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Abstract

The taxi-out phase of a flight accounts for a significant fraction of total fuel burn for aircraft. In addition,
surface fuel burn is also a major contributor to CO2 emissions in the vicinity of airports. It is therefore
desirable to have accurate estimates of fuel consumption on the ground. This paper builds a model
for estimation of on-ground fuel consumption of an aircraft, given its surface trajectory. Flight Data
Recorder archives are used for this purpose.

The taxi-out fuel burn is modeled as a linear function of several factors including the taxi-out time,
number of stops, number of turns, and number of acceleration events. The parameters of the model are
estimated using least-squares regression. The statistical significance of each of these factors is investi-
gated. Since these factors are estimated using data from operational aircraft, they provide more accurate
estimates of fuel burn than methods that use idealized physical models of fuel consumption based on
aircraft velocity profiles, or the baseline fuel consumption estimates provided by the International Civil
Aviation Organization. The current analysis shows that in addition to the total taxi time, the number
of acceleration events is a significant factor in determining taxi fuel consumption. Finally, the procedure
for application of the model to the estimation of flight tracks generated from surface surveillance data is
described.



Nomenclature

ICAO International Civil Aviation Organization
FDR Flight Data Recorder
MTOW Maximum TakeOff Weight
Tamb Ambient temperature
f Total fuel consumed during taxi-out
t Taxi-out time
ns Number of stops
nt Number of turns
na Number of acceleration events
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Chapter 1

Introduction

Estimation of aircraft fuel burn plays an important role in determining the impact of air traffic operations
as well as in estimating the benefits of efficiency-enhancing procedures, and has been a topic of interest
to the research community for several years [1]. Taxi-out fuel consumption is most often determined
using the fuel burn indices presented in the International Civil Aviation Organization (ICAO) engine
emissions databank [2]. The ICAO fuel burn indices provide fuel burn rates for only four engine power
settings (corresponding to 7% or taxi/idle, 30% or approach, 85% or climb-out, and 100% or takeoff),
and are based on estimates provided by engine manufacturers [3]. Recently published studies [4, 5] have
shown that the ICAO estimates can be quite different from the actual fuel burn, when considering the
departure flight phase in the terminal area. The terminal area fuel burn considered in these studies
includes the fuel consumed during taxi-out as well as the initial part of the climb. In contrast, in order
to estimate the benefits of surface traffic management strategies [6], it is necessary to have accurate
estimates of the taxi-out (on-surface) fuel burn. Since fuel flow rates in the airborne flight phase are
much higher than during taxi-out, total departure fuel burn may not be a good indicator of surface fuel
burn. On the other hand, a large part of total flight delay is absorbed on the ground, before departure.
To quantify the impact of this delay, it is necessary to have an estimate of the fuel burn associated with
surface trajectories of departing aircraft. Previous studies on this topic [7] have used the ICAO fuel burn
indices (augmented with physical models) to translate the surface trajectories into fuel burn estimates,
and may therefore not be representative of operational aircraft. To the best of our knowledge, this work
is the first attempt to develop models of surface fuel burn using Flight Data Recorder archives from an
actual, operational fleet.

1.1 Problem Description

The high-level objective of this work is build a model that, when given the surface taxi trajectory of a
flight (for example, from a surface surveillance system such as the Airport Surface Detection Equipment -
Model X, or ASDE-X) [8], can form an accurate estimate of its fuel burn. This model can then be utilized
in a taxi-out departure tool with the objective to minimize the total fuel burn impact of surface operations
at an airport. Since the results of any optimization process hinge upon accurate estimation of all the
involved variables, it is necessary that the fuel burn model be as close to the actual fuel burn as possible.
In order to build such a model, we need to estimate fuel consumption from estimates of aircraft position,
velocity and acceleration. One method for doing so is to divide the surface trajectory into different taxi
phases (for example, stops, turns, constant velocity taxi, etc.), to estimate the engine power settings for
each of these phases (using physics-based models and pilot surveys), interpolate/extrapolate ICAO fuel
burn indices to these power settings, and to use these estimated fuel burn indices to determine the fuel
consumption of the trajectory [7].

However, several factors confound such an estimation using ICAO data alone. Firstly, the ICAO fuel
burn estimates provided by engine manufacturers may not reflect the characteristics of the engines in the
operational fleet which are subject to frequent use. Secondly, the engines are staged and tested only at
four power settings, and in particular, 7% may not be representative of the typical power setting during
taxi. Thirdly, pilot behavior is a critical factor in determining the power settings during the different

2



Table 1.1: Aircraft types and Engines
Type Engine Number of Engines Number of Flights MTOW (kg)
A319 CFM56-5B5-2 2 140 64,000
A320 CFM56-5B4-2 2 238 73,500
A321 CFM56-5B1-2 2 174 83,000
A330-202 CF6-80E1A4 2 224 230,000
A330-243 RR Trent 772B-60 2 237 230,000
A340-500 RR Trent 553-61 4 260 372,000
ARJ85 LF507-1F 4 263 44,000
B757 RR RB211-535E4 2 178 106,600
B767 P&W 4060 2 285 186,900
B777 GE90 2 364 344,550

taxi modes: for example, some pilots may not change their power settings when they stop, or when they
accelerate from a stop, choosing instead to “ride the brakes”. Idealized models of taxiing cannot capture
this behavior, or even the average. Finally, several studies have shown a nonlinear dependence of fuel
flow rate on engine power settings, and the relationship at low power settings is not well-understood.
Therefore, caution must be extended in interpolating or extrapolating fuel burn indices at low power
settings (such as near ground idle). In order to overcome these challenges, we adopt a data-driven
approach to estimating the fuel burn of surface trajectories, using Flight Data Recorder (FDR) archives.

1.2 FDR Database

The Flight Data Recorder (FDR) is a device onboard commercial aircraft that stores the history of
several parameters such as aircraft position, velocity, fuel flow rate, ambient and engine temperature,
and so on. FDR archives from over 2300 flights belonging to an international airline (that has since been
acquired by another major international airline) were used for the purposes of modeling and validation
in this study. The dataset included flights originating from the US, Europe, Asia and Africa. Aircraft
types included in the dataset were the Airbus A320 family (A319, A320, A321), the A330 family (with
Rolls Royce and General Electric engines) and the A340, the Avro RJ85 and Boeing’s B757, B767 and
B777. A full list of aircraft and engine types, along with their Maximum Takeoff Weight (MTOW), is
shown in Table 1.1.

A total of 105 parameters were available in the dataset, of which the ones of primary interest to
us were the fuel flow rate, throttle setting, velocity, position (latitude/longitude), ambient temperature,
thrust and engine fan speed (N1). It is believed that some of these quantities, such as the thrust, were
derived estimates and not actual measurements.
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Chapter 2

Data Analysis Algorithms

2.1 Preprocessing

Raw data was run through multiple preprocessing algorithms for the purposes of analysis. These steps
included sorting of flights, removal of the airborne phase, filtering of the position-derived estimates of
velocity, and the extraction of events of interest such as stops and turns. The velocity as derived from
position required filtering due to the relatively low update rate of aircraft position during taxi-out (Table
2.1).

Finally, the taxi-out phase was separated by extracting the portion of the surface trajectory after
pushback from the gate and before commencement of the takeoff roll. Identification of pushback was
carried out using a combination of fuel-flow rate and speed conditions, and the start of the takeoff roll
was determined using a speed cut-off.

2.2 Taxi-out Process Characterization

2.2.1 Baseline Fuel Consumption

The ICAO procedure for estimation of taxi-out fuel burn assumes that taxi operations occur entirely at
idle thrust (the 7% power setting), and thus proposes the use of constant rated idle thrust fuel flow for
all calculations [2]. It defines the fuel burn index to be the fuel flow rate per engine at idle thrust. The
version of the ICAO database used for this study was from December 2010 [9]. To compare these numbers
to actual data, we calculated the average fuel flow rate for each available aircraft type in the dataset,
by dividing the taxi-out fuel burn by the taxi-out time and the number of engines, and averaging this
over all aircraft of a given type. As seen from Figure 2.1, the ICAO fuel burn index is not necessarily a
reflection of the true per-engine fuel burn rate. The comparison shown in Figure 2.1 is in agreement with
the results from a previous study [5], where a comparison of total average fuel flow rate is available. It
can be seen that in several cases, the ICAO method produces an overestimate of fuel burn. This result is
important from the point of view of estimates that drive environmental policy, such as the quantification
of total CO2 emissions at airports.

Table 2.1: Dataset update rates
Flight Phase Update Rate
Taxi 5 sec
Takeoff/Landing Roll 1 sec
Climb/Descent 10 sec
Cruise 150 sec
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Figure 2.1: Comparison of fuel burn index as calculated from FDR data and that obtained from ICAO.
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Figure 2.2: Plot of heading history for one flight

2.2.2 Events of Interest during Taxi-out

The surface trajectory is composed of periods of constant velocity taxi in a straight line, interspersed by
events such as stops and turns. The results of any estimation procedure that incorporates these events
will likely be influenced by their exact definitions. Therefore, the algorithms used to detect the number
of turns and stops during taxi-out, as used in this study, are discussed below.

Detection of number of turns during taxi-out

The number of turns made by an aircraft taxiing on the ground was expected to affect the fuel burn. One
reason is because the aircraft may slow down during its turn and have to speed up again after completing
it, and the other reason might be the use of differential thrust for turning. A ‘turn’ was defined to be
a heading change of at least 30 degrees, that was held over at least 30 seconds. Figure 2.2 shows the
heading variation during taxi-out for a sample flight. Each time instant was tagged by a binary flag
representing detection, or otherwise, of a turn in progress. Each set of continuous non-zero flags was
counted as one turn. The results from automatic detection were compared with visual inspection across
several flights and were found to correctly count the number of turns in almost all cases.
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Detection of number of stops during taxi-out

The number of stops made by aircraft was also expected to be a determinant of fuel burn, because of
the throttle adjustments necessary during the stopping and restarting process. Usually, an aircraft has
to stop during a handoff from one ground controller to another, because there is passing traffic on an
intersecting taxiway/runway, or in the runway departure queue. There are two ways in which an aircraft
can be brought to a halt: one way is to apply the brakes while reducing the thrust to idle, and the other
is to apply the brakes while keeping the thrust constant. There are fuel burn tradeoffs involved with
both methods. Reduction of the thrust while stopping reduces fuel consumption if the duration of the
stop is long. However, thrust has to be increased to start taxiing again (breakaway power), and this
is accompanied by a spike in the fuel consumption. Also, aircraft engines exhibit some time lag while
spooling up, leading to slow response times when starting from a standstill. On the other hand, if the
aircraft is stopped using only the brakes, fuel flow rate remains high, and can lead to significantly higher
total fuel burn if the stop is prolonged. However, there is a performance benefit on restart as previously
outlined. Consequently, pilots tend to use one of the two methods depending on personal preference
and operational considerations. In this study, an aircraft was defined to have stopped during its taxi
phase if its velocity dropped and stayed below a stop threshold of 2.25 m/s for at least 20 seconds, and
then subsequently increased above a start threshold of 6.25 m/s. The results from the stop detection
algorithm are shown in Figures 2.3 and 2.4 for two sample cases. Note that event logging takes place
only if the aircraft has already taxiing, which means that the initial start is not counted.
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Chapter 3

Estimation of Taxi-out Fuel

Having extracted the different taxi phases, we now investigate two possible linear regression models
that estimate the fuel burn (normalized by absolute temperature) as a function of different independent
variables.

3.1 Model 1: Taxi time, number of stops and number of turns
as independent variables

3.1.1 Formulation: Model 1

According to our initial hypothesis, total fuel burn on the ground would be a function of the taxi time,
number of stops and number of turns made by the aircraft. It is easy to see that taxi time would be a
determinant of fuel burn. In addition, given that the engines run at constant thrust for a large part of the
taxi-out process, we would expect the effect of taxi time on fuel burn to be linear. Stops were expected to
affect fuel burn because of the breakaway thrust required to start moving once an aircraft was stopped.
This should add a relatively fixed fuel penalty per stop, resulting in a linear effect of the number of stops
on fuel burn. Similarly, turns would require some adjustment of the power setting, but assuming that
the adjustment would be similar for each turn, this effect should also be approximately linear. Finally,
we know from available literature[10, 11] that engine sfc (specific fuel consumption) is proportional to
the square root of ambient temperature. Therefore, we normalized for the effect of ambient temperature
experienced by each flight, by formulating the regression as follows:

f√
Tamb

= a1 + b1 · t+ c1 · ns + d1 · nt (3.1)

Here, f is the total fuel consumed, t is the total taxi time, ns is the number of stops, and nt is the
number of turns made by the aircraft during taxi. a1, b1, c1 and d1 are the parameters to be estimated.
The coefficient b1 will be the baseline fuel consumption rate of that aircraft type during taxi. Note that
actual variation of temperature in the available data was only 17 K, which would not significantly impact
the regression results, even if we had not normalized the fuel burn by ambient temperature.

3.1.2 Results: Model 1

Table 3.1 lists the results of the parameter estimates calculated using least-squares regression. The
estimates are accompanied by corresponding statistical p-values. A threshold of 0.1 was assumed for
inferring statistical significance of each variable, i.e., variables with p-values below 0.1 are assumed to
be statistically significant. The aircraft types for which one or more of the variables are statistically
insignificant have been highlighted. Note that some outliers with unusually long taxi times were ignored
in the estimation procedure. There are no more than one or two of such points for any single type of
aircraft, constituting approximately 0.5% of all data. Note also that the parameters a1, c1 and d1 have
units of kg, while parameter b1 has units of kg/s. In fact, b1 should correspond to the fuel burn index

7



Table 3.1: Regression Results: Number of Stops and Turns

Constant Taxi Time # Stops # Turns Corr. Std. Dev.
Type a1 pa1 b1 pb1 c1 pc1 d1 pd1 ρ σ

(kg) (kg/s) (kg) (kg) (kg)
A319 -0.01 0.94 0.0124 0 -0.01 0.82 -0.02 0.48 0.99 7.82
A320 -0.26 0.05 0.0125 0 0.1 0.1 -0.02 0.31 0.99 9.8
A321 -0.19 0.19 0.0133 0 0.15 0 -0.05 0.03 0.99 7.34

A330-202 0.98 0 0.0192 0 0.94 0 -0.02 0.8 0.97 19.29
A330-243 -1.6 0 0.0265 0 0.24 0 0.09 0.01 0.99 12.15
A340-500 -1.56 0 0.0371 0 0.25 0.27 0.07 0.46 0.99 38.31

ARJ85 -0.28 0 0.0103 0 0.08 0.02 0.01 0.28 0.99 4.67
B757 0.24 0.18 0.0175 0 0.19 0.06 -0.1 0.02 0.98 9.58
B767 -0.22 0.48 0.0178 0 0.73 0 0.15 0.01 0.95 23.32
B777 -1.71 0 0.0338 0 0.19 0 -0.01 0.8 .99 11.54

for the aircraft type, multiplied by the number of engines. A comparison with Figure 2.1 shows that this
is indeed the case. Some important points to note, regarding Table 3.1, are listed below:

• p-values for the parameter b1 are uniformly zero, which means that taxi time is certainly a deter-
minant of fuel consumption. This was, of course, expected. It also contributes the most to total
fuel consumed.

• The statistical significance of the number of stops depends on the aircraft type. Some types show
a definite relationship, while others show almost none.

• The coefficients of the number of turns are very small, even in comparison with the coefficients of
number of stops. Given the dominance of taxi time in the regression, the effect of turns on fuel
burn can be said to be negligible.

• The statistical significance of the number of turns also depends on aircraft type. In addition, the
significance of stops and turns does not appear to be related.

• ρ is the correlation coefficient between the estimated fuel burn and the actual fuel burn. These
values are uniformly high.

• σ is the corresponding standard deviation of the residuals. Note that the reason that some of these
values are larger than others is because the aircraft themselves are large (Table 1.1), which means
that the total fuel consumed is more as well. The ratio of σ to average total fuel consumed is more
or less the same for all types of aircraft.

3.1.3 Variability in statistical significance of stops and turns

The differences in p-values across aircraft types led us to investigate the stopping process in more detail.
As seen from Figures 3.1 and 3.2, a start from having stopped was accompanied by a spike in fuel
consumption in some cases, and by none in other cases. This variation was noticed between flights of the
same aircraft type, across different aircraft types, and sometimes even within two different stop events
on the same flight. No common characteristic was found to explain this difference across aircraft types.
Possible factors considered were aircraft size, engine manufacturers, locations of operating airports,
aircraft weight class and period of initial introduction of the aircraft. However, when considering the
thrust setting profile, we find that acceleration events after stops that were not accompanied by an
increase in the fuel burn rate were not accompanied by a change in thrust setting either. Therefore,
we conclude that the difference in results was due to differences in pilot behavior (whether reduction of
thrust when stopping was more or less prevalent for the given aircraft type). A similar argument would
hold true for thrust characterization during turns. Since our aim was to model the effect of stops as
executed by the average pilot, we chose not to investigate the specific reasons for this variation.

8



0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

Type of aircraft: A320 (sample flight)
Parameter History

V
el

oc
ity

 (
m

/s
)

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

F
ue

l f
lo

w
 r

at
e 

(k
g/

s)

0 100 200 300 400 500 600 700
0

10

20

30

T
hr

ot
tle

 s
et

tin
g 

(%
)

Time from start of flight (sec)

 

 

Right Engine

Left Engine

Figure 3.1: Simultaneous plot of velocity, fuel consumption rate and engine thrust settings for an Airbus
A320: Increase in velocity (after stops) accompanied by spikes in fuel flow rate
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Figure 3.2: Simultaneous plot of velocity, fuel consumption rate and engine thrust settings for an Airbus
319: No change in fuel flow rate during acceleration from some stop events.

3.2 Model 2: Taxi time and number of acceleration events as
independent variables

3.2.1 Formulation: Model 2

The model discussed previously produced good estimates of the total fuel burn, as seen from the values of
the standard deviation of residuals. However, the differences in statistical significance of the explanatory
variables suggested that other factors might be more important determinants of fuel burn. We therefore
decided to drop the number of stops and number of turns from the regression, and instead add the
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Table 3.2: Regression Results: Acceleration events

Constant Taxi Time # Acc. Events Corr. Std. Dev.
Type a2 pa2 b2 pb2 c2 pc2 ρ σ

(kg) (kg/s) (kg) (kg)
A319 0.0811 0.31 0.0122 0.0 0.0965 0.0004 0.9938 6.85
A320 -0.0896 0.24 0.0124 0.0 0.1174 0.0000 0.9924 8.90
A321 0.0942 0.37 0.0129 0.0 0.0832 0.0184 0.9858 8.14

A330-202 0.2904 0.02 0.0217 0.0 0.3809 0.0001 0.9816 14.44
A330-243 -0.0903 0.25 0.0265 0.0 0.1007 0.0312 0.9965 9.12
A340-500 0.3626 0.10 0.0375 0.0 0.3984 0.0137 0.9918 30.59
ARJ85 0.0973 0.00 0.0102 0.0 0.0366 0.0203 0.9928 4.12
B757 0.2133 0.03 0.0173 0.0 0.0699 0.2007 0.9861 8.83
B767 0.1584 0.20 0.0202 0.0 0.1929 0.0012 0.9795 16.50
B777 -0.1223 0.02 0.0335 0.0 0.1385 0.0093 0.9985 8.75

number of acceleration events as an independent variable. The logic behind this decision was that fuel
flow rates were seen to increase for aggressive starts from standstill, as opposed to gradual ones. An
acceleration event was logged if the aircraft accelerated at more than 1.5 m/s2 for at least 5 seconds. In
Equation (3.2), na is the number of acceleration events. The other variables have the same definition as
before.

f√
Tamb

= a2 + b2 · t+ c2 · na (3.2)

3.2.2 Results: Model 2

The results from parameter estimation for Model 2 have been listed in Table 3.2. It is seen that both
independent variables are statistically significant for all aircraft types but one. Even for the Boeing 757,
the p-value for the number of acceleration events is not very large. Comparing the results with those
from Table 3.1, we can also see that the correlation coefficients are higher and the standard deviation of
residuals is consistently lower for Model 2. Figures (3.3)-(3.4) compare the fuel burn estimates to actual
burn for two aircraft types. It is clear that the prediction accuracy of Model 2 is very good. Figure 3.5
shows a scatter plot of the residuals for the Boeing 777. The whiteness of these residuals was tested by
calculating the autocorrelation of the residuals vector within each aircraft type[12, 13]. A sample plot of
the result is shown in Figure 3.6. It is quite clear that the residuals are white, which means that optimal
use of the information in the dataset has been made.

3.3 Using Model 2 to Estimate Fuel Burn

It was indicated in the introductory chapter that the fuel burn model developed using FDR data can
be used to estimate the fuel burn associated with flight tracks associated from surface surveillance data.
Our assumption is that the coefficients estimated for an aircraft and engine type are valid for other
similar aircraft/engine combinations which were not available in the FDR data. Figure 3.7 shows a track
obtained from the Airport Surface Detection Equipment, Model-X (ASDE-X) equipment at Boston Logan
International Airport. The aircraft type was the Boeing 767-300. Figure 3.8 shows the corresponding
velocity-time chart. The methodology from Model 2 (Section 3.2) when applied here, indicates that the
total taxi time was 840 seconds, and that the flight experienced two ‘acceleration events’. From historical
weather data [14], the mean ambient temperature at Boston Logan on the day of this flight (Nov 24,
2010) was 279K. Looking up the fuel burn coefficients for the B767 from Table 3.2, the taxi-out fuel burn
for this flight may be estimated from Equation 3.2 as follows:

f√
297

= 0.1584 + 0.0202 · 840 + 0.1929 · 2 =⇒ f = 292.5 kg
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Figure 3.7: Sample ASDE-X flight track from Nov 24, 2010
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Chapter 4

Conclusion

4.1 Discussion of results

The two regression models provide us with several interesting results. The first one is that the total taxi
time is by far the main driver of fuel consumption. In other words, an accurate estimate of the fuel burn
index along with the taxi time can provide a reasonably accurate estimate of the fuel consumption of a
surface trajectory. The analysis also shows that for some of the aircraft types studied, the ICAO engine
databank overestimates the fuel burn indices.

The FDR analysis also suggests that contrary to assumptions made in prior studies [7], stops or
turns by themselves may not necessarily result in an increase in fuel burn rate, and therefore do not
contribute much information beyond the total taxi time. We believe that this can be explained by the
variability in pilot behavior (since there may not be significant thrust changes accompanying stops or
turns), the inherent variability in the thrust settings during taxi (which may be significantly different
from the ICAO 7% assumption), and the significant dominance of the total taxi time as the driver of taxi
fuel burn. However, acceleration events (defined as the aircraft accelerating at more than 1.5 m/s2 for
at least 5 seconds) have a small but statistically significant impact on the taxi fuel burn. The inclusion
of these effects will provide a more accurate estimate of surface fuel consumption, and will also need to
be considered in surface traffic optimization.

4.2 Future Work

The procedure detailed in this paper can be used to accurately quantify the total fuel burn and CO2

impact of surface operations at airports. Similar procedures may also be extended to estimate other
emission impacts such as NOx and unburned Hydrocarbons, which have a nonlinear dependence on fuel
flow rates. We plan to incorporate this model into a tool that produces suggestions for taxi-out paths and
gate-pushback times for aircraft. The tool will make use of an optimization framework to minimize the
fuel burn and emissions impact of departure operations at airports. Currently, other modules required
for building this tool, such as taxi-out time estimation and the formulation of the optimization problem,
are in different stages of development.
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