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ABSTRACT 

Efficient modeling of airport pollutants in the vicinity of airport is essential to study the impact on local air 

quality and to answer policy-related and health-based questions. Considering the knowledge gap that needs 

to be addressed regarding airport-related hazardous air pollutants (HAPs) and their air quality impacts, we 

performed a detailed source-based modeling of HAPs from T.F. Green airport in Providence, Rhode Island, 

and evaluated the model outputs against field-study data from monitors in and around the airport. The 

overall airport HAPs mean concentrations appear to be 40% lesser than urban sites except for 

formaldehyde. In terms of model performance, we observed Normalized Mean Error of 30 – 60% for all 

considered aviation prioritized HAPs in our simulations. Comparison between CMAQ and other local-scale 

dispersion and statistical models provided enhanced understanding of characterizing spatial-temporal 

patterns of HAPs near airport. We observed that National Air Toxics Assessment (NATA) census tract 

local scale modeling and CMAQ was unable to predict the highly emitted pollutant like formaldehyde in 

the vicinity of the airport, which can be improved by better emission characterization. In addition, many 

highly reactive pollutants are temporally variable and NATA provides annual concentrations, so we suggest 

that photochemical models such as CMAQ can provide better temporal predictions. Finally we 

demonstrated that Bayesian Maximum Entropy (BME) technique with available observed and modeled 

data as input can better predict concentrations at airport locations that lack monitoring data.	  



	   3	  

INTRODUCTION 

Aviation has experienced proliferative growth in past few decades. Commercial aviation 

operations are rapidly increasing worldwide, with an operation growth rate of 61 percent, 40 percent and 22 

percent in large, medium and small hub airports (FAA, 2011). The average annual growth rate is predicted 

to increase around 4.6 percent from 2010 to 2030 (FAA, 2010). FAA Aerospace 2012 forecast (FAA, 

2012) also showed annual increase of 2.6 % and 2.9 % in system-enplanements from 2016-2032 for both 

baseline and optimistic cases respectively. These quantitative projections clearly indicate substantial 

aviation growth in past and future. This growth implicates potential increase in pollutants such as Nitrogen 

oxides (NOx), Sulphur oxides (SOx), Particulate matter (PM), Volatile Organic Compounds (VOC) and 

some other hazardous air pollutants both at ground level (Idling, Taxing and Landing -Take off (LTO)), 

and upper atmosphere (cruising > 90% of flight time). These aviation emissions could impact both air 

quality and human health locally and globally. Particularly during LTO conditions, these emissions vary 

with different aircraft thrust levels and emit various harmful pollutants at idling and taxiing condition that 

could reflect immediate local-scale impacts. There is thus a need to study impact of aviation emissions on 

local air quality particularly in the vicinity of an airport as first step to further assess their impacts on 

environment and human health. 

MOTIVATION AND BACKGROUND 

Among airport related air-quality studies, till-date most of them focused mainly on NOx (Carslaw 

et al., 2006; Wood et al., 2008; Timko et al., 2010), PM2.5 (Mazaheri et al., 2009) and CO due to their 

relatively higher contribution to the overall airport-related emissions (Schürmann et al., 2007). Prior air-

quality modeling of airport emissions studies (Arunachalam et al., 2011; Woody et al., 2011; Unal et al., 

2005) quantified in detail the contribution of present and future aviation related PM2.5 and major airport 

emissions modeling at regional scale using chemical transport model such as CMAQ. Arunachalam et al., 

2011 also discussed and quantified the effect of aviation related PM2.5 on population exposure at different 

model resolutions (36k, 12k CMAQ domain) near major airports. This shows that significant research and 

studies were performed on modeling and quantification of impacts from major pollutants such as PM2.5, 

NOx, O3 near airports. However, assessment of less emitted pollutants such as HAPs has not been explicitly 

accounted for near airports. By definition, HAPs are pollutants that are known or suspected to cause serious 
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health effects specifically categorized from other air pollutants based on 1990 Clean Air Act (CAA). To our 

knowledge, limited studies have been performed with detailed model-based characterization of air quality 

due to HAP emissions from airports. Also a recent report (ACRP, 2008) clearly mentioned that inadequate 

attention was given to hazardous air pollutants (HAPs) modeling and gaps are associated with their 

scientific understanding, which further provides motivation for our investigation here. 

Though modeling of airport related HAPs still involves uncertainties, efforts have been increased 

in past few years to increase the knowledge of HAPs emissions near airport. Certain monitoring and health 

effect studies quantified the impact of airport related HAPs. Levy et al., 2008 discussed the health effects 

caused from air toxics locally and mentioned their serious health effects inspite of relative low quantitative 

percentages in total aviation emissions. Prior aviation emission and monitoring studies (Herndon et al., 

2006; Anderson et al., 2006) investigated emissions of hydrocarbons (HC) from commercial aircraft during 

airport operations and quantified the emissions of formaldehyde, acetaldehyde, benzene, ethylene, propene 

and butenes + acrolein to be high during idle and taxiway conditions than take-off and approach. Spicer et 

al., 1994 also reported that these pollutants make up about 75 percent or more of the volatile organic 

compound (VOC) emissions that are being detected in the aircraft exhaust gas. APEX (APEX, 2009) and 

EXCAVATE measurement studies illustrated HAPs emissions for different aircrafts at ambient conditions 

and provided recent HAPs speciation profile for VOCs. In addition, according to Airport System 

Performance Metrics (ASPM) database, the average taxi time at mid- sized T.F.Green airport (PVD) was 

reported as 16.5 min, which is significant amount of time to emit harmful HAPs. Thus while HAPs are a 

subset of the various pollutants from aircraft activities at an airport, limited modeling efforts have been 

conducted to date to characterize their impacts. The limited HAPs modeling near airports could be due to 

sparse HAPs monitoring data near airports to validate the model predictions, and the uncertainty involved 

with HAPs specification in emission inventories. Despite these limitations, there is a necessity to develop a 

model to predict HAPs concentrations at airport locations that lack monitoring data. Also air toxics health 

risk assessments and expansion decisions by airport authorities based on predictions are still major 

concerns and demands investigation of models ability to predict airport-related HAPs. Therefore this paper 

aims to address the knowledge gap associated in the aviation related HAPs, by studying the assessment of 

HAPs near mid-sized airport using Chemistry Transport model like CMAQ at fine resolution (4km). 
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Further we analyzed the spatial, temporal variability of airport-related HAPs, evaluated model 

performance. Also compared CMAQ results from this study with another set of results from a national-

scale assessment that relied on a local-scale dispersion model. Finally an alternate approach that relied on a 

statistical model was used to compare and contrast the various approaches in predicting and understanding 

HAPs contribution near a mid-sized airport. 

STUDY FOCUS 

 In this study, we focused mainly on 8 major HAPs such as formaldehyde, acetaldehyde, 1-3 

butadiene, acrolein, benzene, toluene, xylene and naphthalene that are considered as aviation health-risk 

prioritized pollutants (Levy et al., 2008). Among these based on toxicity, 2008 ACRP report ranked 

acrolein, formaldehyde, 1,3-butadiene, naphthalene and benzene as five major airport related HAPs. This 

study considered data from three different approaches to assess air quality impacts of HAPs from 

Providence T.F. Green (PVD) airport in Rhode Island for the year 2005. 

1. Detailed measurements of HAPs conducted by the Rhode Island Department of 

Environmental Management (RIDEM) in and around the airport, and standard measurements 

at EPA’s Air Quality sites (AQS), 

2. Explicit source-based modeling using the Community Multi-scale Air Quality (CMAQ) 

model, and  

3. National Air Toxics Assessment (NATA) performed by the EPA for 2005. This is the first 

study to take advantage of the recent 2005 NATA annual modeling data obtained from 

updated emissions inventory that considered detailed airport emissions. 

Availability of observational data at urban, rural (AQS data) and airport (RIDEM) spatial locations 

enabled us to compare near-airport site HAPs concentrations with other urban and rural sites in the vicinity. 

We believe that above mentioned limitations for HAPs modeling near airport are minimized by considering 

RIDEM study observational data to evaluate the model predictions, highly resolved model for predictions 

and FAA-EPA generated new speciation profiles to characterize HAPs from VOC in the model input 

emissions. We also performed comparison of CMAQ with another local-scale dispersion model (used in 

NATA) and predictions from Bayesian Maximum Entropy (BME) (Christakos et al., 1990, Christakos et 

al., 2001) to study their ability in predicting HAPs at local scales. BME is a spatio-temporal interpolation 
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statistical technique used in the modeling community to predict concentrations at locations that lack 

monitoring data and discussed in detail further in the paper. Based on this enhanced knowledge of 

temporal, spatial variation and chemistry of airport-related HAPs, airport regulatory authorities would 

benefit in taking decisions regarding potential future airport expansion activities and health risk associated 

with the HAPs in the vicinity of an airport. 

METHODOLOGY 

We used the National Emissions Inventory (NEI) for year 2005 to generate emissions for non-

aviation sources, and emissions for aviation sources at PVD were based on outputs from the Emission 

Dispersion Modeling System (EDMS) (FAA, EDMS; Baek et al., 2007). EDMS is an analytical tool and 

queuing/sequencing model that models movement of aircraft along the taxiways, runways and gates. It 

includes emissions from aircraft, auxiliary power units (APU), ground supporting equipment (GSE), 

ground access vehicles (GAV) and other stationary sources in the vicinity of airport (FAA, EDMS). These 

non-aviation and aviation emissions are processed using Sparse Matrix Operator Kernel Emissions 

(SMOKE) model to generate grid-based emissions and meteorology input data were based upon the 

Mesoscale Meteorological (MM5) model (Grell et al., 1994).  

 Community Multiscale Air Quality (CMAQ) v4.6 model (Byun and Ching, 1999) with extended 

air toxics chemistry to actual Carbon Bond core mechanism was used for model simulations. CMAQ 

simulations are conducted on the Northeast U.S at 4-km horizontal grid spacing with 100 x 100 horizontal 

grid cells and emissions upto 22 vertical layers (10000 ft). Two model simulation cases are performed: 1) 

basecase - all sources except airport emissions 2) senscase - airport emissions combined with basecase 

emissions. Hence, the difference between senscase and basecase accounts for the incremental contribution 

to air quality from the airport emissions.  

EMISSION ANALYSIS 

 On a national scale, the annual contribution of airport VOC emissions to the total anthropogenic 

emissions is about 0.02%. On a county scale (based on Kent county, PVD airport location) the annual 

contribution of airport VOC to the total non-highway VOC is about 5.4% and this value is subjected to 

change in a county with large airport. In our modeling domain, emissions of GSE (ground supporting 

equipment), GAV (ground auxiliary vehicles) are considered along with the aircraft emissions. But we 
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should note that majority of airport HAPs emissions come from aircraft, almost (>90%) occurs during 

idling and taxing stage. 

The Pie chart (figure 1) illustrates the percentage contributions of major HAPs to the annual total 

airport VOC emissions at PVD based on mass (kg) basis. Formaldehyde, acrolein, acetaldehyde appear to 

be the major contributors to the annual HAPs emissions that are mainly emitted from aircraft. It should be 

noted also that 1,3-butadiene, benzene majorly come from 

non-aircraft sources and more toxic than toluene, xylene. In 

general, formaldehyde and benzene are the key pollutants 

that contribute to the cancer-risks and acrolein contributes 

mainly to non-cancer risks (NATA 2005). 

Figure 1: Pie chart representing the percentage contribution from HAPs to annual airport VOC emissions 
 

The daily time series plots (Figure 2, included only two quarters plots for illustration) represent 

the domain total gridded airport emissions for CMAQ 4km domain obtained from SMOKE model. These 

plots help us to understand the individual HAP pollutants daily variation and the magnitude difference 

among airport HAPs species. Throughout the year, we observed same species order in terms of highly 

emitted to less emitted species. Formaldehyde was consistently highly emitted followed by xylene, toluene, 

acetaldehyde and other remaining species. We should note that though toluene, xylene are highly emitted, 

their toxicity levels are less according to EPA’s Integrated Risk Information system (IRIS database) when 

compared with other less emitted acrolein, 1,3-butadiene species. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Daily time series of emissions for all HAPs species for Apr-Jun (left) and Oct-Dec (right) 
  

0"

0.005"

0.01"

0.015"

0.02"

0.025"

0.03"

0.035"

0.04"

0.045"

0.05"

0.055"

0.06"

0.065"

0.07"

9/7" 9/27" 10/17" 11/6" 11/26" 12/16" 1/5"

to
ns
/d
ay
"

Month/Day"(year"2005)"

Airport"HAPs"emissions"(OctCDec)" FORMALDEHYDE"
ACETALDEHYDE"
BENZENE"
1,3"BUTADIENE"
XYLENE"
TOLUENE"
ACROLEIN"

36.7%&

13.6%&

6.6%&
2.3%&

27.7%&

3.4%&
2.4%& 1.1%&

Annual&emissions&for&PVD9&HAPs&

FORMALDEHYDE&

ACETALDEHYDE&

BENZENE&

TOLUENE&

ACROLEIN&

193BUTADIENE&

XYLENE&

NAPHTHALENE&

0"

0.005"

0.01"

0.015"

0.02"

0.025"

0.03"

0.035"

0.04"

0.045"

0.05"

3/21" 3/31" 4/10" 4/20" 4/30" 5/10" 5/20" 5/30" 6/9" 6/19" 6/29" 7/9"

to
n
s/
d
a
y
"

Month/Day"(year"2005)"

Airport"HAPs"emissions"(AprAJun)" FORMALDEHYDE"

ACETALDEHYDE"

BENZENE"

1,3ABUTADIENE"

XYLENE"

TOLUENE"

ACROLEIN"



	   8	  

There is no significant difference between winter and summer month’s emission values but one 

could observe an increase of 0.017 tons/day (37%) with comparison of highest day emission value of both 

seasons. The monitoring and measurement data studies (Timko et al., 2010) indicated that emission rates 

from aircraft are temperature dependent and relatively higher during low ambient temperatures. Recent 

report (ACRP, 2012) also found that the VOC emission indices for aircraft are twice in cold conditions than 

warm conditions.  But we did not observe any significant temperature dependency nature among emissions 

and this was also pointed out in the ACRP report (2008). Therefore this inability of not reflecting 

temperature dependency in the emission inventories can further introduce uncertainty in model predictions.  

RESULTS AND DISCUSSION 

Temporal and Spatial Analysis   
We studied the temporal and spatial variability of HAPs near the airport to illustrate how varied 

are the concentrations with change in time and space and compared the concentrations with observational 

values (from RIDEM and AQS) to study the model performance in capturing the variability. Figure 3 

represents the variability in airport-related HAPs concentrations (senscase minus basecase) by month and 

their contribution to the airport grid cell. The concentration levels are higher during winter months than 

summer months, that could be related to the incomplete combustion of fuel, which results in emissions of 

these harmful unburned hydrocarbons such as formaldehyde, acetaldehyde and some other HAPs species.  

	   
Figure 3: Monthly average airport concentrations (left) and their contribution for summer and winter months (right) in the 
airport grid cell. 
 

We also present percentage contributions (Figure 3, right) for two months to demonstrate the 

airport concentrations when compared with background sources. It is evident that formaldehyde and 

Species' Jan' July'

Formaldehyde' 7'%' '5'%'

Acetaldehyde' 3'%' 1.3'%'

Acrolein' 34'%' 49'%'

1,3?'Butadiene' 8.3'%' 20'%'

Benzene' 1.8'%' 3'%'

Naphthalene' 6'%' 15'%'

Toluene' 0.3'%' 0.7'%'

Xylene' 0.5'%' '1'%'



	   9	  

acetaldehyde contributions are 2% higher during January than July, whereas for remaining species the July 

month contributions appear to be higher than January. This could due be to the huge decrease among other 

sources concentrations from January to July and less decrease in the case of airport concentrations (could 

notice from bar plot that there is no significant difference from January to July in the case of these species) 

that made airport percentages to be relatively higher in July. We also want to point out that the airport 

contribution in the case of acrolein is relatively high in the airport grid cell.  

Spatial variability was studied by comparing modeled (senscase) and observational data at the 

available monitoring sites. Figure 4 illustrates the variation among different spatial locations for few 

species (included only Benzene, Toluene, Acetaldehyde & Formaldehyde to limit space). The urban site 

(Pawtucket, Providence) concentrations appear to be higher than the airport sites for all species except for 

formaldehyde where the airport site (Field view) shows higher concentrations. From figure 4, the model 

comparison with observed data also indicates the model performance in predicting spatial variability.  

	  Figure 4: Bar plots representing mean annual concentration of model and observational values at all the monitoring sites for 
certain HAPs species  
 

From Figure 4, one sees that the model underestimated the peak values, but was able to show the 

spatial variation among the sites by predicting higher concentrations at urban sites compared to airport 

sites. One other limitation involved with the model prediction is grid resolution, since all 3 airport sites 

(Fieldview, Firestation, Lydick) are located in same 4-km grid cell, CMAQ model predicts constant 
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concentration at all these sites. In this case, model was unable to account for the variability among the 

major airport sites, which may not cause significant uncertainty for certain species that do not exhibit large 

differences in concentrations between these 3 sites. But in the case of species such as formaldehyde that 

have larger magnitudes of emissions, not accounting the peak value and variability near runway site 

(Fieldview) may cause uncertainty in model prediction values. In such a situation, going to finer grid 

resolution (such as 1-km or less) might improve model predictions. 

Overall Model Evaluation   
In addition to the spatial comparison present in before section, we also provided overall model 

evaluation in this section. Since the model predictability varies with pollutant and spatial location. 

Therefore, in this section we presented overall Normalized Mean Error (NME) and Normalized Mean Bias 

(NMB) (Table 3) for each HAPs pollutant. And a scatter plot (Figure 5) that represents comparison of 

observed and predicted site-specific concentrations for each pollutant species (except for Naphthalene as 

observational data were not available). 

 

Table 3: Overall average normalized mean bias (NMB) and normalized mean error (NME) at all sites 
 
 From table 3, we can observe that the overall model error involved with all the pollutants except 

for acrolein is in between 36-60%, which is statistically acceptable quantitative range for normalized error 

in the air quality modeling community. But in the case of acrolein, the model has higher underprediction 

and we suspect this could be due to uncertainty in emissions, chemistry and observational data. Previous 

studies (Leucken et al., 2006) indicated that the underprediction of acrolein in CMAQ is mainly attributed 

to the emissions and observational data uncertainty. Seaman et al., 2006 mentioned acrolein sampling to be 

highly challenging due to the high degradation of acrolein and its derivatives. To address high 

underprediction of acrolein, further investigation of sampling detection limits and error involved in the 

HAPs%Species% Overall% Overall% Airport%Sites% AQS%Sites%

NMB(%)% NME(%)% NMB%(%)% NME%(%)% NMB(%)% NME(%)%

Benzene% 7.3% 52.7% 10.9% 51.1% 7.15% 51.2%

1,3/Butadiene% ?12.3% 59.8% /7.8% 55.2% /33.8% 53.7%

Toluene% ?10.5% 45.5% 4.82% 50.7% 26.9% 65.7%

Xylene% ?15.4% 52.8% /3.7% 48.7% 71.1% 13.4%

Formaldehyde% ?69.0% 69.0% /55.9% 56.1% /39.0% 45.8%

Acetaldehyde% ?8.8% 31.1% /4.37% 34.8% /32.6% 39.2%

Acrolein% ?91.6% 91.6% /92.4% 92.40% /91.7% 92%
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monitoring data are required, but that are outside the scope of this paper. From emission analysis, we also 

observed acrolein as second highly emitted air toxic from airports after formaldehyde. Thus, it is important 

to carry out HAPs monitoring studies at some of the major airports at an even finer spatial-temporal 

resolution (than performed by RIDEM) to address this modeling issue and for better characterization of 

acrolein emissions near airport.  

 Secondly, NMB in the case of formaldehyde is high when compared to the other pollutants. It is 

one of the highly reactive and mainly produced from secondary formation in the atmosphere. Prior studies 

(Leucken et al., 2006) clearly stated that 90% of formaldehyde (FORM) concentrations in the atmosphere 

occur due to secondary formation from VOC (volatile organic compound) and 10% occurs due to primary 

emission sources. Therefore in other words we can say that FORM concentration levels are dependent on 

VOC concentrations. So the uncertainty in VOC model predictions will definitely have an impact on 

secondary formed pollutants like FORM. We suspect that all the model uncertainties involved in VOC 

predictions could be one of the causes for high bias in FORM predictions (total concentrations). On the 

other hand, we observed the concentrations of FORM to be relatively high near runway site (Fieldview) 

and the models are usually unable to predict the peak concentrations since in the Eulerian grid model like 

CMAQ the concentrations are diluted in the considered grid volume.  

 

Figure 5: Secondary and Primary Formaldehyde Monthly Concentrations for senscase (left) and airport (right) 
 

In figure 5 we can observe that the major proportion of senscase concentrations are due to 

secondary formaldehyde and airport concentrations are mainly due to the primary formaldehyde. Therefore 

it is necessary to represent chemistry (secondary) accurately in order to predict the total concentrations and 

emissions (primary) to accurately predict the local sources like airport. 
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Figure 6: Scatter plots representing the site wise comparison of observed and modeled values. 

From figure 6 we can conclude that model performed better at all airport sites for all species except 

formaldehyde. We suspect that this could be due to emissions since we are unable to see significant 

differences between winter and summer months. Therefore we believe that with better characterization of 

emissions, model performance can be improved further. 

Comparison with NATA  
National Air Toxics Assessment (NATA, 2005) is a state-of–the-science screening tool developed 

by U.S EPA to evaluate the health risks involved with air toxics both at regional (state) and local (counties, 

census tract) level in U.S. EPA recently released latest NATA-2005 assessment based on same NEI 2005 

emissions inventory. NATA uses AERMOD dispersion model to predict the air toxics concentrations for 

primary pollutants and most of the health assessment studies rely on dispersion model predictions to 

emphasize the toxic exposure levels. The recent NATA-2005 assessment included about 20,000 airports in 

their emissions inventory. They also considered secondary formation of acetaldehyde, formaldehyde, 

acrolein and decay of 1,3-butadiene to acrolein from CMAQ modeling at 12-km resolution, which 

eliminated the major inability of not predicting secondary formed pollutants in dispersion models to certain 

extent. The latest NATA report also mentioned that pollutants like formaldehyde and Polycyclic Aromatic 

Hydrocarbons (PAHs) from aircraft were observed to increase in 2005 NATA assessment (NATA, 2005). 

So we compared NATA results with our CMAQ predictions in order to illustrate difference between local-

scale dispersion (AERMOD) and detailed chemical transport model (CMAQ)-based HAPs predictions. 

Since NATA is a screening level assessment tool that provides estimations at very finer scale (census tract), 
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comparison and evaluating with other detailed models (like CMAQ) gives us a better understanding of the 

model performance and future developments that need to be addressed. 

  In Figure 7, we compared NATA census tracts with CMAQ total concentrations (all sources, 

senscase) and observational data to understand model performance at local scales near the airport. In 

understanding this comparison, a key distinction to be noted is that NATA does not report data for the 

airport’s census tract block as no population are present in that particular census block. One can observe 

this clearly in figure 7, formaldehyde overlay plot (circled location, no small circle (NATA census tract) 

between stars (observed)).  

 

  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: CMAQ concentration spatial plots with overlay of NATA census tract data (circles) and Observational data (stars) 
for few species (remaining species are also analyzed, but not presented here). 
     

From Figure 7 we could observe that in the case of benzene, NATA census tract values in the 

vicinity of the airport are close to observational values while CMAQ concentrations are overestimated. But 
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in the case of 1,3-butadiene, NATA underestimated the values whereas CMAQ and observed values look 

comparable. The interesting observation in the case of formaldehyde is that both NATA and CMAQ 

underpredicted concentrations at airport sites, whereas NATA had good agreement with the observational 

data near urban sites. Therefore, we conclude that even highly resolved modeling such as at the census-tract 

scales reported by NATA was unable to predict the high concentration of formaldehyde near airport sites. 

Since this underprediction was not observed in acetaldehyde, this confirms it as a pollutant-specific 

uncertainty and can be improved with better emission characterization of formaldehyde. But overall NATA 

and CMAQ had good agreement with the observational data for other pollutants. NATA was able to predict 

the local scale values and CMAQ was able to capture the spatial trend.  

Comparison of NATA airport and CMAQ airport concentrations: As this paper main focus is to study 

airport-based concentrations, we envisioned to compare HAPs concentrations due to airport emissions in 

CMAQ versus those from NATA. However, in NATA, airport concentrations were not reported separately, 

and instead combined with other non-road sources and collectively reported as non-road concentrations. 

Since there is no straightforward way to calculate the airport concentrations from NATA, we decided to 

calculate percent contribution of airport emissions in non–road NEI emissions and apply these numbers to 

NATA non-road concentrations in order to obtain NATA airport concentrations at county level. This 

approach might not give accurate values but provide us with approximate airport concentrations in non-

road sector as reported by NATA.  

	  	  

Figure 8: NATA and CMAQ Kent county total concentrations (all sources, right) and airport concentrations (left) of Kent 
county (where PVD airport is located) 
 

In figure 8 (right) we compared airport concentrations of NATA and CMAQ to see the variation in 

the model predictions but we could not find any specific trend in their predictions. The differences 

0.0055$

0.0020$

0.0009$

0.0008$

0.0018$

0.0002$

0.0007$

0.0009$

0.0076$

0.0010$

0.0001$

0.0002$

0.0016$

0.00002$

0.0011$

0.0015$

0$ 0.001$ 0.002$ 0.003$ 0.004$ 0.005$ 0.006$ 0.007$ 0.008$

Formaldehyde$

Acetaldehyde$

Acrolein$

1,3=Butadiene$

Benzene$

Naphthalene$

Xylene$

Toluene$

ConcentraFons$(ug/m3)$

Airport$ConcentraFons,$Kent$County$(PVD,RI)$

NATA$airport$

CMAQ$airport$

0.88$

1.07$

0.02$

0.76$

0.57$

0.02$

0.04$

1.37$

1.39$

1.33$

0.04$

0.04$

0.53$

0.04$

0.65$

1.20$

0$ 0.2$ 0.4$ 0.6$ 0.8$ 1$ 1.2$ 1.4$ 1.6$

Formaldehyde$

Acetaldehyde$

Acrolein$

1,3=Butadiene$

Benzene$

Naphthalene$

Xylene$

Toluene$

ConcentraFon$(ug/m3)$

Total$conc,$Kent$County$(CMAQ$vs$NATA)$

NATA$

CMAQ$



	   15	  

observed in total concentrations of two model values (figure 8, left) are reflected in the airport 

concentrations. The major differences appear in the case of acrolein, 1-3 butadiene where CMAQ 

concentrations are higher than NATA. But since some of the highly reactive and secondary formed HAPs 

pollutants have high temporal variability relying on annual concentrations reported by NATA may not be 

beneficial in all cases, therefore CMAQ which takes into account detailed photochemistry gives us better 

predictions. 

Comparison with BME 
 When there is a dearth of monitoring data over a study region, one relies on modeling approaches 

to obtain increased spatial coverage for characterizing air quality (Eberly et al., 2004; Wong et al., 2004). 

Linear Interpolation, Kriging, Bayesian Maximum Entropy (BME) are some of the statistical model 

techniques commonly employed to predict concentrations at locations with no monitoring data. As 

mentioned before most of the airports are deficit of the monitoring data. Hence we made efforts to study the 

performance of the statistical model near airport region. BME is extensively used in many epidemiology 

health assessment studies and air quality studies to predict background concentrations (Akita et al., 2012). 

It is a spatiotemporal epistemic knowledge-processing framework that can capture both spatial and 

temporal trends (Christakos et al., 1990, Christakos et al., 2001). It can also integrate nonlinear and non-

gaussian knowledge unlike other interpolation techniques (Audrey et al., 2011). BME uses the available 

observational data and integrates modeled data based on model performance that makes the integration 

robust. Here we account only on the application of BME, to get detailed theoretical knowledge readers are 

recommended to refer some other resources (Christakos et al., 1990, Christakos et al., 2001). Having said 

that, in this section we considered observational data set (RIDEM, AQS) and combined modeled (CMAQ)-

observed data set as inputs to BME tool to study if the predictions can be improved in case of highly 

emitted reactive pollutants like formaldehyde. 

 We first considered the complete CMAQ domain and provided the available formaldehyde 

observational data in the domain (Figure 9, left) as input to BME and the output was compared with 

CMAQ model predictions (Figure 9, right). The CMAQ predicted spatial concentration plot with an 

overlay of the BME estimates (values are estimated in the domain present on the left) indicates that at 

certain locations other than the observational data locations BME overestimates than CMAQ and the error 
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variance is observed to be higher at these locations. Therefore BME is exaggerating the variability away 

from the monitoring locations and predicting some higher concentrations even in remote places. So in order 

to reduce this shortcoming, techniques are developed in prior studies (Audrey et al., 2011) to include the 

model data along with observation to account for the chemistry and transport of pollutants. Furthermore, 

due to availability of sufficient observational data near PVD airport (Figure 9), BME shows comparable 

values as CMAQ due to the ability of BME to consider some of the physical, spatial, temporal terms in the 

calculation. 

  

Figure 9: BME spatial mean trend and location of considered observational data (left) and BME estimates overlay on CMAQ 
concentrations for winter day (right). 
 

Since the complete 4k CMAQ modeling domain did not provide us with more details of BME 

predictions near airport, thus we focused on PVD airport region to see how predictions are improved with 

observed data and combined modeled-observed data. Figure 10 represents the PVD region in Rhode Island 

state and the observed sites (airport and urban) present in the region.  

 

 

 

 

 

 

 

 

Figure 10: PVD airport region (colored part, left) and the location of the observed data sites in that region (right)  

!
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Figure 11: BME estimates obtained by using observational data as input (left) and model combined with observational data as 
input (right)	  
 

BME estimates are calculated for observed and modeled values in this region. BME mean estimate 

(Figure 11) for the two cases (observed, modeled+observed), we see that we are unable to predict some of 

the spatial variation with only observed case, whereas predictions other than at monitoring sites are over 

estimated. But in the case of modeled+observed, we could observe that BME is able to predict the spatial 

variation  (Figure 11) even at other non-monitoring locations.  Hence, we feel that considering both 

observed and monitoring improves the predictions at locations that lack monitoring data.	  

CONCLUSIONS 

In this study, we performed observation and model-based characterization of HAPs near PVD, a mid-sized 

airport and investigated the performance of various types of models and ways to improve the predictions. 

This HAPs modeling knowledge near airport can have further implications on the modification of the 

emissions inventory, more monitoring data near the airports and finer scale modeling approach. Following 

are some of the major conclusions: 

1) Variability: We studied model based temporal and spatial variability of HAPs whose results look 

comparable with observational data and earlier emission campaign studies. Temporal variability indicated 

that the concentrations in the winter months are slightly higher than the summer months. There is an 

absolute difference of 0.04 ug/m3 (relative percentage - 40%) between winter and summer month 

concentrations in the case of highly emitted pollutant like formaldehyde and lesser difference in remaining 

species. Our model results indicated airport contribution in the airport grid cell could vary from 7 % in the 

case of formaldehyde to 34 % in the case of acrolein. Comparing the mean concentration for both modeled 

and observed concentrations at different spatially located sites, our spatial analysis indicated that the urban 
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sites (Pawtucket, Providence) appear to have 40 % higher concentrations than airport sites (Field view, Fire 

station). Except for formaldehyde, we observed 60 % higher concentrations near runway site (Field view) 

than urban sites clearly indicating pollution from local source like airport.  

2) Model Performance: CMAQ model was able to predict the general spatial and temporal trend but could 

not capture the peak formaldehyde value near runway site and greatly underpredicted acrolein at all sites. 

The high underprediction of acrolein observed in our modeling studies is similar to the previous studies 

(Leucken et al., 2006) findings even after considering fine-scale model resolution and highly resolved 

emissions near the airport in our model simulations. Therefore this issue of sampling detection limits and 

error involved with monitoring data needs further investigation. Overall model error for all HAPs species 

considered except for acrolein is within the statistically acceptable Normalized Mean Error range of 36 – 

60 %. We also illustrated the need to represent accurately both chemistry to predict secondary contribution 

and emissions to predict primary contribution. The model evaluation results are based on the sparse dataset 

available during the simulation period with limited spatial and temporal variability. Hence these model 

trends and values are subjected to change with change in the size of the airport, location and background 

concentrations.  

3) Model Comparison: We also observed that census tract recent 2005 NATA total model values are 

comparable with the CMAQ total concentrations (senscase). Both model values are in good agreement with 

observational data except for pollutants like formaldehyde, where the underestimation still exists. In the 

case of airport concentrations comparison based on airport contributions to non-road NEI emissions 

(though we approximated NATA airport concentrations from non-road annual concentrations), we 

observed significant difference between NATA and CMAQ.   

We implemented BME technique on observed and modeled data to illustrate that spatio-temporal 

statistical model can be used to predict concentrations in the vicinity of the airport and near certain 

locations that lack monitoring data. Unlike normal kriging techniques, consideration of both observed and 

modeled data as input to BME accounts for peak values in observed data and variability in modeling data to 

predict concentrations.  
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FUTURE WORK  

In future, we will perform analysis on other major pollutants to study the impact of highly reactive 

formaldehyde on other pollutants such as O3, PM2.5 near the airport due to photochemical chemistry. We 

would also like to improve BME analysis work by cross-validating the results and extend the analysis to 

other HAPs pollutants. 
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