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Abstract 
 

A framework that employs the Volatility Basis Set (VBS) within the Community Multiscale Air Quality 

Model (CMAQ) was applied to predict organic aerosol concentrations from aircraft emissions. This framework was 

further expanded to include the formation of secondary organic aerosols from semi and intermediate volatile organic 

compounds which are traditionally missing from emission inventories used in air quality models. Results indicated 

that CMAQ with VBS predicted similar total contributions to fine particulate matter compared to CMAQ without 

VBS but with variations in the composition of organic species. 

Introduction 
 

The Federal Aviation Administration (FAA) projects that passenger traffic will increase 2.1% per year over 

the next 20 years (FAA, 2010). This growth, along with projected reductions of emissions from other source sectors 

due to planned control strategies, indicates the environmental concerns associated with aircraft emissions are likely 

to increase in significance in the coming years. Therefore, there is a strong need to better understand and quantify 

aircraft emissions and their impacts on air quality. This work focuses on updating the current representation of the 

organic aerosol component of fine particulate matter (PM2.5) produced from aircraft emissions in a regional air 

quality model by incorporating emerging scientific developments in the field of organic aerosols. 

PM2.5 and Organic Aerosols 
 

Fine particulate matter, or PM2.5, is the term used for a mixture of solid particles and liquid droplets 

suspended in ambient air smaller than 2.5 micrometers in diameter. PM2.5 is considered harmful to human health, as 

there is evidence for cardiovascular health effects and cardiopulmonary morbidity and mortality (Pope and Dockery, 

2006). It is also one of six criteria air pollutants regulated by the U.S. Environmental Protection Agency (EPA) 

under the National Ambient Air Quality Standards (NAAQS) established by the Clean Air Act (Federal Register, 

1997).  

Approximately 20%-50% of PM2.5 mass at mid latitudes of the lower troposphere is comprised of organic 

aerosols (Kanakidou et al., 2005). Organic aerosols can either be primary (directly emitted) or secondary (formed 

from organic gases that have undergone chemical transformations). Secondary organic aerosols (SOA) are 
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commonly understood to be formed by oxidation of volatile organic compounds (VOCs) by free radicals—mainly 

the hydroxyl (OH) radical, ozone (O3), and nitrate (NO3) radicals (Kroll and Seinfeld, 2008). SOA particle 

formation from these oxidation products is driven by thermodynamic equilibrium based on volatility (or vapor 

pressure) between the particle and gas phase.  

The most commonly accepted methods to estimate atmospheric organic carbon (OC), both primary and 

secondary, are (1) use of elemental carbon (EC) as a tracer for primary OC concentrations (Turpin and Huntzicker, 

1995) which estimates primary OC based on EC, finding secondary OC as the difference between total and primary 

OC (Lim and Turpin, 2002), (2) use of source-oriented mathematical modeling approaches which combine 

emissions estimates with meteorological transport, chemistry, and other atmospheric processes (Heald et al., 2005; 

Lane et al., 2008; Tsimpidi et al., 2010, 2011), and (3) use of receptor models to identify primary organic aerosol 

(POA) and estimate SOA (Brook et al., 2004; Zhang et al., 2009), which is initialized with ambient measurements 

and modeled in a back trajectory to determine the source contributions to the ambient measurement. Comparisons of 

these three methods typically produce roughly comparable estimates for SOA predictions (Lim and Turpin, 2002; 

Lee et al., 2010). In the next section, theories incorporated into mathematical modeling approaches to predict OC 

formation are presented and explored as possible methods to quantify OC formation from aircraft emissions. 

Modeling Approaches for Primary Organic Aerosols 

 

 Traditionally, primary organic aerosols are treated as inert and non-volatile in regional air quality models. 

That is, POA is directly emitted from wood burning, combustion, and other industrial sources and undergoes 

transport but does not react or interact with the gas phase. Recent work by Robinson et al. (2007) has indicated that 

modeling, field, and laboratory data contradict this theory. Instead, POA should be modeled as semi-volatile 

compounds that partitions between the gas and particle phase much like oxidized SOA precursors. Additionally, 

Robinson et al. (2007) suggested that POA reacts with OH radicals, producing semi-volatile oxygenated organic 

aerosols (OOA) with lower vapor pressures than the parent POA species. 

Modeling Approaches for Secondary Organic Aerosols 

 

The traditional approach to modeling SOA formation in regional air quality models employs the Odum et 

al. (1996) two-product model. The two-product model incorporates the absorptive partitioning theory for semi-
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volatile gas-phase species developed by Pankow (1994a, 1994b) to predict the partitioning of species between gas 

and particle phases based on the mass of the absorbing particle phase and saturation vapor pressure (c*). The two-

product model uses 2 surrogate products to represent SOA oxidation products from the parent precursors rather than 

attempting to represent explicit products, many of which are unknown or poorly characterized. Because it is 

computationally manageable and supported by laboratory data, it has commonly been used in atmospheric transport 

and general circulation models (Hallquist et al., 2009).  

 However, estimates using the two-product model to predict SOA yields have consistently been shown to 

underpredict SOA formation when compared against the limited number of ambient measurements currently 

available (de Gouw et al., 2005; Johnson et al., 2006; Volkamer et al., 2006). For example, Volkamer et al. (2006) 

indicated that a two-product model that included 51 SOA precursors underpredicted SOA concentrations by a factor 

of 8 in Mexico City when compared against measurements. The Community Multiscale Air Quality (CMAQ) 

model, developed by the EPA and used for regulatory and research purposes, has similarly underpredicted SOA 

concentrations in both rural and urban areas using the two-product model, particularly during summer months 

(Tesche et al., 2006; McKeen et al., 2007; Yu et al., 2008). Recent updates to CMAQ have aimed to address this 

issue by incorporating the emerging science of SOA formation. Updates include newly discovered SOA pathways 

such as aqueous cloud chemistry (Carlton et al., 2008) and additional SOA precursors such as benzene and 

sesquiterpene (Carlton et al., 2010). The inclusion of these updates has improved predictions of SOA, as CMAQ has 

been shown to now better represent seasonal variations but overall still tends to underpredict SOA (Carlton et al., 

2010), highlighting the need for continued modeling improvements and updates. 

Volatility Basis Set 
 

Given the tendency of the 2-product model to underpredict SOA formation, Donahue et al. (2006) 

developed the “volatility basis set” (VBS) as a new method to predict SOA concentrations. It also employs the 

Pankow partitioning theory and lumps oxidation products of volatile organic compounds into volatility bins 

(typically between 4 to 9 bins) based on the volatility of compounds modeled. The saturation vapor pressure (c*) 

values assigned to each volatility bin differ by an order of magnitude between bins. The VBS provides an 

intermediate step between the two product and more explicit models. Instead of only 2 possible volatilities of 

products, products can instead be represented by a much wider range of volatilities spanning up to 9 orders of 
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magnitude. At the same time, lumping VOCs allows for a wide range of compounds to be represented without the 

need to track individual species separately, thus simplifying the model and allowing it to be used in chemical 

transport models. 

Results of predictions of SOA formation using VBS have indicated good performance of organic aerosol 

predictions when compared against observations (Lane et al., 2008; Tsimpidi et al., 2010, 2011). Using VBS in the 

PMCAMx regional air quality model, Lane et al. (2008) compared modeled OA (primary and secondary) 

concentrations against daily average observations from the eastern U.S. They indicated that while their results 

typically underpredicted OA concentrations in urban areas, it was a significant improvement over using the two-

product parameterization. Tsimpidi et al. (2010, 2011) used VBS as part of the PMCAMx regional air quality model 

to predict OA in Mexico City. Model results indicated good agreement with both the magnitude and diurnal pattern 

of OA when compared against observations made during the MILAGRO field measurement campaign. 

PM2.5 Contributions from Aircraft Emissions 

 

PM emissions from aircraft are generally perceived of as containing a non-volatile portion, comprised of 

elemental carbon or soot, and a semi-volatile and/or a volatile portion, comprised of sulfate and organics. However, 

there is considerable uncertainty associated with the semi-volatile and volatile portions of aircraft emissions. Stettler 

et al. (2011) indicated that the organic PM emission index predicted by the First Order Approximation v3 (FOA3) 

(Wayson et al., 2009), typically used to estimate PM emission from aircraft, was off by an order of magnitude 40% 

of the time when compared against measured organic PM emission index values. Additionally, Woody et al. (2011) 

excluded aircraft emissions of sulfate and organic aerosols due to the high level uncertainty associated with 

estimating their emissions. This suggests that future considerations are needed to better quantify semi-volatile and 

volatile components of aircraft emissions. 

For SOA, a limited number of studies have focused on their production from aircraft emissions, and 

suggest different results. Estimated speciated contributions from aircraft emissions to PM2.5 using CMAQ with the 

Odum 2-product model have indicated that OC was only a minor constituent, while inorganic species and EC 

comprised the majority of health and air quality impacts near the airport (Arunachalam et al., 2011; Woody et al., 

2011). In fact, Woody et al. reported at the Hartsfield-Jackson Atlanta International Airport (ATL) emissions from 

aircraft lowered SOA concentrations. Conversely, recent smog chamber results from Miracolo et al. (2010) suggest 
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otherwise. Aircraft emissions from a CFM56-2B engine were allowed to undergo 3 hours of photooxidation and the 

subsequent PM2.5 mass formed was dominated by secondary components, SOA at low engine power settings and 

sulfate aerosol at high engine power setting.  

Miracolo et al. (2010) also modeled SOA production from aircraft emissions using VBS incorporated into a 

box model and compared the results with measurements. The modeling results underpredicted SOA measurements 

by 40-60%, depending on the power setting. They attributed this underprediction to missing SOA precursors in the 

emission inputs to the model, specifically what they term as recently discovered semi and intermediate volatile 

organic carbon (SVOC and IVOC) emissions which have traditionally been excluded from emission inventories. 

Two observations support this theory 1) SOA formation could not be explained by single ring aromatics alone; all of 

the aromatics emitted would have had to be oxidized to produce the SOA levels measured and 2) measurements 

were made of an unresolved carbon material (SVOCs and IVOCs) which followed actual SOA formation, 

suggesting they are possible precursors. Given the amount of time aircraft spend with low engine power settings at 

airports during the LTO cycle, this has relevance for accurate assessment of air quality impacts in the vicinity of the 

airports. 

As discussed, VBS provides an effective method for estimating organic aerosols produced from gas phase 

chemistry in chemical transport models and would likely be the best approach currently available for modeling OC 

formed from aircraft emissions. It also provides a platform to introduce new and emerging science of OC, such as 

SOA formed from SVOCs and IVOCs (Miracolo et al., 2010) and the semi-volatile nature of POA and OOA 

(Robinson et al., 2007). Furthermore, given the variation of aircraft emission in space and time and the generally 

large grid cell sizes associated with chemical transport models, it may be necessary to model each aircraft 

individually using a plume-in-grid technique, or other alternate approaches to including sub-grid variability. For 

example, plume scale modeling efforts using the one-dimensional Aerosol Dynamics Simulation Code (ADSC) 

model have shown the ability to accurately predict sulfate aerosol formation in aircraft exhaust plumes when 

compared against direct measurements (Wong et al., 2008). Coupled with VBS, a model such as ADSC could be 

used to capture plume scale formation of OC and then passed off to a chemical transport model allowing the overall 

modeling system to encompass all the necessary spatial and temporal scales. This represents the end goal of the 
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work presented here, with the first step being to use VBS to represent contributions from aircraft emissions to 

organic carbon, including non-traditional SOA formed from emissions of SVOCs and IVOCs. 

Methodology 
 

The focus of this work was to estimate contributions of aircraft emissions from ATL to PM2.5, focusing on 

organic aerosols, using a research version of CMAQ v4.7 (Byun and Ching, 1999; Byun and Schere, 2006; Foley et 

al., 2010) with the VBS framework provided by the EPA. SOA precursors were unchanged between the standard 

version of CMAQ and the VBS implementation; however, VBS served as a replacement to the traditional 2-product 

model used to predict partitioning of SOA between the gas and particle phases. The implementation also includes 

updates to the treatment of POA as a semi-volatile compound and allowed to partition between the gas and particle 

phase. Additionally, reactions of POA with OH radicals to form OOA were included. 

In addition to the VBS treatment of OC from all sources (including aircraft), the ability to predict the 

formation of SOA from aircraft emissions of SVOC and IVOC emissions was added. SVOC and IVOC emissions 

are generally considered to have been missing from previous emission inventories and therefore are new SOA 

precursors in addition to the previously known SOA precursors from aircraft (e.g. alkanes, aromatics). New gas 

phase and corresponding particle phase species were introduced into CMAQ with parameterizations based on recent 

work by Jathar et al. (2012). Similar to the CMAQ VBS representation of POA, the aircraft specific SVOC and 

IVOC species were considered semi-volatile and underwent reactions with OH radicals to form products with 

saturation vapor pressures one order of magnitude lower than the parent SVOC/IVOC. Note that while SVOC and 

IVOC emissions likely occur from other sources, estimations of their emissions and their subsequent formation of 

SOA were outside the scope of this work. 

A total of 4 model simulations were performed for the period July 3-4, 2002 plus a two day spin-up period 

at a 12-km horizontal grid resolution with 14 vertical layers over the Eastern United States (Table 1). Meteorological 

inputs were generated using the Pennsylvania State University/NCAR mesoscale v3.6.1 model (MM5) (Grell et al., 

1994) and based on 2002 conditions. Base case (base05) emissions were estimated using the EPA’s 2002 National 

Emissions Inventory (NEI) (EPA, 2004) and speciated for the SAPRC99 chemical mechanism (Carter, 2003) using  
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Table 1. List and description of model scenarios. 

Simulation Description 

base 2002 base case emissions with the publicly available version of CMAQ v4.7 

base_VBS 
2002 base case emissions with CMAQ v4.7 plus the VBS framework to represent organic 

aerosols 

airc 
2002 base case emissions plus landing and take off emissions from ATL with the publicly 

available version of CMAQ v4.7 

airc_VBS 

2002 base case emissions plus landing and take off emissions from ATL with CMAQ v4.7 

plus the VBS framework to represent organic aerosols from all sources and additional particle 

formation from aircraft SVOC and IVOC emissions 

 

SMOKE 2.0. Additional details regarding the meteorological and base case emission inputs can be found in Hutzell 

et al. (2012). 

Aircraft emissions at ATL were generated using 2002 engine specific landing and takeoff (LTO) cycle data 

at ATL (CSSI, 2007). For each engine, mode specific (taxiing, takeoff, approach and landing) emission factors for 

total organic gases (TOG), NOx, CO, and SO2 were taken from the ICAO database (ICAO, 2010). TOG was 

speciated first into explicit species using the most recent speciation profile developed by the FAA and EPA (EPA, 

2009a; EPA, 2009b) and then into model specific SAPRC99 species using speciation profiles obtained from Carter 

(2003). PM emission factors of EC, POA, and sulfate aerosol (ASO4) were estimated using the FOA3a (Ratliff et 

al., 2009) methodology which is an expansion of FOA3 (Wayson et al., 2009). Computed emission factors were then 

applied to activity data from Atlanta for an entire year to produce an annual inventory. The annual inventory was 

allocated in time and space (including the vertical profile of a typical LTO cycle) into gridded emission files for 

ATL over the modeled time period.  

IVOC and SVOC emissions for aircraft, which were previously considered missing from emission 

inventories, were estimated using emission factors for a CFM56-2B engine taken from Jathar et al. (2012) 

normalized by the mode specific ICAO HC emission factor for the same engine. This normalized emission factor 

was then applied across all engines, scaled up to an annual inventory, and similarly allocated in time and space. It 

should be noted that while applying a normalized emission factor for SVOC and IVOC emissions from aircraft 

based on a single engine introduces some uncertainty, limited data currently exists on these emissions from other 

engine types.  
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Note that SOA concentrations in CMAQ are separated out into those formed from anthropogenic (ASOA) 

and biogenic (BSOA) precursors. Aircraft emissions can impact anthropogenic SOA by way of direct emissions of 

anthropogenic precursors (e.g. alkanes, aromatics) as well as gas phase interactions with radicals that oxidize 

anthropogenic SOA precursors. Similarly, those same gas phase interactions of aircraft emissions with radicals can 

also impact the formation of SOA from biogenic precursors (e.g. monoterpenes, sesquiterpenes). 

Results and Discussion 
 

Base Case Model Performance 
 

Base case model results for July 3 and 4 were compared with hourly measurements of PM2.5 and total 

carbon (TC, organic carbon + elemental carbon) from the Jefferson Street (JST, located in downtown Atlanta 

approximately 18 km north of ATL) and the Yorkville, GA (YRK, rural GA located approximately 70 km northwest 

of ATL) Southeastern Aerosol Research and Characterization (SEARCH) Network (Hansen et al., 2003) ambient air 

quality monitors (Table 2 and Figure 1). At both monitors, the base_VBS case resulted in improved Normalized 

Mean Bias (NMB) and Normalized Mean Error (NME) for PM2.5 and TC with the exception of NME for PM2.5 at 

the Yorkville site. Much of this improvement is attributable to higher predictions of SOA in the base_VBS 

simulations. The improved base_VBS model performance could potentially improve the reliability of the modeling 

framework used to assess air quality impacts from aircraft. 

 

Table 2. Comparison of PM2.5 and TC observations from the SEARCH monitoring network against model results. 

 
PM2.5 Total Carbon 

NMB NME NMB NME 

JST 
base -12.8 45.3% -51.5% 52.0% 

base_VBS -6.7% 43.2% -35.8% 35.9% 

YRK 
base -4.4% 26.4% -54.9% 54.9% 

base_VBS 2.3% 27.0% -19.6% 25.2% 
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Figure 1. Location of the Hartsfield-Jackson Atlanta International Airport (ATL) and Jefferson Street (JST) and 
Yorkville (YRK) SEARCH ambient monitoring sites. 

 

Contributions of Aircraft Emissions to PM2.5 

 

Predicted contributions from aircraft emissions were calculated by taking the difference in base case model 

simulations (base and base_VBS) and model simulations with ATL aircraft emissions added (airc and airc_VBS). In 

both the CMAQ (airc-base) and CMAQ_VBS (airc_VBS-base_VBS) simulations, impacts from aircraft emissions 

were highest at the grid cell containing the airport, with aircraft contributing 361 ng m-3 in the CMAQ simulations 

and 325 ng m-3 in the CMAQ_VBS simulations to the two day average PM2.5 concentrations for July 3 and 4, 2002. 

Figure 2 indicates the spatial extents of impacts to PM2.5 from aircraft emissions. Overall, contributions from aircraft 

greater than 25 ng m-3 occurred more often in CMAQ_VBS simulations. 

Comparison of CMAQ and CMAQ_VBS Results 

 

Figure 3 provides the difference in contributions from aircraft emissions in the CMAQ simulations vs. 

CMAQ_VBS simulations [(airc_VBS-base_VBS)-(airc-base)] to PM2.5 and anthropogenic SOA. While the 

CMAQ_VBS simulation predicted lower PM2.5 contributions at ATL and in the grid cells immediate east and 

northeast of ATL, it predicted higher contributions at most grid cells downwind of ATL, particularly those occurring  
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Figure 2. Two day average contribution from aircraft emissions to PM2.5 in CMAQ (left) and CMAQ with VBS (right). Note: ATL 

is located in the grid cell in the center of the plot indicated by the single purple grid cell in the CMAQ plot (left). 

 

along the east-west flight path from ATL. These higher contributions were largely attributable to contributions from 

anthropogenic SOA (Figure 3). 

Two day average total contributions to PM2.5 from aircraft emissions in the grid cells containing ATL, JST, 

and YRK, were comparable between the CMAQ and CMAQ_VBS simulations (Figure 4). However, speciated 

contributions of organic aerosols varied between the two. At ATL, organic aerosols in the CMAQ case were 

 

Figure 3. Difference in two day average contributions to PM2.5 (left) and anthropogenic SOA (right) between CMAQ and 
CMAQ_VBS simulations (CMAQ_VBS minus CMAQ). 

 



13 

 

 composed primarily of POA compared to the CMAQ_VBS case which was comprised of approximately 

equal parts of anthropogenic SOA (ASOA), POA, oxygenated organic aerosols (OOA), and non-traditional SOA 

formed from SVOC and IVOC emissions (ANS). At JST (just north of ATL), CMAQ and CMAQ_VBS predicated 

approximately equal contributions of biogenic SOA (BSOA) and POA, whereas CMAQ_VBS predicted additional 

contributions from ASOA, OOA, and ANS. At YRK, the CMAQ_VBS simulation predicted higher contributions 

from aircraft emissions to biogenic and anthropogenic SOA which led to overall higher contributions of PM2.5. 

 

 

 

Figure 4. Two day average speciated contributions from aircraft emissions to PM2.5 at the grid cells containing ATL (top 

left), JST (top right), and YRK (bottom) for sulfate (ASO4), nitrate (ANO3), ammonium (ANH4), elemental carbon (EC), 

biogenic SOA (BSOA), anthropogenic SOA (ASOA), primary organic (POA), oxygenated organic (OOA) and non-
traditional SOA (ANS) aerosols. 
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Figure 5. Time series of speciated contributions from aircraft emissions to PM2.5 at the grid cell containing ATL for 

CMAQ (left) and CMAQ_VBS (right) for sulfate (ASO4), nitrate (ANO3), ammonium (ANH4), elemental carbon (EC), 

biogenic SOA (BSOA), anthropogenic SOA (ASOA), primary organic (POA), oxygenated organic (OOA) and non-
traditional SOA (ANS) aerosols. 

 Speciated time series over the two days at the grid cell containing the airport indicated similar 

diurnal profiles between CMAQ and CMAQ_VBS (Figure 5). The notable differences occurred in the afternoon of 

July 4, 2002 when CMAQ_VBS predicted that a considerable fraction of the PM2.5 formed from aircraft emissions 

was comprised of organic aerosols (40-50%). On the other hand, CMAQ predicted only 5-10% of PM2.5 was 

comprised of organic carbon during this same time period.  

Predicted contributions from aircraft emissions to non-traditional SOA from SVOC and IVOC precursors 

were small overall, comprising only 2.7% on average of the PM2.5 contributions for aircraft at the airport. However, 

smog chamber data obtained by Miracolo et al. (2011) suggests that SVOCs and IVOCs account for a significant 

portion of SOA from aircraft. One possible difference in results is the scales each were considered at. The 12 km 

model grid volume is significantly larger than the 7 m3 smog chamber used to represent plume scale chemistry by 

Miracolo et al. Concentrations inside the smog chamber were likely much higher and therefore would lead to higher 

SOA yields. One possible approach to rectify scale differences would be to use plume-in-grid modeling techniques, 

or other alternate approaches to including sub-grid variability at a fine scale using a model such as ADSC. Coupled 

with VBS, ADSC could be used to capture plume scale formation of SOA. These results could then be passed off to 

a chemical transport model, such as CMAQ, which would model larger atmospheric scale processes allowing the 

modeling system to encompass all the necessary spatial and temporal scales.  
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Conclusions 
 

 A framework has been applied to model the contributions of aircraft emissions to PM2.5 and organic 

aerosols using VBS within CMAQ. Added to this framework was the inclusion non-traditional SOA particle 

formation from aircraft emissions of SVOCs and IVOCs. Results compared against urban and rural monitoring sites 

in Georgia indicate that this new framework provides better predictions of PM2.5 and total carbon. 

 Overall contributions from aircraft to PM2.5 in CMAQ and CMAQ_VBS were comparable in the grid cells 

containing ATL, JST, and YRK. The CMAQ results indicated slightly higher contributions from PM2.5 at the airport 

while the CMAQ_VBS results indicated higher PM2.5 contributions downwind of the airport at YRK. The increased 

downwind contributions are largely attributable to higher contributions from anthropogenic SOA and the oxidized 

organic aerosols. 

This work is a portion of a larger body of work that involves collaborating with multiple research groups to 

enhance the VBS framework in CMAQ and incorporate plume scale models, such as CMAQ-AMSTERDAM 

(Karamchandani, 2000) and ADSC with an end goal of developing an enhanced modeling system to predict OC 

contributions from aircraft. Additionally, future work is needed to accurately quantify and characterize emissions 

from aircraft, particularly SOA precursors (including SVOCs and IVOCs), possibly through measurement 

campaigns. 
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