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1 Abstract

This paper describes a methodology for the vetiboa and validation of the
Environmental Design Space analysis tool. Thetgtmli EDS to represent existing systems and
generate future vehicles for use in policy makiaguires a structured, repeatable approach for
uncertainty analysis. Through a three-step procetsbenchmarking against existing
engine/airframe combinations, identifying signifitasystem drivers and creating a future
vehicle trade space this assessment effort attetmpi®vide the outline for this approach, with a

focus on identifying a method for validating thegictive capability of the tool.

2 Introduction

The Environmental Design Space (EDS) represents aina suite of tools being
developed by the FAA’s Office of Environment andeEgy in association with NASA for the
express purpose of evaluating the impact of comialeswiation on the environment. A primary
goal of the tool suite development is to be abledtegorize the interdependencies related to
emissions, noise and fuel consumption trades, aipor the ability to conduct detailed policy

evaluations.

EDS is a series of numerical simulation tools Ishkiegether to assess commercial
aircraft engines and airframes from a thermodynameight, and mission analysis perspective.
The primary objective of EDS is to identify futuvehicles to represent potential responses to
varying environmental policy scenarios. The goaht$ paper is not to provide the details of the

EDS process but instead to provide an overviewoofes of the challenges inherent to, and



potential solutions for, the creation and validatmf a complex system for evaluating policy-

driven vehicle generation.

The main thrust of the EDS assessment effort isréate a structured, repeatable, and
verifiable process for benchmarking existing vetscland determining associated environmental
trades for use within the framework of the tooltsuCentral to this effort is the need to identify
an approach for the verification of the system #ralvalidation of its predictive capability by

categorizing model fidelity through detailed eramd uncertainty analysis.

The overarching assessment plan for the FAA towé 38 centered on the concepts of
uncertainty categorization and quantification, @ggtion of model inputs and the effect of
model limits and assumptions on the module resbidtsrder to address these issues, a detailed,
sequential method has been created which will aftavthe calibration of existing systems, the
determination of input and assumption sensitividas the exploration of environmental trades
along with the identification of potential vehialkesigns within that exploration. This method,
discussed in more detail below, includes the cafibn process, the sensitivity analysis and the

parametric exploration.

3 Calibration Process

The calibration process serves to benchmark thiysasdools as well as identify initial
parameter inputs and their associated settings. @roicess also allows for an initial investigation
into the accuracy that can be expected when atieghui recreate existing vehicles, as well as

an approach to vehicle communization within spedifipassenger classes. The calibration



process begins the progression of identifying amantjfying errors and uncertainties that exist

within the EDS outputs and is illustrated in Figdre
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FIGURE 1: EDSCALIBRATION PROCESS
3.1 Validation Data | dentification and Calibration Vector Creation

The first step in the calibration procedure is geduination of which vehicles will be
modeled by EDS. Given the necessary constrainteheah vehicle is modeled using publicly
available information there are two specific dagguirements that must be available to EDS.
These are a two-dimensional cross section of thggtnenand a payload range chart. This

information is critical to EDS’ capability to bentlark the existing system.

After identifying and categorizing the differentpy of input and output data, the

calibration vector can be created. The calibratiector represents all of the significant inputs to



the analysis tools for which no known value exi$tse central goal of the calibration process is
to determine the combination of input settingstfos vector that allow the EDS model to most
closely resemble an existing vehicle system. Toleynthis calibration vector it is necessary to

identify potential ranges over which the inputsl\wé allowed to vary.

The ranges of the vector are determined througha afombination of engineering
judgment based on the level of technology of thetesy being modeled as well as specific
recommendations and feedback provided through readtereview processes. Due to the
significant uncertainty in identifying this vecttire variable input ranges are often wide and can
produce infeasible designs, which is why the appibnn of a series of clearly defined design
rules to any of the resulting systems remains gpoitant part of the verification process. Once
the calibration vector and ranges of interest ataldished the space exploration and resultant

design selection becomes possible.

3.2 Design Space Exploration Techniques and Processes

The goal of the design space exploration is tordete the combination of settings for
the calibration vector that causes the resultinguuo match the existing validation data. There
are a number of different approaches that can kentéo this space exploration. Perhaps the
most common, and simplest to implement, is a orage-at-a-time approach where the
calibration vector is set to an initial point whichguessed based on engineering judgment and
experience. Then the settings of specific variablesmodified to attempt to match the output
data with the validation data. While easy to setthis process has a number of drawbacks. First,
it is time consuming as the engineer modifies gutrand then waits for the analysis tool to
execute, compares the output data and repeatsdbesg. It is also very path-dependent, both in

terms of the initially guessed starting point adlwas the variables and settings the engineer



decides to modify. When a calibrated point is fparrived at, only a single-point solution is

provided and nothing is learned about the calibresipace as a whole.

An alternative approach which has been developepadsof the EDS assessment, the
Comprehensive Space Exploration (CoSE), attemptsettuce or eliminate many of the
drawbacks associated with traditional one-variaia-time optimization while providing
significantly more information about the space mterest. The CoSE allows the designer to
populate a significant portion of the design spaceugh many unique executions of the analysis
tools. The most significant drawback to this apphdhe increased number of executions of the
analysis tool required for the complete space eafptm, is mitigated through the use of an
internal distributed computing environment. Wheis firoblem is overcome, the method offers a
number of unique advantages. Perhaps most implytahere is no path-dependence in this
technique as the space is uniformly sampled. Tésslts in a more complete understanding of
the entire calibration space which in turn allolWws tesigner to query multiple areas of interest
while avoiding regions of infeasible design. Whesed! iteratively, this process can provide
multiple solutions to the calibration vector rath#an single point designs, providing the

freedom to base the selection on the implementsiginleules.

The calibration process EDS employs centers ardbbedapplication of a Monte Carlo
exploration while making use of automated optimaathrough the use of a genetic algorithm
and sequential response modeling. By applying thedeniques simultaneously, information is
gained about the whole design space while alsevadfpthe identification of calibration vectors
that match the validation data as closely as plesgiken the limitations of the analysis tools and

design rules.



After the initial space exploration, the resultiogtputs are then compared to existing
validation data to determine the combinations afteesettings that most closely resemble the
systems of interest. This represents the Monteoddtéring step within the EDS calibration
process identified in Figure 1. The filtering ispart a mathematical identification of the designs
that minimize the error between an EDS producetesysnd that represented by public-domain
data. Additionally, engineering judgment is appliegnsure any selected designs are technically
feasible within the established design rules. Thian iterative process as regions of the design
space where the best potential solutions existeamored in more detail by modifying the
ranges of the calibration vector and continuing eSE until an acceptable solution is

identified.

3.3 Initial Calibration Error Analysis

The calibration process results in the identifmatof a vehicle which will serve as a
comparison to the public domain benchmark and aftovihe first quantification of error within
the EDS architecture. Given the limited informaterailable to EDS it is impossible to suggest
that every input to the analysis tools exactly rhesc those of the engine and airframe
manufacturers. Instead, it is the goal of EDS &midy a combination of settings that allows for

the minimization of error with respect to the imgamt outputs that have been identified.

As the process matures, the error will be probstilin nature to reflect the fact that the
validation data itself is not a deterministic valud rather a most likely value with an associated
band of uncertainty. Again, given the limitationk EDS, namely the inability to determine
precisely the characteristics of existing vehigfstems, it becomes important to quantify and

propagate this additional uncertainty within thed®loas illustrated in Figure 2. This part of the



assessment is ongoing as EDS continues to investigathods to visualize and propagate error

within the model.
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FIGURE 2: NOTIONAL EXAMPLE OF PROBABILISTIC ERROR QUANTIFICATON
3.4 Common SpaceError Analysis

One goal of the EDS system is not to create vehittlat are direct variants of existing
systems but rather to create generic vehicles nisipecified passenger classes. For example,
within the designated 300 passenger class, thenBo&i7-200ER aircraft can be modeled with
both GE90-94B and PW4090 engines. EDS begins leynating to replicate both systems to
provide an initial benchmark, but then it is neeegto “merge” engine characteristics to create
a generic or “common” space entry which accuratelects existing technology, while not

biasing the results towards one family of designs

The creation of this common space, to be able tecrde multiple frameworks
simultaneously, requires a compromise between safntfee specific design characteristics that
are unique to each vehicle system. Any time a comge is introduced into the model this
reduces the ability of the analysis tools to adalyareplicate the original validation data.
Obviously the degree of accuracy lost depends enptrticular compromises made and how

different the vehicle systems are within a paraculass.



This communization procedures introduces a secomu that EDS will categorize and
propagate forward during the assessment procegsie=8 shows the notional impact of this new

error from a purely deterministic point of view.
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FIGURE 3: NOTIONAL EXAMPLE OF COMMUNIZATION ERROR DURING VEHICE CALIBRATION

4 Sendgtivity Analysis

The sensitivity analysis begins the process of stigating how EDS can be used to
represent future vehicle designs as well as ura®istg the limitations and compromises that
result from the approach that has been employedubih a main effects statistical analysis
combined with a genetic algorithm selection to@ thdependent variables that have the greatest
contribution to the key measures can be categoraret selected. The enumeration of input
parameters effects on output metrics will becomportant when considering areas of EDS that
may require increased fidelity as data propagategndtream. In addition, this analysis allows
for the determination of the optimal settings a# thss important contributors with the goal of
reducing error introduced into the final parametniadel. Figure 4 illustrates the steps involved

in the sensitivity analysis which will be explaineddetail.
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FIGURE4: FLOWCHART OF SENSITIVITY ANALYSIS
4.1 Senditivity Vector and Space Exploration

The independent variables that make up the gesensitivity vector are decided upon at
the conclusion of the calibration process. Depemdim the policy scenario and year of interest it
may be necessary to add parameters to be ableptareaadditional effects within the trade
space. One example of this would be for a NOx gémiicy study where the effect of a combustor
swap out on NOx production must be characterizedhis case a specific independent variable
that defines a percentage NOx reduction would lgeddo the sensitivity vector to simulate the

effect of the proposed engine modification.

Once the sensitivity vector is finalized based oficy requirements, the ranges for the
study must also be set. The key driver in detemginhese ranges will be the policy year under

investigation. Obviously an evaluation of the pagsens for a policy scenario 30 years from now
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would require wider ranges than one for a policgnsecio 10 years from now to reflect the
possibility of improved technological capabilitiedlo one can say exactly what engine
component efficiencies will be in 30 years, but plegential design space of the time period must
be captured as closely as possible, again usingesrgng judgment with respect to current and

historical design trends.

4.2 Analysisof Variance (ANOVA)

The first step in performing the ANOVA on the comipensive space exploration was to
determine and remove technically infeasible desifihe remaining cases could be considered to

effectively capture the potential range of outgotsa given policy scenario and year.

The absolute contribution of each main effect aadpercent relative contribution were
determined as part of a Pareto analysis. As pathefsensitivity analysis, the impact of the
sensitivity vector was evaluated and used to deterrthe key drivers on the output metrics.
Based on the Pareto analysis, the effect of thepaddent variables from the sensitivity vector
and their relative percent contribution to the ¢hkey measures of fuel burn, NOx production
and cumulative noise was quantified. Using thishmfation, it was then necessary to reduce the
set of independent variables to a more managed#ildgol be used for the parametric space

exploration and surrogate model creation.
4.3 Reduced Variable Set Selection

One objective of the sensitivity analysis is to wlment the independent variables that
have the most significant impact on the outputintdrest. Once these variables are identified

they will be used to establish the final parametpace from which designs will be selected and

trends will be explored.
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For the case of the 300 passenger class there ampmximately 75 independent
variables. If one were to assume for a moment ahit 30 variables were to be active in the
parametric space, this would still require evahmtapproximately 8x8 combinations to
determine the “best” combination of 30 independeBten for such a very simplified problem
this is not feasible. The evaluation of the bestugrof parameters does not rely on a single
objective function but rather some weighted comioomaof all of the key output measures,

further complicating matters.

This problem demands the ability to formalize aprapch to selecting the best set of
independent variables while quickly evaluating ptisd combinations for a multiple of
variability levels and a variety of potential oljjge functions. For each metric of interest, the
minimum variability to be captured by the reducegut set is identified and an optimization
routine determines the fewest number of indepersdiatt can meet those requirements. This in
turn raises the issue of what level of variabifibould the final set of parameters reflect. In orde
to address this concern it is necessary to deterrtie impact of reducing the set of active

variables on the error associated with the impodatput metrics.

There is a direct relationship between the numbeanables that are removed from the
list of contributors and the amount of error intnodd into the model. It is necessary to balance
the difficulty of modeling the parametric spacehwén excessive number of variables, against
the error that is introduced into the process feerg input parameter that is fixed to some
compromise value instead of being allowed to vdaiyis trade cannot be determined solely
within the context of EDS but rather is influendayl the required fidelity of the inputs to the

other modules within the tool suite.
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5 Parametric Space Exploration

The parametric space exploration contains the esdltr of EDS, a common space
application of potential vehicle trades, and w#l lised to propagate these designs forward. The
parametric space allows for the investigation aakiation of trends as well as the selection of
Pareto-efficient design points. In addition, thierd step in the EDS process represents the
linkage from EDS to the other tools within the suifAs such, the quantification of error and
uncertainty that has been tracked through the eeqtiocess must be totaled for propagation

outside of EDS. Figure 5 illustrates the steps Ive@in the parametric space exploration.
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FIGURES: FLOWCHART OF PARAMETRIC SPACE EXPLORATION

After completion of the sensitivity analysis, theduced set of variables is then used to
generate surrogate models of the EDS environmdras& models are explored to verify trends
and key measures, allowing for increased interactith potential reviewers and consumers of

EDS information. The surrogate models are also eyepl to create the trade space and select

13



Pareto-efficient vehicles which are then passetbarther modules within the overarching suite

of tools.

5.1 Parametric Space Uncertainty Analysis

In order to create the parametric space it is rsegsto reduce the number of input
variables used to describe the space. The techsdgeribed in the sensitivity analysis process
attempt to reduce the accumulation of error andedamty, but as with the communization
process it is an unavoidable outcome. The erroultieg from the reduced order model
represents the last error introduced into the EBf8gss. A notional visualization of this error,

from a deterministic perspective, is illustratedrigure 6.
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FIGURE 6: NOTIONAL EXAMPLE OF ERRORS WITHIN THE EDS PROCESS

At this point in the process it becomes necessarglate the existing errors to each other
and attempt to quantify a total uncertainty introglh over the course of the system development.
Investigations are underway for determining techegfor relating multiple errors within a
design space to each other and understanding hese trrors will contribute to uncertainties

associated with new vehicle systems generatedmwithd across passenger classes. The goal of

14



this uncertainty analysis is to formally quantihetprobabilistic nature of the designs generated
within the EDS module which will allow them to beopagated throughout the tool suite. Figure
7 shows a notional example of this concept witlardg to identifying replacement vehicles for a

given policy scenario and year.
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FIGURE 7: NOTIONAL EXAMPLE OF ERROR PROPAGATION WITHINEDS

6 Conclusionsand Future Work

This paper has provided an overview of a detailethitecture for the verification and
validation of a physics based tool in the publienéin. This three-step process allows EDS to
generate vehicles that will be used for environmalepblicy decision-making. The calibration
process describes a method for providing an intiEsichmark capability for identifying how
effectively an existing vehicle can be represematiin the confines of EDS. This first step
defines an approach for quantifying the initialoerof the system which is necessary to begin the
process of validating the predictive capabilitytié system. The sensitivity analysis serves the
dual purpose of recognizing the most important oators to variance in the model as well as

providing a first verification that the environmastbehaving as expected. The parametric space

15



creation in turn relies on the results of the densi analysis to identify the set of input
parameters that will define the final trade spauw@ @low for the investigation of key trends and

outputs.

Throughout the EDS assessment architecture, thé feeadentifying and quantifying
sources of error and uncertainty has been empluasige initial approach for cataloging and
visualizing the error has been introduced at varipbiases with a focus towards how it can be
aggregated to accurately describe the final vehicdde space. Traditional verification and
validation efforts have focused on comparing analysols to existing systems through direct
experimental comparison. In the case of EDS, tlseseneed to identify a method to validate the
predictive capabilities of the tool when it will hesed for future policy making. This area

represents the focus of future work within the Ei3Sessment efforts.
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