr’s Circle
2. Lay out an axis perpendicular to the above and label it τ
xy

 positive
down and τ

yx
 positive up.

3. Plot a point associated with the stress components acting on an x face
at the coordinates (σ

x
,τ

xy
)=(7,4

down
). Label it x

face
, or x if you are

cramped for space.

4. Plot a second point associated with the stress components acting on an
y face at the coordinates (σ

y
,τ

yx
)= (1,4

up
). Label it y

face
, or y if you are

cramped for space. Connect the two points with a straight line. Note
the order of the subscripts on the shear stress..

σ

τyx

τxy

σ

τyx

τxy
x

y

σx

τxy

x

τyx

τxy
x

y

σx

τxy

y

4

4

σ

x

σy
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Mohr’s Circle
5. Chanting “similar triangles”, note that the center of the line must nec-
essarily lie on the horizontal, σ axis since τ

xy
=τ

yx
, 4=4. Draw a circle

with the line as a diagonal.

6. Note that the radius of this circle is

which for the numbers we are using is just R
Mohr’s C

= 5, and its center
lies at (σ

x
+σ

y
)/2 = 4.

7. To find the stress components acting on a plane whose normal is
inclined at an angle of φ degrees, positive counterclockwise, to the x
axis in the physical plane, rotate the diagonal 2φ in the Mohr’s Cir-
cle plane. We illustrate this for φ = 40o. Note that the shear stress on
the new x’ face is negative according to the convention we have cho-
sen for our Mohr’s Circle.1

1.  Warning: Other texts use other conventions.

τyx

τxy
x

y

σx

τxy

y

4

4

σ

(σx,τxy)

(σy,τyx)σy

RMohrs τxy( )2 σx σy–( ) 2⁄[ ] 2+=

τyx

τxy
x

y

y

4

4

σ

(σx,τxy)

(σy,τyx)
(σx’,τxy’)

(σy’,τyx’)
80o

σx’τxy’

40o

= φ
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8. The stress components acting on the y’ face, at φ + π/2= 130o around
in the physical plane are 2φ + π = 240o around in the Mohr’s Circle
plane, just 2φ around from the y face in the Mohr’s Circle plane.

We establish the legitimacy of this graphical representation of the transformation equations for
stress making the following observations:

•  The extreme values of the normal stress lie at the two intersections of the circle with the σ
axis. The angle of rotation from the x

face
 to the principal plane I on the Mohr’s Circle is

related to the stress components by the equation previously derived:

  tan2φ =2τ
xy

/(σ
x
-σ

y
). (EQ 2)

•  Note that on the principal planes the shear stress vanishes.

• The values of the two principal stresses can be written in terms of the radius of the circle.

 •  The orientation of the planes upon which an extreme value for the shear stress acts is
obtained from a rotation of 90o around from the σ axis on the Mohr’s Circle. The correspond-
ing rotation in the physical plane is 45o.

•  The sum σ
x
+σ

y
 is an invariant of the transformation. The center of the Mohr’s Circle does

not move. This result too can be obtained from the equations derived simply by adding the
expression for σ

x
’ to that obtained for σ

y
’.

• So too the radius of the Mohr’s Circle is an invariant. This takes a little more effort to prove.

τxy
x

y

σ
σIσII

(σx +σy)/2

R+(σx +σy)/2

- R+(σx +σy)/2
y

σII

σI

φmax 2φmax

σI II, σx σy+( ) 2⁄[ ]= τxy( )2 σx σy–( ) 2⁄[ ] 2+±
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4.9  Stress/Strain Relations

We now want to develop a set of stress/strain relations for a continuous body, equations
which apply at each and every point throughout the continuum. In this we will restrict our
attention, at least in this chapter, to certain type of materials namely homogeneous, linear,
elastic, isotropic bodies.

•  Homogeneous means that the properties of the body do not vary from one point in the body
to another.

•  Linear means that the equations relating stress and strain are linear; changes in stress are
directly proportional to changes in strain (and the other way around, too).

•  Elastic means that the body returns to its original, undeformed configuration when the
applied forces and/or moments are removed.

•  Isotropic means that the stress strain relations do not change with direction at a point. This
means that a laminated material, a material with a preferred orientation of “grains” at the
microscopic level, are outside our field of view, at least for the moment.

We have talked about stress at a point. We drew a
figure like the one at the right to help us visualize the nature
of the normal and shear components of stress at a point. We
say the state of stress is fully specified by the normal compo-
nents, σ

x
, σ

y
σ

z
and the shear components σ

xy
=σ

yx
, σ

yz
=σ

zy
σ

xz
=σ

zx
.

With these restrictions and a heavy dose of symme-
try, we will be able to construct a set of stress/strain equa-
tions that will apply to many structural materials. This we do
now, performing a sequence of thought experiments in
which we apply to an element of stuff at a point each stress
component in turn and imagine what strains will be engen-
dered, which ones will not. Again, symmetry will be crucial
to our constructions.

We start by applying the normal stress component σ
x
 alone.

We expect to see some extensional strain ε
x
. We might not anticipate

normal strains in the other two coordinate directions but there is
nothing to rule them out, so we posit an ε

y
 and an ε

z
.

Now these, because of the indifference of the material to the orienta-
tion of the y and the z axis,– that is, from symmetry– these must be
equal. We can say nothing more on the basis of our symmetrical
thoughts alone. At this point, we will cheat, and introduce a real
piece of experimental data, namely that the material contracts in the
y and z directions as it extends in the x direction due to the applied
σ

x
. We write then, for the strains due to a σ

x
:

In these we have made use of another bit of real experimental evidence in designating the constant
of proportionality in the relationship between the extensional strain in the direction of the applied normal
stress to be the elastic, or Young’s modulus, E. The ratio of the lateral contraction to the extension, the so

x

y

z

σx

σz

σxy

σxz

σzy

σzx

σy

σyz

σyx

σx

σx

σx

σx

εx σx E⁄= εy εz υεx–= =
4.33 ENGINEERING MECHANICS FOR STRUCTURES



Stress/Strain Relations
called Poisson’s ratio is designated by the symbol ν. We have encountered the magnitude of the elastic mod-
ulus E for 1020, cold rolled steel in the previous chapter. Poisson’s ratio, ν is new; it takes on values on the
order of one-quarter to one-half, the latter value characterizing an1 incompressible material.

But what about the shear strains? Does σ
x

engender any shear strains? The answer is no and here
symmetry is all that we need to reach this conclusion. The sketch below shows two possible configurations
for the shear strain γ

xy
. Both are equally possible to an unbiased observer. But which one will follow the

application of σ
x
?

There is no reason why one or the other should occur.2 Indeed they are in contradiction to one
another; that is, if you say the one at the left occurs, I, by running around to the other side of the page, or
more easily, by imagining the bit on the left rotated 180o about a vertical axis, can obtain the configuration
at the right. But this is impossible. These two dramatically different configurations cannot exist at the same
time. Hence, neither of them is a possibility; a normal stress σ

x
will not induce a γ

xy
, or for that matter, a γ

xz
shear strain.By symmetry again, we can rule out the possibility of a γ

yz
. We conclude, then, that under the

action of the stress component σ
x
 alone, we obtain the extensional strains written out above.

Our next step is to apply a stress component σ
y

alone. But since the body is isotropic, it does not
differentiate between the x and y directions. Hence our task is easy; we simply replace x by y (and y by x) in
the above relationships and we have that, under the action of the stress component σ

y
alone, we obtain the

extensional strains

The same argument applies when we apply the normal stress σ
z
 alone.

Now if we apply all three components of normal stress together, we will generate the extensional
strains, and only the extensional strains,

1.  In fact, Poisson proved that, for an isotropic body, Poisson’s ratio should be exactly one-quarter.
We claim today that he was working with a faulty model of the continuum. For some relevant history on early
nineteenth century developments in the continuum theories see Bucciarelli and Dworsky, SOPHIE GERMAIN,
an Essay in the Development of the Theory of Elasticity

2.   Think of the icon at the top as Buridan’s ass, the two below as bales of hay.

180

σx

σx
σx σx σx

σx

εy σy E⁄= εx εz υ σy E⁄( )–= =
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One possibility remains: What if we apply a shear stress? Will this produce an extensional strain
component in any of the three coordinate directions? The answer is no, and symmetry again rules. For
example, say we apply a shear stress, σ

xy
. The figure below shows two possible, shortly to be shown impos-

sible, geometries of deformation which include extensional straining.

Now I imagine rotating the one on the left about an axis inclined at 45o as indicated. I produce the
configuration on the right. Try this with a piece of rectangular paper, a 3 by 5 card, or the like. But this is an impossible
situation. The two configurations are mutually contradictory. A like cause, in this case a positive shear
stress at the point, should produce a like effect. This is not the case. Hence, neither the deformation of B nor
of C is possible.

There remains one further possibility: that a σ
xy

generates an extensional strain in the x direction
equal to that in the y direction. But this too can be ruled out by symmetry. We conclude then that the shear
strain σ

xy
, or σ

yz
 or σ

xz
 for that matter, produces no extensional strains.

The expressions for the extensional strains above are not quite complete. We take the opportunity
at this point to introduce another quite distinct cause of the deformation of solids, namely a temperature
change. The effect of a temperature change is to produce an extensional strain proportional to the change.
That is, for an isotropic body,

The coefficient of thermal expansion, α, has units of 1/oC or 1/oF and for most structural materials
is a positive quantity on the order of 10-6. Materials with a negative coefficient of expansion deserve to be
labeled exotic. They are few and far between.

The equations for the extensional components of strain in terms of stress and temperature change
then can be written

In the above, we ruled out the possibility of a shear stress producing an extensional strain. A shear
stress produces, as you might expect, a shear strain. We state without demonstration that a shear stress pro-
duces only the corresponding shear strain. Furthermore, a temperature change induces no shear strain at a
point. The remaining three equations relating the components of stress at a point in a linear, elastic, isotro-
pic body are then.

εx 1 E⁄( ) σx ν σy σz+( )–[ ]⋅=

εy 1 E⁄( ) σy ν σx σz+( )–[ ]⋅=

and

εz 1 E⁄( ) σz ν σx σy+( )–[ ]⋅=

σxy

σxy

rotate 180o

45o

A

CB

εx or y or z α∆T=
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Recall that σ
xy

= σ
yx

. In these, G, the shear modulus is apparently a third elastic constant but we
shallshowintimethatGcanbeexpressedintermsoftheelasticmodulusandPoisson’sratioaccordingto:

Exercise 4.8 A steel bolt, of 1/2 inch diameter, is surrounded by an aluminum cylindrical sleeve of
3/4" diameter and wall thickness, t= 0.10 in. The bolt has 32 threads/inch and when the material is at a tem-
perature of 40oC the nut is tightened one-quarter turn.

Show that the uniaxial stresses acting in the bolt and in the sleeve at this temper-
ature are            σ

bolt
 = 79 MN/m2, and σ

sleeve
 = - 63 MN/m2

where the negative sign indicates the aluminum sleeve is in compression. What if
the bolt and nut are cooled; at what temperature might the bolt become loose in
the sleeve?

Compatibility of Deformation

Compatibility of Deformation is best assured by playing out a thought experi-
ment about how the bolt and sleeve go from their initial unstressed, undeformed
state to the final state. Think of the bolt and nut being separate from the sleeve.

εx 1 E⁄( ) σx ν σy σz+( )–[ ] α∆ T+⋅=

εy 1 E⁄( ) σy ν σx σz+( )–[ ] α∆ T+⋅=

and

εz 1 E⁄( ) σz ν σx σy+( )–[ ] α∆ T+⋅=

γxy σxy G⁄=

γxz σxz G⁄=

and

γyz σyz G⁄=

G E
2 1 υ+( )
---------------------=

1/2"

3/4"

L=6"
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Think then of turning down the nut one quarter turn. We show this state at the left. ∆ is the distance traveled
in one quarter turn which, at 1/32 inch/turn is just ∆ = 1/128 in

Next think of stretching the bolt out until we can once again fit the nut-bolt over the aluminum
sleeve, the latter still in its undeformed state. This is shown in the middle figure above. Now, while stretch-
ing out the bolt in this way, place over the aluminum sleeve1. The bolt will strive to return to its undeformed
length – the behavior is assumed to be elastic – while the aluminum sleeve will resist contraction. The final
state is shown at the right. The net result is that the steel bolt has extended from its undeformed state a dis-
tance dbwhile the aluminum sleeve has contracted a distance d

s
. We see from the geometry of these three

figures that we must have, for compatibility of deformation, which is one equation in two
unknowns.

Equilibrium

The figure below shows an isolation made by cutting through the bolt and
the sleeve at some arbitrary section along the axis. Note in this I have
violated my usual convention. I have taken the force in the aluminum
as positive in compression.

We let F
s

be the resultant compressive force in the sleeve, the
sum of the distributed loading around the circumference. F

b
is the tensile

force in the bolt. Like the carton-tie-down exercise, these two internal
forces are self equilibrating; there are no external applied forces in the
final state. We have

The normal stresses in the sleeve and the bolt are found assum-
ing the resultant forces of tension and compression are uniformly distributed over their respective areas.
Equilibrium then can be expressed as where the A’s are the cross sectional areas of the
bolt and of the sleeve.

Constitutive Relations

The constitutive relations are, for uniaxial loading, which is the case we have on hand,

1.  Since this is a thought experiment we don’t have to worry about the details of this physically
impossible move.

db

LL - ∆

∆

L - ∆

∆
ds

Turn nut down                                                              Stretch bolt - fit sleeve                             Release

ds db+ ∆=

db

ds

Fb Fs

Fb Fs– 0=

σb Ab⋅ σs As⋅=

σs Es ds L⁄( )⋅= and σb Eb db L⁄( )⋅=
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We have then a total of four equations for four unknowns – the two displacements, the two stresses.
Substituting the expressions for the stresses in terms of displacements into the equilibrium allows me to
write

which tells me the relative deformation as a function of the relative stiffness of the two material. If the
sleeve is “softer”, the bolt deforms less... etc.

With this, compatibility gives me a way to solve for the displacements in terms of ∆. I obtain, letting

Values for the stresses are found to be σ
b

= 79 MN/m2 and σ
s

= 63 MN/m2. (Note: compres-
sive)

In computing these values, the elastic modulus for steel and aluminum were taken as 200 GN/m2

and 70 GN/m2 respectively. Observe that, though the steel experiences less strain, its stress level is greater in
magnitude than that seen in the aluminum.

db ds AsEs AbEb⁄( )⋅=

β AsEs AbEb⁄( )=

we have

ds ∆ 1
1 β+( )

-----------------= and db ∆ β
1 β+( )

-----------------=
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4.10 Modes of Failure

The failure of structures occurs in a variety of ways. We have talked about yielding, the
onset of plastic flow of ductile materials, materials which show relatively large, even sen-
sible, deformations for relatively small increases in load once the material is loaded
beyond its yield strength. If the excessive load is removed before complete collapse, the
structure will not wholly return to its original, undeformed configuration.

Although it is the tension test that is used to fix the limit of elastic behavior and to define a yield
strength, the mechanism for yielding is a shearing action of the material on a microscopic level. We have
seen how a tensile stress in a bar can produce a shear stress on a plane inclined to the axis of the bar. We will
pursue this phenomenon further in a subsequent chapter. There is nothing here that contradicts our symme-
try arguments which ruled out the possibility of a shear strain being generated by a normal stress. Our sym-
metry arguments only applied to components of stress and strain relative to a single orientation of our
reference axis at a point.

Not all materials behave as steel or aluminum or ductile plastics. Some materials are brittle. Load
glass, chalk, cast iron, a brittle plastic, a carbon fiber, or concrete in a tension test and they will break with
very little extension. They show insensible deformation all the way up to the fracture load. Material proper-
ties and modes of failure also may depend upon temperature. What may be ductile at room temperature will
be brittle at low temperatures. In compression, a brittle material can carry a significantly greater load before
fracture. The collapse or fracture of a structure are not the only modes of failure. At high temperatures, still
well below the melting point, materials will creep – they will continuously deform at a constant load. A
material can fail in fatigue: Under continual cycling through tension then compression, a material will fail
well below the yield strength or fracture stress witnessed in a tension test. Some failure modes involve a
more macroscopic behavior of the material. Delamination of a multilayered, glued together material is one
such mode. Another of particular interest in this course is elastic buckling, a mode in which large deflections
and collapse of a structure may occur well before any limiting load defined by a tension test are reached.
Excessive deflections themselves, even though small relative to those which might be seen in elastic buck-
ling or plastic collapse of a structure, can be considered “failure”, at least a failure of design. Think of the
constraints on deflections and rotations that must be satisfied by the structural support of an optical tele-
scopic or another instrument in which alignment is critical.

Failure, then has many faces. Most if not all of its modes depend upon knowing well a structure’s
behavior in terms of the variables we have constructed here: stress, strain, and displacements.
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4.11 Problems

4.1 A fluid can be defined as a continuum which is unable to support a shear stress and remain at
rest — like a rigid body. The state of stress at any point, within a fluid column for example, we label “hydro-
static”; the normal stress components are equal to the negative of the static pressure at the point and the
shear stress components are all zero. σx = σy = σz = -p and σxy = σxz = σyz =0.

Using the two dimensional transformation relations (the existence of σz does not affect their valid-
ity) show that the shear stress on any arbitrarily oriented plane is zero and the normal stress is again -p.

4.2 Estimate the compressive stress at the base of the Washington Monument - the one on the Maill
in Washington, DC.

4.3 The stress at a point in the plane of a thin plate is shown. Only the shear stress component is not
zero relative to the x-y axis. From equilibrium of a section cut at the angle φ, deduce expressions for the
normal and shear stress components acting on the inclined face of area A. NB: stress is a force per unit area
so the areas of the faces the stress components act upon must enter into your equilibrium considerations.

4.4 Construct Mohr’s circle for the state of stress of exercise 4.3, above. Determine the "principle
stresses"and the orientation of the planes upon which they act relative to the xy frame.

4.5 Given the components of stress relative to an x-y frame
at a point in plane stress are:

σx = 4,   σxy = 2  σy = -1

What are the components with respect to an axis system
rotated 30 deg. counter clockwise at the point?

Determine the orientation of axis which yields maximum
and minimum normal stress components. What are their
values?

4.6 A thin walled glass tube of radius R = 1 inch, and wall thickness t= 0.010 inches, is closed at
both ends and contains a fluid under pressure, p = 100 psi. A torque, Mt , of 300 inch-lbs, is applied about the
axis of the tube.

Compute the stress components relative to a coordinate frame with its x axis in the direction of the
tube’s axis, its y axis circumferentially directed and tangent to the surface.

Determine the maximum tensile stress and the orientation of the plane upon which it acts.
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Problems
4.7 Show that for the thin circular hoop subject to an axi-symmetric,
radial extension ur, that the circumferential extensional strain, can be
expressed as

                                         εθ  = (L - Lo)/Lo = ur/ro

where Lo is the original, undeformed circumference.

4.8 What if we change our sign convention on stress components so that a normal, compressive
stress is taken as a positive quantity (a tensile stress would then be negative). What becomes of the transfor-
mation relations? How would you alter the rules for constructing and using a Mohr’s circle to find the stress
components on an arbitrarily oriented plane?

What if you changed your sign convention on shear stress as well; how would things change?

4.9 Three strain gages are mounted in the directions shown on the sur-
face of a thin plate. The values of the extensional strain each measures is
also shown in the figure.

i) Determine the shear strain component γxy at the point with respect to
the xy axes shown.

ii) What orientation of axes gives extreme values for the extensional
strain components at the point.

iii) What are these values.

4.10 Three strain gages measure the extensional strain in the three
directions 0a, 0b and 0c at “the point 0”. Using the relationship we derived in
class

find the components of strain with respect to the xy axis in terms of εa, εb and εc

4.11 A strain gage rosette, fixed to a flat,
thin plate, measures the following extensional strains

εa  = 1. E-04

εb  = 1. E-04

εc  = 2. E-04

Determine the state of strain at the point, expressed in terms of com-
ponents relative to the xy coordinate frame shown.

ro

ur

εa

εc  = 1.0e-05

= 1.0e-05

  y

   0

εb  = 0

x60o

0

a

b

c

x

y
4545

εPQ εx φcos2 γxy φ φ εy φsin2+sincos+=

x

y

60o

120o

εa

εbεc
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Problems
4.12 Given the components of stress relative to an x-y
frame at a point in plane stress are:

σx = 4,   σxy = 2  σy = -1

What are the components with respect to an axis system
rotated 30 deg. counter clockwise at the point?

Determine the orientation of axis which yields maximum
and minimum normal stress components.  What are their values?

4.13 Hoop #1 is enclosed within hoop #2. The two are made of different materials, have different
thicknesses but the same width (into the page). They are shown in their unstressed state, just touching. Show
that after tightening the bolt at the top of the assembly and closing the gap, ∆, to zero, the stress in the outer
hoop is tensile and has magnitude F/(bt1) while the stress in the inner hoop is compressive and has magni-
tude F/(bt2). In these t1 and t2 are the thicknesses,

   F = k1k2∆/(k1+k2)

where

      k1 = (bt1)E1/L1        and           k2 = (bt2)E2/L2

What if an internal pressure is applied to the inner hoop? When will the stress in the inner hoop
diminish to zero? What will be the hoop stress in the outer hoop at this internal pressure?

4.14 The thin plate is a composite of two materials. A quarter inch thick, steel, plate is clad on both
sides with a thin (tal = 0.005 in), uniform, layer of aluminum. The structure is stress-free at room tempera-
ture. Show that the stresses generated in the two materials, when the temperature changes an amount ∆T,
may be approximated by

σal  = (αst - αal)Eal ∆T/(1-ν)    and σst = -(2tal/tst)(αst-αal)Eal∆T/(1-ν)

At what temperature will the clad plate begin to plastically deform? Where?

σx = 4

σxy = 2

σy = -1

x

y

R

∆

#1

#2
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Problems
4.15 Two cylindrical rods, of two different materi-
als are rigidly restrained at the ends where they
meet the side walls. The system is subject to a tem-
perature increase ∆T

How must their properties be related if the point at
which they meet is not to move left or right?

If material #1 is steel and #2 is aluminum, what
more specifically can you say?

E1 = 200 GPa    steel

E2 = 70 GPa      aluminum α1 = 15 e-06  /oC α2 = 23 e-06  /oC

A1, E1, L1α1

A2, E2, L2α2
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Problems
Design Exercise 4.1
A solid circular steel shaft of diameter 40 mm is to be fitted with a thin-walled circular cylindrical

sleeve, also made of steel. In service the system is to serve as a stop, halting the motion of another fitted, but
freely moving cylindrical tube whose inner radius is slightly larger than the outer radius of the solid shaft.
The stopping sleeve is to remain in fixed location on the solid shaft for all axial loads less than some critical
value of the force F shown in the figure. That is, for F< 50kN. If F exceeds this limit the sleeve is to friction-
ally break free and allow the sliding cylinder to continue moving. along the shaft.

It is proposed to fasten the sleeve to the shaft by means of a shrink fit. The initial inner radius of the
sleeve is to be made slightly less than the initial outer radius of the shaft. The sleeve is then heated to a tem-
perature not to exceed ∆Tmax = 250oC so that its heat-treatment is not affected. The hot sleeve is then
slipped over the shaft and positioned as desired. When the sleeve cools down, the radial misfit between the
shaft outer radius and the sleeve’s unstressed inner radius will generate sufficient mechanical interaction
between the two so that the stopping and break-away functions can be fulfilled.

Size the sleeve.

40mm Fsteel
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