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Abstract  
 
 

This report describes the results of an aviation PM emissions campaign entitled the Delta-
Atlanta/Hartsfield (previously known as UNA-UNA (Un-named Airline - Un-named 
Airport)) Study. There were two components to this study – a dedicated engine test and 
an airport study where advected plumes were sampled from commercial transports during 
normal airport operations. This report describes both measurement activities, and shows 
the tremendous promise for a fresh perspective on the magnitude and nature of aviation 
emissions under ‘real-world’ conditions, the analysis and interpretation of which was 
greatly informed by the dedicated engine tests.  These two approaches together form the 
basis of a combined aviation emissions characterization program which is informative, 
thorough, atmospherically relevant, and novel. The findings from this study together with 
those from the other campaigns will reshape the understanding of aviation emissions 
associated with airport local and regional air quality and may settle several outstanding 
questions with respect to particulate emission from aviation sources. Finally, this report 
underscores a need for further analysis of these data. 
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Executive Summary  
 
 
In September 2004, mobile laboratories operated by University of Missouri-Rolla 
(UMR), Aerodyne Research, Inc. (ARI) and the National Oceanic and Atmospheric 
Administration (NOAA) were deployed at Hartsfield-Jackson Atlanta International 
Airport to conduct two series of measurements of aircraft engine generated PM 
emissions. The first series was conducted at the maintenance facilities of Delta Airlines 
and focused on PM emissions in the vicinity of the exhaust nozzle of several different 
aircraft whose engines were cycled through a matrix of reproducible engine operating 
conditions.  The second series was conducted by placing the mobile laboratories adjacent 
to and downstream of active runways. In these latter measurements advected exhaust 
plumes generated by a broad mix of commercial transport aircraft taxiing and departing 
the airport during normal operations were detected and analyzed.  
 
This study was originally subject to non-disclosure agreements between the research 
team and Delta Airlines and until December 2006 was referred to as the Un-named 
Airline - Un-named Airport (UNA-UNA) Study. In November 2006, a meeting was 
arranged between the test coordinators, test team and representative from Delta Airlines 
and the Atlanta Hartsfield Airport to secure the release of the data and rescind the non-
disclosure agreement. An overview of the test campaign along with analyzed data was 
presented at this meeting. Shortly thereafter, legal representatives of Delta Airlines 
agreed to terminate the non-disclosure agreement, permitting the public release of the 
data, and asked that the study be henceforth known as the Delta-Atlanta Hartsfield Study. 
This study represents the achievement of one of the first milestones on the Aviation 
Emissions Characterization Roadmap (AEC Roadmap, formerly PM National Roadmap). 
It represents one of the first opportunities to measure PM emissions from in-service 
commercial transports and blazed the trail for the subsequent studies JETS APEX2 and 
APEX3.  
 
The first series of measurements took place between 10:00pm and 5:00am on 21-25 
September.  The aircraft tested were selected from those scheduled to be overnight at the 
airport. The exhaust plumes of each aircraft were investigated using both probe sampling 
at the engine exhaust nozzle exit (UMR-ARI) and remote sensing using LIDAR (NOAA) 
at a point in the plume close to the exhaust nozzle exit thus permitting comparisons of 
measurement techniques. Another objective was to acquire PM emissions data from 
engines on in-service commercial transport aircraft. Associated with this objective, was a 
study of engine to engine variation within the same class. The airframes and engines 
studied are listed in the table below.  
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Date Aircraft 
Number 

Airframe Engine Thrust 
(kN) 

September 22, 2004 908 MD-88 JT8D-219 93 
September 23, 2004 918 MD-88 JT8D-219 93 
September 23, 2004 134 B767-300 GE CF6-80A2 217 
September 24, 2004 1816 B767-400ER GE CF6-80C2B8F 258 
September 24, 2004 635 B757-200 PW 2037 166 
September 25, 2004 640 B757-200 PW 2037 166 

 
The range of engine operating conditions examined focused on the Landing Take-Off 
(LTO) cycle with additional intermediate settings. For the JT8Ds the complete range of 
power settings was explored, but for the higher thrust engines, transient instabilities 
induced in the probe stands at mid to high power limited the range of powers sampled.  
 
The probe sampling measurements by UMR focused on physical characterization 
measurements including particle size distribution, number density and soluble mass 
fraction. ARI focused on using an Aerosol Mass Spectrometer and related supporting 
instruments to quantify the composition of the particles as a function of size and power. 
Concurrent with the probe sampling, remote sensing was performed by NOAA using a 
mobile LIDAR system. NOAA supplied and operated the LIDAR, which used eye-safe 
ultraviolet light from a laser pulsing at 10 Hz and scanned the beam up and down in a 
vertical plane perpendicular to the direction of engine exhaust. The LIDAR system was 
contained in a trailer positioned about 300 m from the aircraft.  The principal wavelength 
for this project was 355 nm. The back scatter (or reflection) of energy from the laser by 
the total aerosols emitted by the aircraft engine was measured just behind the rear 
stabilizer of the aircraft by the LIDAR.  
 
Gas turbine engine emissions are influenced by engine power settings and ambient 
conditions at the engine inlet. For discussions of the influence of test operating conditions 
on the exhaust aerosol, it is convenient to represent the size distributions with 
characteristic parameters: number-based geometric mean diameter (Dgeom), geometric 
standard deviation (Sigma), mass-based geometric mean diameter (DgeomM), and total 
concentration; and the derived size dependent parameters: number-based emission index 
(EIn) and mass-based emission index (EIm). 
 
For the JT8Ds, Dgeom increases with engine power setting from minima ~20nm to 
maxima ~ 40nm. Sigma increases slightly with power from ~1.7 at low power to ~1.8 at 
high power. DgeomM exhibits a minimum ~30% power with relatively high values at 
low and high power. EIn is higher at the low power conditions, exhibits a minimum at 
30% power and then increases with power. EIm is similar to EIn, higher at the low power 
conditions, exhibits a minimum at 30% power and then rapidly increases with power. 
These trends are consistent with behavior of the CFM56-2C1 engine studied in the APEX 
campaign. 
 
The two JT8D engines in this study have the greatest black carbon emission indices.  This 
is due to a prevalent soot mode at 40-80 nm (particle mobility diameter).  The CF6 and 
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PW2037 engines emit soot in a smaller size mode, < 50nm with overall less total black 
carbon mass.  These engines, however, have a greater particle number emission index 
than the JT8D. Anecdotally, the JT8D emits fewer but larger particles while engines 
designed to reduce smoke number certification measurements emit more numerous 
quantities of smaller particles. 
 
Studies for CF6-80s were confined to low and mid power conditions due to probe rake 
limitations.  In contrast to the JT8Ds, no statistically meaningful power dependence was 
observed. The range of low and mid power PM parameters for the CF6-80s were 
comparable to those for the JT8Ds. 
 
Data for the PW2037 again suggests a trend of increasing emissions with power, but high 
power points were not sampled due to probe rake limitations. It should be noted that in 
other engines studied (JT8D, CFM56) it was the high power points that made the power 
dependency most evident. The range of low and mid power PM parameters for the 
PW2037s were also comparable to those for the JT8Ds. 
 
From least EIn to greatest, the trend is CF6-80C2B8F, PW2037, JT8D-219 and CF6-
80A2. The AMS Organic particulate loading qualitatively correlates with the ICAO UHC 
with a couple of outliers in the JT8D-219.  This is reasonable since the mechanism 
leading to incomplete combustion and unburned hydrocarbons is also likely to  produce 
partially combusted low volatility species which can either participate in nucleation or 
condense to available soot surface area.  In the case of the JT8D-219 engine, the latter is 
quite likely due to the presence of a relatively greater black carbon emission index. 
 
From the LIDAR analysis, similar trends for the MD88s, CF6-80s and PW2037s are 
observed. The MD88’s (JT8D engines) exhibited strong emissions at high power settings, 
substantial emissions at idle (4%) and taxi (7%) power settings, and low emissions at 
other power settings. The B767’s (CF6-80 engines) had low emissions, even negative 
values. (It is of course impossible to have negative soot emissions, but the noise in the 
data, nonuniform ambient, and imperfections in the theory could all contribute to 
negative values of EI. These negative EI values help indicate the limits of accuracy in the 
current LIDAR method). The B757’s (PW2037 engines) had emission index values that 
overall were between those of the MD88’s and the B767’s. Differences between the two 
aircraft of one type were smaller than differences between types of aircraft.   
 
Upon completion of the dedicated engine testing, the various groups turned their attention 
to measurements of aircraft emissions on the airfield at various locations near the ends of 
runways where takeoff operations were occurring. With the exception of the data 
acquired on 26 September it was not possible to collocate the LIDAR and the UMR-ARI 
measurement systems. Despite this limitation, for the overall project both groups were 
successful in data collection with 344 takeoffs being measured by the LIDAR and in 
excess of 500 taxi and takeoff events by the UMR-ARI measurement system. 
 
The UMR and ARI mobile laboratories were positioned with assistance from airport 
operations staff just downwind of an active runway. Two locations were selected to 
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perform these measurements based on the prevailing wind direction on a given day. On 
September 27, 2004, the prevailing wind was from the N/NE and UMR and ARI  were 
collocated on the western end of the airport’s southern runways, and on September 28 
and 29, 2004 the prevailing wind shifted to the W/NW direction and UMR and ARI 
moved to the eastern end of the southern runways. In this work, exhaust plumes advected 
in the direction of the sampling systems were continuously analyzed. Exhaust pollutant 
emission ratios relative to exhaust CO2 were determined for various gas-phase and 
particulate metrics by looking at the concomitant rise in the measurement of a target 
pollutant above background with increased CO2. These emissions ratios were converted 
to fuel based emissions indices using above ambient CO2 as an internal exhaust plume 
tracer. The characteristic of advected plumes - plume rise and plume spread (horizontal 
and vertical) were measured using the LIDAR technique.  These measured parameters are 
key variables in dispersion modeling and are being used to help in model development. 
 
Due to the vast nature of this dataset, analysis is still ongoing for many of the plumes 
observed. In order to demonstrate the potential of this dataset, two specific subset 
analyses are presented here. The first encompasses 12 aircraft plume events that have 
been selected for detailed analysis. These events were chosen to cover a variety of engine 
technologies and conditions. The following general conclusions from these selected 
analyses can be drawn.  
 

• The combination of the PM and gas analysis of the advected plume provides 
unique identification of the engine operating condition generating the plume, i.e. 
idle, spool-up, maximum thrust, etc.  

• When compared to engine exit plane measurements, it is clear that extensive 
secondary volatile aerosol formation is occurring during plume advection.  

• The black carbon component of the PM emissions detected in the advected plume 
appears to be a strong function of engine model. 

 
The second subset encompassed 289 takeoff plumes, sampled over the three day 
campaign. These plumes were selected because they were generated by six of the most 
common engine types, then operating at Atlanta Hartsfield. Daily engine by engine 
averages of PM number- and mass-based emission indices have been calculated. It should 
be noted that the emission indices were based on DMS500 measurements and were 
corrected for size dependent line loss. Since most of the particles have diameters <20nm, 
these line loss corrections significantly impact the number-based emission index 
calculations. For all engines, for all days, the following range of values was observed: 
 
EIn: 3*1016 – 2*1017 particles/kg fuel  
EIm:  0.1 – 0.35 g/kg fuel 
 
These averages, based on measurements of PM emissions from in-service aircraft under 
normal operating conditions, give credence to the rough averages reported by Penner et 
al., 1999 in the IPCC report – Aviation and the Global Atmosphere.  
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1.0 Background 
 

1.1 Introduction 
 
The growth of commercial air traffic over the last decade has led to an increased 
contribution to the local inventory of gaseous and particle emissions from the operations 
associated with airports, e.g. aircraft engines, auxiliary power units (APUs) and ground 
support equipment (GSEs). The potential negative impact on human health due to the 
growth of aviation emissions has prompted a series of studies to better understand the 
formation and quantification of several pollutants, with the primary focus on aircraft 
engine Particulate Matter (PM) emissions. The physical and chemical characterization of 
PM emitted by gas turbine engines have received attention under several recent research 
programs, e.g. the NASA (National Aeronautics and Space Administration) EXCAVATE 
(EXperiment to Characterize Aircraft Volatile Aerosol and Trace-species Emissions) 
(Anderson et al.) and APEX1 (Aircraft Particle Emissions eXperiment) (Wey et al., 
2006) programs, and the European PartEmis (Measurement and prediction of emissions 
of aerosols and gaseous precursors from gas turbine engines) project (Wilson et al., 
2004). The Delta-Atlanta Hartsfield Study was the second study conducted following 
APEX1.  This study was conducted through the Partnership for AiR Transportation Noise 
and Emissions Reduction (PARTNER) – an FAA-Transport Canada-NASA-sponsored 
Center of Excellence, in partnership with the aviation industry.   
 
Under the Clean Air Act (CAA), EPA has the authority to designate areas that are not in 
compliance with outdoor clean air requirements promulgated in the National Ambient Air 
Quality Standards (NAAQS).  A large number of airports, especially the major airports 
across the country, are located in urban areas designated by EPA as non-attainment areas.  
Because of the potential need to mitigate PM from all sources, including aviation, in 
order to bring these areas back into compliance with NAAQS, these affected airports are 
in dire need for an accurate assessment of aviation contribution, as compared to other 
sources, to the local and regional air shed.  FAA co-funded the Delta-Atlanta Hartsfield 
Study, as well as other follow-on studies, to collect data for developing tools and 
databases that airports could use to make these assessments.   
 
Major pollutants emitted from aircraft engines such as nitrogen oxides, carbon monoxide 
and hydrocarbon are regulated; however there are currently no US regulations on PM. 
Because current understanding seems to point to PM as a potential health risk, and 
because there is potential for PM emissions to increase as the growth of aviation 
continues, it is necessary to develop the technical and scientific basis to support 
considerations of various options for appropriately addressing the identified health risk 
attributable to aviation related PM emissions.  The main purpose of this study is to 
acquire PM data on some of the engines that are represented in a majority of aircraft that 
make up the current fleet.  From this and other follow-on studies, the aviation community 
will be able to better assess aircraft PM emissions and their impact on the local, regional 
and global scale.  Ultimately, the collected data will help to support decision making on 
mitigation including streamlined ground operations to reduce delays, use of alternative 
fuels or low sulfur fuels to reduce emissions. 
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The data from the Delta-Atlanta Hartsfield study were collected using best engineering 
practices and only provided snapshots of emissions levels of the tested engines under 
certain ambient conditions.  Further analyses beyond what was made in this report may 
be required for application of the collected data.   
 
 
1.2 Delta-Atlanta Hartsfield (UNA-UNA) Study 
 
In September 2004, mobile laboratories operated by University of Missouri-Rolla 
(UMR), Aerodyne Research, Inc. (ARI), and the National Oceanic and Atmospheric 
Administration (NOAA) were deployed at Hartsfield Jackson Atlanta International 
Airport to conduct two series of measurements of aircraft engine generated PM 
emissions.  Testing was divided into two phases: (1) Dedicated aircraft engine tests under 
controlled operations, with the cooperation of Delta Airlines; and (2) Non-dedicated 
aircraft under routine take-off operations, with the cooperation of the Atlanta-Hartsfield 
International Airport.   
 
Engine technology comparisons were performed by various groups, combined into a 
single team. The team consisted of individuals from Federal Aviation Administration 
(FAA), National Aeronautics and Space Administration (NASA), John Volpe National 
Transportation Systems Center (Volpe), University of Central Florida (UCF), National 
Oceanic and Atmospheric Administration (NOAA), Aerodyne Research, Inc. (ARI)., and 
the University of Missouri-Rolla (UMR). 
 
The first phase of the study was conducted at the maintenance facilities of Delta Airlines 
between 10:00pm and 5:00am on 21-25 September, and focused on PM emissions in the 
vicinity of the exhaust nozzle of several different aircraft whose engines were cycled 
through a matrix of reproducible engine operating conditions.  Measurements were made 
at the engine exhaust nozzle exit with state-of-the-art rapid response instrumentation at a 
range of engine power conditions, including the four International Civil Aviation 
Organization (ICAO) power points The aircraft tested were selected from those 
scheduled to be overnight at the airport. The exhaust plumes of each aircraft were 
investigated using both extractive probe sampling at the engine exhaust nozzle exit 
(UMR/ARI) and remote sensing using non-intrusive LIDAR (NOAA) at a point in the 
plume close to the exhaust nozzle exit thus permitting comparisons of measurement 
techniques. A secondary objective was to acquire PM emissions data from engines on in-
service commercial transport aircraft. The airframes studied included B757s, B767s and 
MD88s.  
 
The second phase of the study was conducted by placing the mobile laboratories adjacent 
and downstream of the "break-release" (i.e. starting point) end of an active take-off 
runway. In these measurements advected exhaust plumes generated by a broad mix of 
commercial transport aircraft departing the airport during normal operations were 
detected and analyzed. The optimal sampling location for these measurements was 
dependent on prevailing wind direction. Both taxi/idle emissions and those during take-
off were measured for several in-service commercial aircraft during routine operation.  
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Again, the focus was on measuring particles emitted from the aircraft, with supporting 
ancillary measurements to make complete emissions measurements.  These tests were 
performed on a non-interference basis, so that normal airport operations can continue 
without being affected by the measurement teams’ activities. As with the dedicated 
engine study, LIDAR measurements were also performed as part of this study. 
 
This study was originally subject to non-disclosure agreements between the research 
team and Delta Airlines and until December 2006 was referred to as the Un-named 
Airline - Un-named Airport (UNA-UNA) Study. In November 2006, a meeting was 
arranged between the test coordinators, test team and representative from Delta Airlines 
and the Atlanta Hartsfield Airport to secure the release of the data and rescind the non-
disclosure agreement. An overview of the test campaign along with analyzed data was 
presented at this meeting. Shortly thereafter, legal representatives of Delta Airlines 
agreed to terminate the non-disclosure agreement, permitting the public release of the 
data, and asked that the study be henceforth known as the Delta-Atlanta Hartsfield Study. 
This study represents the achievement of one of the first milestones on the PM National 
Roadmap. It represents one of the first opportunities to measure PM emissions from in-
service commercial transports and blazed the trail for the subsequent studies JETS 
APEX2 and APEX3.  
 
 
1.2.1 Dedicated Engine Study 
 
In the fall of 2004, the mobile laboratories operated by UMR, ARI and NOAA were 
deployed at the maintenance facilities of Delta Airlines. The use of a mobile laboratory 
platform to sample aviation related plumes has been documented (Hagen et al., 1992; 
Schmid et al., 2004; Whitefield et al., 2005; Herndon et al., 2004, 2005, 2006) 
previously. The purpose of the first week of measurement activities was to characterize 
the particulate emissions at the exit plane of the engine exhaust nozzle for wide-bodied 
commercial aircraft at known power conditions using state of the art research 
instrumentation (see UMR and ARI sections for details on instrumentation deployed at 
this test). These measurements were performed during the early hours of September 22- 
25, 2005. The aircraft engines tested along with the associated airframes are listed in 
Table 1. 

 
Table 1: List of aircraft engines and associated airframes tested 

 
Date Aircraft 

Number 
Airframe Engine Thrust 

(kN) 
September 22, 2004 908 MD-88 JT8D-219 93 
September 23, 2004 918 MD-88 JT8D-219 93 
September 23, 2004 134 B767-300 GE CF6-80A2 217 
September 24, 2004 1816 B767-400ER GE CF6-80C2B8F 258 
September 24, 2004 635 B757-200 PW 2037 166 
September 25, 2004 640 B757-200 PW 2037 166 
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1.2.1.1 Experimental Description 
 
Custom-designed probes and extensive support equipment were used to sample jet 
exhaust in the on-wing position. Particle-laden exhaust is extracted directly from the 
engine exhaust flow through probes and supplied to the measurement devices. The 
primary probe for collecting exhaust samples (Fig. 1) is positioned within 1 meter of the 
exhaust nozzle exit plane, as this position is representative of the engine signature and the 
certification data in the ICAO database (ICAO, 2006) 
 
 

 

 

 

 

 

 

 

 

 

Figure 1: Probe stand used to sample jet exhaust 
 
The PM probes are designed to provide both probe tip and upstream (0.09 meters from 
tip) dilution flows, thereby reducing and/or eliminating probe effects. The rake quadrant 
and probes are water cooled to protect them from thermal degradation during testing. The 
dilution flows are drawn from particle-free, dry air sources located in the mobile 
laboratory and conducted to the probes through 0.006-meter (inside diameter) flexible gas 
lines.  
 
The PM samples were conducted to the mobile laboratories through sample lines for 
which line losses had been calibrated. The mobile laboratories were typically located near 
the aircraft wing tips, less than 30m from the engine.  
 
Data was acquired for a typical cycle involving the following engine power conditions – 
4%, 7%, 30%, 50%, 70%, 85% and 100%. In case of the 767s and 757s, the total number 
of engine conditions visited was limited to the low to mid power conditions because the 
probe stand appeared to be unstable at the higher power settings. 
 
The LIDAR performed repeated scans behind a stationary aircraft. These measurements 
were used to evaluate a new method for determining total aerosol emission rates from the 
LIDAR data. For these tests, the LIDAR was located relatively close to the exhaust exit 
plane and the total aerosol at this point is primarily soot. 
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1.2.2 Airport Study 
 
The UMR, ARI and NOAA mobile laboratories were positioned with assistance from 
airport operations staff just downwind of an active runway at a major US airport.  Two 
locations were selected to perform these measurements based on the prevailing wind 
direction on a given day. On September 27, 2004, the prevailing wind was from the N/NE 
and UMR and ARI  were collocated on the western end of the airport’s southern runways, 
and on September 28 and 29, 2004 the prevailing wind shifted to the W/NW direction 
and UMR and ARI moved to the eastern end of the southern runways. In this work, 
ambient air was continuously analyzed through a sample port located near the roof on the 
front of the ARI truck (facing the runway) on the driver’s side and delivered to various 
instruments on board the mobile laboratory.  The UMR mobile laboratory sampled air 
through a port located at the back of the cabin (facing the runway).  With the exception of 
the data acquired on 26 September it was not possible to collocate the LIDAR and the 
UMR-ARI measurement systems. 
 
Exhaust pollutant emission ratios relative to exhaust CO2 were determined for various 
gas-phase and particulate metrics by looking at the concomitant rise in the measurement 
of a target pollutant above background with increased CO2.  These emissions ratios can 
be converted to fuel based emissions indices using above ambient CO2 as an internal 
exhaust plume tracer (Anderson et al., 1998; Fahey et al., 2005; Schäfer et al., 2003).  An 
overview of the kinds of experiments which have been performed using a mobile 
laboratory platform has been published by Kolb et al., 2004. The characteristic of 
advected plumes - plume rise and plume spread (horizontal and vertical) were measured 
using the LIDAR technique.  These measured parameters are key variables in dispersion 
modeling and are being used to help in model development. 
 
During the daylight hours, aircraft tail numbers were recorded which allows an 
unambiguous identification of the airframe and engine.  When the weather precluded a 
visual identification, the Volpe Transportation Center and the Federal Aviation 
Administration provided tower logs as well as AQSP databases to identify the specific 
engine in use for the given flight.   
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2.0 Methodology 
 
2.1 UMR Methodology 
 
UMR has developed a mobile diagnostic facility and a sampling methodology which are 
optimized for jet engine exhaust characterization using extractive sampling techniques.  
Over this time the mobile sampling facilities have been used in numerous test campaigns 
at airports with parked aircraft, NASA and industrial facilities having combustor and 
engine test stands, and at venues having altitude chambers (Hagen et al., 1992, 1999; 
Whitefield and Hagen, 1995; Whitefield et al., 1997, 2001; Lobo et al., 2007). An overall 
review of the UMR facility and methodology has been reported elsewhere (Schmid et al., 
2004). 
 
The instrumentation onboard the UMR mobile laboratory included the Cambustion DMS 
500, a fast particulate spectrometer (Biskos et al., 2005), to gather real–time size 
distribution information and total concentration of engine exhaust particulates over the 
full particle size spectrum from 5nm to 1000nm; a differential mobility analyzer to 
develop number, surface area and volumetric size distributions; two TSI Condensation 
Particle Counters (CPC) to measure total number concentration; a fast response CO2 
detector to establish emission factors; a deliquescence system to measure the total soluble 
mass fraction and a weather station to monitor ambient conditions like temperature, 
relative humidity, pressure, and wind speed and direction.  
 
From the size distributions acquired during equilibrium engine operating conditions, 
parameters like Dgeom (number based geometric mean diameter), Sigma (geometric 
standard deviation) and DgeomM (mass based geometric mean diameter) can be 
obtained. Using the CO2 data and assuming a density of 1 for the jet exhaust, Eln 
(number based emission index) and EIm (mass based emission index) can also be 
determined. 
 
 
2.1.1 PM Parameters 
 
The characterization of the exhaust aerosol is accomplished using the following 
parameter set.  
 
(1) The size distribution is described by a differential concentration function N(Dp), 
dependent on particle diameter (Dp), which specifies the concentration of particles, dn, 
having the logarithm of their diameters between logDp and logDp+dlogDp to be 
N*dlogDp. The logarithmic scale is used since aerosol diameter covers such a large size 
range. 
                                                      pDdNdn log*=                            (Eq. 1) 

 
 
(2) Number-based geometric mean diameter (Dgeom), defined by the equation  
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(4) Mass-based geometric mean diameter (DgeomM), defined by  
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(5) Number based emission index (EIn), the number of particles per kilogram fuel burned 
can be calculated by 
 

 ( )2
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where 

2COEI denotes the mass emission index of CO2 (for aircraft engines 
2COEI  = 

3160 g/kg; (Schulte and Schlager (1996)).  M(CO2), the mass of CO2 per volume exhaust 
sample, is calculated by multiplying measured CO2 mixing ratios with (44/29)ρair, where 
ρair is the air density and 44/29 is the molar mass ratio of CO2 and air.  Strictly speaking, 
in Eq. 6 both N0 and M(CO2) have to be values above ambient, i.e. enhancements over the 
background signal.  However, for measurements close to the engine exit plane of gas 
turbine engines, the background signals are negligibly small. 
 
(6) Mass-based emission index (EIm) is the mass of particles per kilogram fuel burned 
and its calculation is analogous to that for EIn and is given by 
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where M(N0) is the mass of aerosol per unit volume of exhaust sample. 
 
 
 
2.1.2 Soluble Mass Fraction 
 
The evolution of combustion particles in the atmosphere is strongly influenced by their 
ability to interact with water vapor. This characteristic was investigated with a 
deliquescence technique (Alofs, 1978; Alofs and Trueblood, 1981; Li et al., 1992), where 
a tandem DMA with an intermediate saturator was used to measure the particles’ dry and 
wet diameters.  
 
The UMR Deliquescence apparatus (DDMA) is designed to determine the fraction of 
soluble mass in the average aerosol particle of a given, predetermined dry size. It utilizes 
two Differential Mobility Analyzers (DMA) with a humidifier in between them.  The first 
DMA selects a narrow band of diameters and passes these particles on to a region of 
precisely controlled, high relative humidity or saturation ratio (typically SR=0.93). If 
these aerosol particles contain any soluble mass, then they will take on liquid water, i.e., 
they will deliquesce or grow to some new equilibrium diameter.  This new equilibrium 
diameter is a function of the dry diameter, the saturation ratio in the humidifier, and the 
fraction of soluble mass in the particle.  The deliquesced aerosol then passes through the 
second DMA (The sheath air for this DMA is also brought to SR = 0.93). Here a 
computer controlled size sweep is performed and the wet diameter is obtained.  As stated 
earlier, knowledge of the dry diameter, the saturation ratio, and the wet diameter is 
sufficient to determine the Soluble Mass Fraction (SMF) for that aerosol.   
 
SMF increases with distance from engine exit plane as the time allowed for the aerosol 
particle to scavenge soluble species like H2SO4 increases.  The average aerosol particle 
contains essentially no soluble material if captured by the probe at the engine exit plane, 
since the sample is diluted while it is still very hot, i.e., chemical reactions are quenched.  
 
 
 
2.2 ARI Methodology 
 
The measurements of gas-phase and particulate emissions for the take-off mode of 
operation are the primary focus of this section.  The primary gas-phase species measured 
were CO2, NO, NO2, CO and HCHO.  The total particle number count was measured 
using a condensation particle counter (CPC).  Total black carbon mass was measured 
using the Multi-Angle Absorption Photometer (MAAP). Various non-refractory 
particulate constituents were measured using the Aerosol Mass Spectrometer (AMS).  
Size resolved particulate number measurements were performed with several different 
instruments, including two Scanning Mobility Particle Sizers (SMPS) and the 
Cambustion DMS 500. The measurements of HCHO and NO emissions were performed 
using Tunable Diode Laser Differential Absorption Spectroscopy (TILDAS).  NO2 and 
CO were measured using a similar TILDAS approach, but with a dual channel quantum 
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cascade laser based instrument (Jimenez et al., 2005). Carbon dioxide, CO2 was measured 
using a commercial non-dispersive infrared absorption technique (Licor 6262).   
 
 
2.2.1 HCHO, HCOOH and NO measurement 
 
The TILDAS instrument has been described thoroughly elsewhere (McManus et al., 
2005), and has been employed in several field measurement campaigns(Zahniser et al., 
1995; Horii et al., 1999; Li et al., 2003) but details specific to the instrument deployed in 
these measurements are described here. HCHO and HCOOH were detected using a 
multiple absorption lines at 1765 cm-1.  A relatively weak water line is present in this 
feature and was fit as well.  The diode used for NO was operated at approximately 1915 
cm-1.  As operated during these measurements, the 1 s rms precisions for HCHO (diode 
1) was normally less than 0.7 ppbv. For NO (diode 2) the 1s rms precision was 1.1 ppbv.  
 
The accuracy of the concentrations measured by TILDAS is largely determined by how 
well the line strengths are known.  For the absorption lines used in the two instrument 
channels, the band strength for HCHO is known to within 7% (Herndon et al., 2005; 
Volkamer, 2005). The bandstrength for NO is known to within 6% (Smith et al., 1985). 
 
 
2.2.2 NO2 and CO measurement 
 
The quantum cascade laser based instrument (QCL) has been deployed in previous field 
campaigns (Yelvington et al., 2007; Wormhoudt et al., 2007) and studied in the lab 
(Jimenez et al., 2005).  Briefly, NO2 was detected via absorbance at 1606 cm-1 and the 
bandstrength is known to within 4% (Smith et al., 1985).  CO was detected with two 
different absorption lines during the campaign at 2179.8 cm-1 and 2183.2 cm-1. 
 
 
2.2.3 CO2 Measurement 
 
The Licor-6262 non-dispersive infrared absorption instrument detects CO2 absorption in 
the 4.3 μm band.  Additional details regarding its performance in this application can be 
found elsewhere (Herndon et al., 2004).  The response time of the Licor instrument was 
measured by flooding the inlet tip with CO2 free nitrogen gas.  The response time of the 
Licor was found to be 0.9 seconds. 
 
 
2.3 NOAA Methodology   
 
The LIDAR was used previously to measure the time-evolving geometry of exhaust 
plumes from commercial jet aircraft 17-24 May 2001 at Los Angeles International 
Airport  (LAX) (Wayson et al. 2003; Eberhard et al. 2005). For this campaign, the 
LIDAR was used to measure the growth and rise of the exhaust plume behind the aircraft 
due to the initial dynamics of turbulent mixing of the high-speed, warm exhaust jet for 



 10

airfield measurements and also to explore the measurement of total mass flux during the 
dedicated engine tests. Particles generated by the engine usually provided enhanced 
backscattering detectable by the LIDAR above the backscattering from ambient 
molecules and aerosol particles. The results were used to provide more accurate plume 
initial conditions to an air quality model, which then used conventional winds and 
turbulence to transport and further disperse the exhaust plume. This led to more accurate 
estimates of the effect of jet aircraft on air quality in the area of the airport (Hall et al. 
2003). 
 
During those measurements it was observed that that the total backscatter (although 
uncalibrated) tended to be greater for larger aircraft, for more visually distinct plumes, 
and for aircraft of older design. Those qualitative observations were a motivation to 
develop a method to quantify soot emission rates using calibrated LIDAR backscatter. 
 
 
2.3.1 LIDAR Description 
 
A LIDAR transmits a pulse of light, which undergoes scattering and absorption as it 
propagates away from the system. A small part of the scattered light travels straight back 
to the LIDAR, where it is gathered and focused by a telescope onto a detector. The 
detector voltage is digitized as a function of time, and recorded as a function of range 
from the LIDAR. 
 
After calibration and other factors are applied, the LIDAR signal can be expressed as: 
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where C is the calibration factor, R is range, β is volumetric differential backscatter cross-
section, σ is volumetric extinction coefficient, and subscripts p, m, and h refer to particles 
in the exhaust plume, air molecules, and ambient aerosol (haze) particles, respectively. 
Both scattering and absorption contribute to the extinction coefficient. 
 
The laser we selected for jet exhaust measurements was a Nd:YAGx3 transmitting at 
355-nm wavelength. Eyesafe operation was easy to achieve in the ultraviolet with simple 
precautions. The light is invisible, so there was no interference with pilot vision night or 
day. The 355-nm wavelength is also close to optimum for detecting the particles in the jet 
exhaust in the presence of scattering from molecules and from ambient particles. We used 
our OPAL (Ozone Profiling Atmospheric LIDAR, Fig. 2), but operated only with the 
“aerosol channel” (see Table 2 for specifications). The LIDAR could scan in elevation 
angle but had a fixed azimuth. The elevation angle precision was an order of magnitude 
better than at LAX, permitting measurements much closer to the surface than before. The 
elevation angle accuracy was somewhat less at ≈ 0.1°. Real-time data displays helped the 
experimenters optimize sampling strategy, but raw data were recorded on Digital Audio 
Tapes (DAT). 
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Figure 2: LIDAR system for plume geometry and emission rate measurements. The 

enclosure on top contained the elevation-scanning mirror. 
 
Data processing after the experiment used techniques previously developed for LIDAR 
and standard meteorological data to solve Eq. 8 to obtain βp(R). By scanning the elevation 
angle, i.e., the LIDAR’s pointing direction; repeatedly up and down the cross-sectional 
profile of βp was obtained in polar coordinates. These data were interpolated to a 
rectangular coordinate system in the scan plane. Fig. 3 shows a typical cross section from 
an aircraft with substantial particulate emissions. The MD88 started takeoff roll about 10s 
earlier, and the exhaust nozzles of its engines were ≈ 80 m away from the LIDAR’s scan 
plane at the time of these measurements. The color scale shows calibrated plume signal 
above the signal from the ambient air in units of Mm-1sr-1, where Mm is megameters and 
sr is steradians. 
 

Table 2: Specifications of LIDAR used to measure jet engine exhaust plumes 
 

Parameter Value 
Wavelength 355 nm 
Pulse energy 5 mJ 
Pulse repetition rate 10 s-1 

Pulse length 10 ns 
Range gate length 5 m 
Telescope diameter 0.2 m 
Elevation angle precision 0.02° 
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Figure 3: LIDAR cross section of an MD88’s exhaust plume showing backscatter 
enhancement above ambient. The height is above the runway, the horizontal 

distance is measured from the LIDAR, and enhanced backscatter is given by the 
color scale. Time and date are UTC. 

 
It is important to keep in mind the spatial resolution of the LIDAR while interpreting the 
data. The range or along-beam resolution, i.e., the horizontal resolution at the elevation 
angles typically used for plume measurements, is 5 m. The data system integrates all the 
backscatter received over each 5 m range gate. At the low elevation angles used for 
plume scans, the vertical resolution depends mainly on the vertical size of the beam spot. 
The spot size increased proportionally with range and was ≈ 0.1 m for the stationary tests 
(Fig. 4) and ≈ 0.2 m for the runway tests. The scans for the stationary tests were slow 
enough so that the vertical distance between beams at the plume was smaller than this 
resolution. However, when scanning more quickly for the runway tests, adjacent beams 
were ~1 m apart and the plume was only spot-sampled in the vertical. 
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Figure 4: Fluorescence from tablet paper from one pulse of the ultraviolet laser at 
300-m range. The mottled pattern is due mostly to optical turbulence, and changes 
from one pulse to the next. 
 
For both stationary and runway measurements, the elevation angle scan rate was adjusted 
to take ≈ 5 s for each one-way sweep, so each sweep contained ≈ 50 pulses. At LAX the 
sweeps were half as long and typically included ≈ 25 pulses. The LIDAR’s finer angle 
precision at UNA allowed finer measurements in elevation angle and measurements 
closer to the ground than at LAX. 
 
 
2.3.2 LIDAR equation 
 
The LIDAR equation for received signal for one pulse is: 
 
X0(r)  =  C E G(V) f(R)  R -2  [βm(R) + βh(R) + βp(R)] tm

2(R)  th
2(R)  tp

2(R)   + B +      
 EMI(R) + N(r),       (Eq. 9) 

 
where: 
X0 = raw signal level 
R = range (in discrete form, r is range to the middle of the gate) 
C = lidar calibration constant, consistent with the units of E. 

10 
cm 
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E = pulse energy monitor reading 
G = PMT gain 
V = PMT bias voltage 
f = overlap function and any other non-signal dependent artifacts 
βm  = backscatter cross section from molecules 
βh  =  backscatter cross section from haze particles, i.e., ambient aerosol   
βp  =  backscatter cross section from aircraft-generated particles (in humid cases where 
the exhaust causes a signal deficit by apparently drying the ambient aerosol, βp will be 
negative) 
tm = one-way transmission due to molecular extinction =  exp[-∫0R σm(R’)dR’ ] 
th  =  one-way transmission due to extinction by haze particles =  exp[-∫0R σh(R’)dR’ ] 
tp  = one-way extinction due to the extinction by plume particles = exp[-∫0R σp(R’)dR’ ] 
B = background light and DC offsets in receiver 
EMI = EMI (electro-magnetic interference) noise 
N = Shot noise, Nyquist noise, and discretization “noise” 
 
N from shot and Nyquist noise is random. The discretization noise, arising out of the fact 
the analog-to-digital converter has a finite number of digital steps, has the general effect 
of adding more uncertainty to the signal. However, discretization was a minor factor in 
the UNA-UNA data set, because analysis did not depend on ranges where the raw signal 
became very weak. One cannot correct for these random noise terms, but we try to keep 
them small compared to other imperfections in the data. They lead to noisy results, i.e., 
random peaks and valleys in the gridded data and the profiles, and beam-by-beam 
distortions therein due to noise in the fore- and post-plume regions. 
 
The DC signal from any electronic offsets in the amplifiers and digitizer and from 
background light reaching the detector was measured by pre-triggering the data 
acquisition before the pulse was transmitted. For each pulse, the signal was averaged in 
range over the pre-trigger portion of the data to find B, and then B was subtracted from 
the signal at all ranges.  
 
EMI was determined by acquiring data while a shutter was closed in front of the 
detectors. For step-stare data, e.g., for calibrations, EMI data were measured at the end of 
each elevation angle’s stare. For RHI (Range Height Indicator, i.e., the traditional name 
for radar or LIDAR scanning in elevation angle at fixed azimuth) data on exhaust plumes, 
EMI data were recorded at the end of each file, but for practical reasons, the EMI data 
from the previous file were used to correct the LIDAR data from the atmosphere. 
 
The G (V) relationship was found from a special test that was performed two times, with 
excellent agreement between the two. The LIDAR stared at zenith and the PMT voltage 
V was changed in steps. The signal change from the atmosphere at an appropriate range 
(beyond overlap and any saturation, but where SNR was still adequate), assuming the 
atmosphere wasn’t changing, gave the relative functional relationship between V and G.  
 
The calibration factor C was determined several times during the project using the 
“clean” layer reference method. The signal was measured from a layer in the upper 
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troposphere with evidence there of very little aerosol backscatter. The molecular 
backscatter is well known, giving the calibration point. The main complication is 
estimating the amount of aerosol extinction between the lidar and the clean layer. This 
was done using the Klett method, first with an assumed lidar ratio (extinction-to-
backscatter ratio), and then fine-tuned using extinction coefficient estimates from slant 
path measurements and, in one case, optical depth measurements from a spectral sun 
photometer. Obtaining C for a known V, and having the change in G with V, gave the 
calibration factor C G (V). 
 
tm(R)th(R) was obtained by assuming homogeneity of ambient aerosol backscatter along 
the beam when there was no aircraft plume present. By plotting the logarithm of the 
background- and EMI- corrected signal versus R and performing a least squares fit, the 
value of σe = σm + σh was obtained. This process was done many times, because the haze 
extinction is always changing, usually in a gradual way. 
 
f(R) was determined using a similar method as for the ambient extinction, where the 
logarithm of the signal is linear at farther ranges where f=1, but the signal deviates from 
at closer ranges where f < 1. This was only for R < 325 m and was needed only for the 
stationary aircraft measurements. 
 
The values of βm and σm were calculated from airport measurements of pressure and 
temperature, giving air density, and the known molecular cross sections for backscatter 
and extinction at 355 nm. The βh was found by averaging the backscatter in the fore-
plume region (see next section) and subtracting the molecular component βm .  
 
It should be noted that these calculations assume the jet exhaust adds particles to the 
ambient air and no other modification. However, there are three probable deviations from 
this assumption:  

1) The molecular and ambient aerosol backscatter (and less so, their extinction) may 
become smaller in the plume region because of the hot air from the exhaust, 
which makes the air and aerosol concentration less dense.  

2) The ambient particles in the air that passed through the engine’s combustion 
chamber are probably volatized.  

3) In humid conditions, ambient particles mixing into the hot exhaust in the plume 
behind the aircraft might decrease in size as water evaporates from them. These 
factors have little effect on plume geometry measurements, but can contribute to 
the plume having no enhanced backscatter above ambient backscatter, or even a 
“negative” plume where backscatter from the exhaust is actually less than ambient 
backscatter. 
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2.3.3 Processing for Plume Geometry 
 

This section describes the processing performed to obtain plume geometry 
measurements. This included solving the LIDAR equation for system and atmospheric 
effects and calibrating the LIDAR backscatter. Interactive editing was essential for 
quality control and to specify the region containing plume and the associated fore-plume 
and post-plume regions in order to extract dependable products for plume geometry and 
for soot emission rate estimates. Finally, we developed and applied automatic methods to 
calculate the plume’s location and size from the data in digital form as displayed in Fig. 
3. We did not obtain such plume parameters for LAX data; rather this was done 
interactively by Roger Wayson and assistants using displays as in Fig. 3, an option which 
can still be applied to the UNA-UNA data. 

 
 
2.3.3.1 Region Selection and Pulse Screening 
 
The data were presented to the operator in an RHI display (color-coded signal magnitude 
in polar coordinates of range and elevation angle) of each individual sweep of interest 
(Fig. 5). A sweep contains a set of contiguous pulses when the elevation angle changed 
from the bottom to top of a scan, or vice versa. Sweeps with inadequate data, e.g., plume 
not detected or plumes from two aircraft merging, were discarded from the data set. 
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Figure 5: Example of a display for sweep selection and editing** 

 
** The operator deleted several beams at the bottom of the sweep, eliminating them from 
the display, because they had ground signal in the plume or fore-plume region. The 
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operator also clicked four times with a cursor to position the four vertical white lines that 
define the three regions, and clicked twice with the cursor to define the terrain limit line. 
 
The operator selected for each sweep 4 horizontal distances (Fig. 5) to define 3 regions: 
near or post-plume region (containing ambient air on the LIDAR side of the exhaust 
plume), plume region (containing the observable plume and a little bit of extra space), 
and the far or post-plume region (containing ambient air beyond the plume). The effects 
of along-beam variations in plume backscatter and extinction in the plume were 
accounted for by comparing beam-by-beam the average signal in the post-plume region 
with that in the fore-plume region. When they were unequal, the signal in the plume 
region was adjusted linearly with LIDAR range between the fore-plume and post-plume 
regions so as to make the average signal in the post-plume region equal to that in the 
fore-plume region. The data reported as plume backscatter were from within the plume 
region only.  
 
The operator also flagged beams in each sweep that were excluded from the plume region 
in later processing.  Beams at the bottom of the sweep were edited to prevent any 
contamination from the very strong signals from the ground. Pulses with any ground 
return within the fore-plume region were removed from the data set. The operator defined 
a straight, diagonal line, which marked the height below which there was some signal 
from the ground in the plume and post-plume region. The locus of the intersection of this 
line with the beam was calculated. When this point was within the plume region, the data 
in the plume region were not flattened, and the enhanced signal at range gates beyond the 
intersection were set to zero. When this point was within the half of the post-plume 
region nearest the LIDAR, there was no flattening, but the computed enhanced signal in 
the beam across the entire plume region was included. When this point was beyond the 
midpoint of the post-plume region, flattening was performed with the post-plume region 
shortened to the data before the terrain signal.  
 
The operator also clicked the cursor in the display (not shown in Fig. 5) to direct later 
processing regarding the position of the top of the plume. Clicking on a beam below the 
top indicated that beams above it did not include any plume signal, excluding them from 
the final plume region data, and avoiding contamination there due to varying ambient 
aerosol. Clicking on the top beam included all the displayed beams in processing for 
plume data. Clicking in the white region above the sweep set a flag in the output 
indicating that the plume likely extended above the top of the sweep.  
 
This interactive flagging of pulses allowed data to be processed much closer to the 
ground than at LAX and improved the accuracy of the plume results when the sweep 
extended much higher than the top of the plume. The interactive processing is labor 
intensive, but a necessary step to ensure dependable results for further analyses of plume 
geometry or emission rates. 
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2.3.3.2 2-D Interpolation from Polar to Rectangular Coordinates 
 
The processed LIDAR data within the plume region were interpolated to a rectangular 
grid. The results are denoted by s(yi,zj), where y is the distance from the LIDAR, z is the 
height above the ground and i and j are the horizontal and vertical array coordinates of 
the data, respectively. Grid coordinates refer to the center of the pixel of data. The grid 
element lowest in height and closest to the lidar is at y0, z0. The size of the array is Ny in 
the horizontal and Nz in the vertical, and the size Ny × Nz  is varied to include the plume 
region. We chose fixed grid spacings of Δy = 1 m and Δz = 0.1 m for static tests and Δz = 
0.2 m for runway tests. These were chosen to be smaller than the inherent resolution of 
the data, because otherwise the interpolation to y-z coordinates would smear the data to 
lower peak s and to larger geometrical size. 
 
The coordinates of data up to the interpolation were relative to the LIDAR’s scanner, 
which was on top of the trailer. We determined the height of the LIDAR scanner above 
the runway height (and tarmac height for static tests) based on LIDAR elevation angle 
with ground strikes at the runway’s distance. This procedure also accounts for any small 
errors in setting the elevation angle encoder’s absolute angle. The offsets were: 

Stationary tests 21-25 September 2004: 3.8 m 
Runway tests 26 September 2004:  3.2 m 
Runway tests 29 September, 2004: 3.3 m 
Runway tests 30 September 2004: 3.6 m 
 

The data were adjusted for this offset immediately after the interpolation. The adjustment 
for LAX data as not done later in analysis by adjusting the plume height data. Data grid 
points from 2004 and later data are therefore height above the ground, whereas for LAX 
they were height relative to the scanner.  

 

2.3.3.3 Plume Profiles 
 
Based on the gridded plume data, vertical and horizontal profiles were calculated as 
follows and stored in ASCII files. The profiles are called marginal profiles, because they 
are calculated at the “margins” of the gridded array. 
 
The horizontal profile is Sh(yi), given by 
 

                  j=Nz-1 
Sh(yi) = Δz    Σ   s(yi,zj)              (Eq. 10a) 
                   j=0 
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The vertical profile is Sv(zj) , given by 
  

                   i=Ny-1 
Sv(zj) = Δy    Σ  s(yi,zj)             (Eq. 10b) 
                    i=0 

 
Plume Parameters 
The plume rise and size can be characterized by just a few parameters. There are a 
number of ways to calculate these, each with its advantages and disadvantages for 
particular situations and purposes. As is common practice, the horizontal and vertical 
profiles were used as a basis for these calculations. Several methods were used, which 
allowed comparison to see how representative they might be, allowing the user to choose 
the most appropriate. The experience gained in applying these methods to actual data, 
may eliminate, modify, or add to these schemes. 
 
Geometrical or statistical parameters  
The usual measures of plume position and size were calculated and archived. The total 
signal is the integral of the values in the gridded array, which is equal to the integral of 
either of the profiles. The position measurements are the mean for each of the vertical and 
the horizontal profiles. The standard deviations describe the size of the plume in the 
vertical and horizontal. We use N rather than N-1, where N is the number of elements in 
the profile vector, in the standard deviation calculation. 
 
Equations for these parameters are given for calculations in the horizontal – the equations 
for vertical parameters are analogous. 
 
The total signal is given by 
 

      i=Ny-1 
      j=Nz-1           j=Nz-1         i=Ny-1 

ST = Δy Δz Σ s(yi,zj) =   Δz Σ Sv(zj) =  Δx Σ Sh(yj)             (Eq. 11) 
                i,j=0           j=0          i=0 
 
The mean location in the horizontal is found from 
 

            i=Ny-1        
ymean = (Δy/ST) Σ  yi Sh(yi)   ,               (Eq. 12) 

i=0   
 
with a corresponding expression for zmean. 
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The plume dispersion parameter is the standard deviation σhor of the plume profile found 
from the square root of 
 

           i=Ny -1 
σhor

2 = (Δy/ST) Σ  (yi - ymean )2 Sh(yi)    .             (Eq. 13) 
i=0 
 

With noisy or uncontaminated data, σhor
2 can sometimes be negative. To handle this case 

and flag this condition, we used: 
 
σhor = (σhor

2)0.5 if  σhor ≥0 ;  σhor = -(1σhor
2)0.5 if σhor <0.  

 
By plugging the total, mean, and standard deviation values from the geometrical 
statistical values into the Gaussian equation, we have one form of a Gaussian fit to the 
data. The resulting Gaussian is given by 
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We computed two versions of an error statistic for this approximate Gaussian, and also 
for each of the other fits below. These error statistics will be important in deciding which 
fit method is the best. The first error statistic is the normalized average absolute 
difference between fit and data, given for the horizontal by 
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where the subscript 1 denotes first-moment type of error statistic, and ss in the subscript 
stands for simple statistics.  
 
The second error statistic is the square root ε2sh of the normalized least square difference 
ε2sh

2 between fit and data, which for the horizontal profile is given by 
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where the subscript 2 denotes second-moment type of statistic. 
 
A similar substitution into a Gaussian was done for the vertical to obtain Sssv(zj), and then 
ε1ssv and ε2ssv were calculated for the vertical with expressions analogous to the horizontal 
versions above. 
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Median and absolute deviation 
 
The median is where half the signal in the profile is on each side. The median location 
ymedian was found by integrating Sh(yj) from i=0 until reaching the first data point i = I½ 
where the integral equals or exceeds ST/2.  Then, to be as precise as we can, we estimated 
the position within the cell where the exact ½ point is. In equation form, I½ is found for 
the first i, starting with i=0, where  
 

                    i= I½ 
Sh'  = (Δy/ST) Σ Sh(yi)    ≥  0.5     .              (Eq. 17) 

                       i=0 
 
The intracell correction is  
     

Δy'  =  Δy (Sh' -0.5) / [Sh(I½) Δ / ST] .              (Eq. 18) 
 
The coordinates are for the center of the grid cells, so the median horizontal location is 
 

ymedian = y0 + Δy (0.5 + I½ )- Δy'  ,              (Eq. 19) 
 
with a corresponding expression for zmedian . [If the coordinates were for the side of the 
cell near (opposite) the lidar, the factor 0.5 would become 1 (0).] 
 
The corresponding dispersion parameter is the absolute deviation 
 

          i=Ny -1 
dhor = (Δy/ST) Σ |yi - ymedian| Sh(yi)    .              (Eq. 20) 
                      i=0 

 
The equations for zmedian and dver are analogous to those just given for the horizontal. 
 
The relationship between σ and d for a Gaussian is σ = (π/2)½ d. By plugging in the 
values ST for the total, the median values instead of the mean, and σmedh = (π/2)½ dhor and 
σmedv = (π/2)½ dver for the σ’s, we produced another Gaussian approximation with ST, 
ymedian ,  σmedh , zmedian , and σmedv as the Gaussian parameters. The error statistics were 
calculated similar to above, giving us ε1mdh , ε2mdh , ε1mdv , and ε2mdv .  
 
 
Median and width to 68% of the signal 
 
A method to obtain an approximate Gaussian fit similar to that with the mean and 
standard deviation but focusing more on the center of the profiles and with less 
dependence on the shape in the wings was to use the median as the center and assign the 
distance between the points that bracket 0.6826 of the total signal as 2σ. This is because 
the area between 1 standard deviation on each side of the center of a normalized Gaussian 
curve is 0.6826. 
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The value of total signal ST and the locations of the medians ymedian and zmedian are the 
same as for the section on Median and Absolute Deviation. 
 
Each marginal profile was integrated outward from each side of its median until the 
integral value reached 0.3413ST. The distances between these two points was considered 
to be 2σ. The equation for the integration from ymedian toward y0 was performed as 
follows (referring to the section on median and absolute deviation for some of the 
parameters already calculated there: 
 

      i= Inear 
Snear'  = ST

-1 { (Δy-Δy') Sh(I½) +Δy Σ Sh(yi)    ≥  0.3413  ,           (Eq. 21) 
      i= I½-1 

 
where Inear< I½ . The intracell correction is Δynear'  =  Δy (Snear' -0.3413) / [Sh(Inear) Δy / 
ST]. The equation for the integration on the far side of the median is: 

i= Ifar 
Snearh'  = ST

-1 { Δy' Sh(I½) +Δy Σ Sh(yi)    }  ≥  0.3413  ,           (Eq. 22) 
i= I½+1 

 
where Inear> I½.  The intracell correction is Δyfar'  =  Δy (Sfarh' -0.3413) / [Sh(Ifar) Δy / ST].  
The equivalent value of σ68h is  
 

σ68h = 0.5 [(Ifar- Inear+1)Δy – (Δynear'+ Δyfar') ].            (Eq. 23) 
 
A corresponding expression for σ68v was calculated using zmedian , J½ , z0 , Δz , and Δz' 
instead of ymedian , I½ , y0 , Δy , and Δy', respectively. 
 
By plugging into the Gaussian equation the values ST, xmedian instead of the mean, and 
σ68h for the standard deviation, we have another approximate fit in the horizontal, and 
similarly in the vertical using ST, zmedian , and σ68v . The error statistics were calculated 
similar to above, giving us ε168h , ε268h , ε168v , and ε268v .  
 
[An additional approximate Gaussian fit could be added by increasing the 68% to 90% 
(1.645 standard deviations) or 95.4% (2 standard deviations). Or, if one of these more 
inclusive fits is found to better, it could replace the 68% fit. The algorithm would be the 
same, except 0.3413 would be replaced by 0.90 (for 90%) or 0.4722 (for 95.4%).] 
 
 
Peak and tenth of peak 
 
In processing data from LAX, Roger Wayson viewed the false-color 2-D GIF images and 
used the location of the peak signal as the “center.” He subjectively determined where the 
signal dropped (sometimes sharply) to a low value and used that as a width marker. He 
assumed the distance from the location of the peak to this width marker was equivalent to 
a Gaussian from the center to where the signal declines to 10% of the center or peak 
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value. This distance is 2.146σ ≈ 2.15σ. It is very hard to automatically mimic his 
approach. However, we applied one scheme which is based on the concept of finding the 
peak and the point where the profile drops to 0.1 of the peak value. This scheme found 
the peak in each of the horizontal and vertical profiles instead of the location of the peak 
value of s(xi,zj) in the 2-D array as Roger did. Also, this scheme finds the actual location 
where the signal drops to 10% of the peak value, instead of judging this location by eye. 
 
For the horizontal profile, we used the IDL max tool to find Shmax(imax), which returns the 
maximum value and, with the max_subscript option, its array index imax. The location of 
the peak is thus at ypeak = y0 + Δy imax . We then searched the array from the i=0 end and 
found the first time Sh(i)>0.1 Shmax , noting the index ineartenth. Next we searched the array 
from i=Ny-1 and found the first time Sh(i)>0.1 Shmax , noting the index ifartenth . Assuming 
the crossing of the 0.1 value was midway between array points, we calculated the 
equivalent Gaussian width according to 4.92σpth = (ifartenth - ineartenth+1)Δy, or  σpth = 
(ifartenth - ineartenth +1)Δy/4.92. The subscript pt refers to peak-tenth. 
 
The analogous calculations were performed on the vertical profile to obtain Szmax , zpeak , 
and σptv.  
A Gaussian-shaped estimate was found from these parameters. Since the peak of the 
horizontal (vertical) profile is Shmax, the corresponding value for total signal for 
substitution into the equation is STpth = (2π)½ σpth Shmax  . For the vertical, STptv = (2π)½ 
σptv Svmax , which in general is not the same as STpth . The parameters defining the 
equivalent Gaussian profile are therefore STpth , ypeak , and σpth substituting for ST , ymean , 
and σh , respectively. A fit was similarly made in the vertical. The error statistics ε1pth , 
ε2pth , ε1ptv , and ε2ptv were calculated, using the ST from the data rather than STpth or STptv 
to normalize.  
   
 
Least-squares fit of a single Gaussian to extended profile 
 
The plume horizontal and vertical profile can also be characterized by fitting a Gaussian 
shape to the profile based on minimizing the least squares difference between fit and 
data. This works well for profiles with approximately Gaussian shape, but can become 
unstable if the shape deviates strongly. When the profile shape is very different than a 
Gaussian, or signal-to-noise is very poor, the plain Gaussian fit to the data can give 
erroneous and even unphysical results. For example, for a uniform profile, the Gaussian 
fit will have dispersion parameter approaching infinity. For a profile monotonically 
decreasing with height, the Gaussian fit will have mean height below the surface. In order 
to constrain the width of the fit in such situations, we extend the marginal profiles in the 
horizontal and the vertical on both sides with values of zero. We choose to enlarge the 
size of the horizontal array to approximately double the original size, with Ny/2 elements 
(rounded down to the nearest integer) added on each side, so the new array has size Ny' = 
2 Ny if Ny was even and Ny' = 2 Ny-1 if Ny was odd. The distance to the new first element 
in the array is y0' = y0 – 0.5(Ny' - Ny)Δy, and Sh(yi) =0 is assigned to each new element. 
The vertical array is increased in size in similar manner using Nz , z0, Δz.  The new 
elements at the ends of the array are assigned a value Sv(zj) =0. GAUSSFIT was used to 
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fit the data in the extended horizontal and vertical profiles. The equation for the 
parameters is, for a horizontal profile, 
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 GAUSSFIT was also run for the vertical profile, obtaining STGv(ext) , zGv(ext) ,  and σGv(ext) .  
 
The error parameters between the fit and the data were calculated as above. The resulting 
error parameters are ε1Gh(ext) , ε2Gh(ext) , ε1Gv(ext) , and ε2Gv(ext) , using the ST from the data 
rather than STGh(ext) or STGv(ext) to normalize. These error statistics are calculated using 
only the original Ny or Nz data points. 
 
 
Double Gaussian fit in the horizontal – future 
 
Aircraft with wing-mounted engines often produce horizontal profiles with two peaks. A 
double Gaussian has potential for a much better fit to the horizontal profiles. We hope in 
the future to develop an ad hoc fitting scheme to produce this product. 
 
The algebraic expression for this double Gaussian is 
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Error parameters of fit compared with data would be defined as ε1DGh , ε2DGh , using the 
ST from the data rather than STDGh to normalize.  
 
We attempted to do this with the IDL LIMFIT and CURVFIT functions, but found that 
the nonlinear fit iteration rarely converged. The output was not removed from the data 
set, so results are flagged as bad. 
 
 
Least-squares fit of a single Gaussian to vertical profile without extension 
 
We also fitted a Gaussian equation to the vertical profile without extending on both sides 
with zero data values. The purpose was to provide an indication of how much the profile 
deviated from a Gaussian shape. If the data formed a full Gaussian curve, the two results 
would be nearly identical. If the profile was not Gaussian, e.g., a vertical profile in the 
shape of half a Gaussian with maximum at the surface and decreasing monotonically with 
height, the fit with extended data would have a positive mean height and the fit without 
extension would have mean height at zero and a larger standard deviation. The 
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parameters are defined as for the Gaussian fit to the extended profile, except the (ext) in 
the subscript is dropped. 

 
 

Folded Gaussian fit in the vertical – future 
 
Vertical profiles of pollutants released near the ground typically have a shape much 
closer to a folded Gaussian than a simple Gaussian. The concept is that the turbulence 
mixing “reflects” at the surface. The expression, which has 3 varying parameters, is 
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where, if z is the height above the ground, the folding or “mirror” height (the surface) is 
at zFG – Δz/2 when the z coordinate applies to the center of the grid cell.  
 
We attempted to use IDL’s LMFIT and CURVEFIT functions, but failed to obtain 
convergence. We hope in the future to develop an ad hoc method to perform these fits. 
 
 
Negative plume 
 

If ST <0, then we have a “negative plume,” “subambient plume,” or “void” case. One 
can still process the data, and the above plume parameter relationships are still be valid. 

 
 

Parameters related to optical extinction 
 
The plume-total inferred extinction through the plume is given by: 
 

                  j=Nz-1 
    Τp   =   Δz  Σ  τp(zj)    .                    (Eq. 27) 

                   j=0 
 

The associated plume-average extinction-to-backscatter ratio Lp is given by 
 

Lp =  Τp / ST ,                (Eq. 28) 
 
where ST is from the data and not from any of the fits. 
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Plume Parameter Outputs 
 
The plume parameters with associated aircraft information are provided on a CD 
accompanying this report. Data are stored in EXCEL files, one for each of the three 
experimental days, named as xxSeptember2004_FinalReport.xls, where xx is the day of 
the month. The results for one sweep are listed on one row and sweeps in chronological 
order. The first two rows are headings with parameter and physical units where 
applicable. They headings are similar to the algebraic parameters listed in this document. 
The key for these columns is given in more detail in the 
UNAPlumeParameterKey_FinalReport.xls file on the CD. 
 
All times and dates in this report are UTC. For local time (EDT) subtract 4 hours, and for 
EST subtract 5 hours. 
 
 
Comments on Plume Parameters 
 
For plumes possessing strong signal and a full Gaussian shape, the plume parameters 
using the several methods are similar. However, when profiles of backscatter deviate 
from these conditions, differences do occur among the methods, sometimes severely. The 
choice of which method is best for a particular parameter depends on the goal in using the 
parameter and on how well the inferred profile fits the data. The ε parameters indicate the 
goodness of fit. The ε1 parameters are believed better to use, because compared to ε2 
parameters they are less sensitive to outliers, depend less strongly on noise, and depend 
more strongly on differences between the shapes of the data profile and the inferred fit. 
 
For total signal in the plume the ST parameter is recommended as the simplest and most 
direct. The total signal derived from other methods will depend on the shape of the fitted 
profile and hence is less dependable for this purpose. The soot emission rate calculations 
use ST. 
 
The geometrical or statistical parameters (subscript ss) for plume center location use the 
traditional statistical method, but given the noisiness of the data, are probably not as 
robust as the median method. Likewise, the plume size estimates using the geometrical or 
statistical parameters are sensitive to noise and nonsmooth behavior at the ends of the 
profiles. The absolute deviation or 68% of total signal methods should be more robust 
and preferred. 
 
The peak and distance to 1/10 of peak method is closest to the interactive method used 
for the LAX data, but is not expected to be very stable. I recommend against using it 
routinely. 
 
The Guassian fit to extended profile simulates most closely what most people would do if 
they were to hand-draw a Gaussian curve to fit the data. 
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The Gaussian fit to the nonextended vertical profile should not be used for its plume 
parameters, but rather was included only as an indication of how non-Gaussian the 
profiles are by comparing it to the Gaussian fit with extended profiles. 
 
With a goal of determining plume rise and plume size as input to a dispersion model, the 
best choice should generally be from among the two median methods and the Gaussian fit 
with extended profile method. Perhaps an optimum method would be to check the ε1 
values for each sweep for these three methods and use the plume location and size from 
the method with the smallest ε1. 
 
Sometimes when profiles are very noisy due to weak signal or have convoluted shapes, 
the plume parameters become unphysical, e.g., negative width parameters or possessing 
impossible plume locations. We have not screened out such examples, so the user of the 
data must define and apply acceptable criteria. Lessons learned from such screening 
might be applied automatically to data processing in the future.  
 
 
2.3.4 Basic Method for Measuring Soot Emission Rates 
  
The basic method to determine soot emission rates is the LIDAR measures the flux F of 
soot through a perpendicular plane scanned by the LIDAR behind the aircraft. For a 
stationary aircraft and assuming particle mass is conserved between the exit nozzle and 
the scan plane, the emission rate Q = F. The pulsed LIDAR measures optical backscatter 
β as a function of range along the beam. By scanning in elevation angle the distribution 
βp(y,z) in the scan plane is obtained and extracted as described above. The distribution of 
soot mass concentration c is computed from c = η βp, where η is found using scattering 
calculations as described below. The experimental layout and coordinate system for test 
measurements at UNA-UNA is shown in Fig. 6. The flux for this situation is given by  

 

     ∫∫=
zy

x dzdyzyvzycF
,

),(),(             (Eq. 29) 

 
where, vx is the component of air velocity in the direction perpendicular to the scan plane. 
The y-z extent of c and vx increase downstream as the exhaust mixes with ambient air. 
 
According to our funding agreements with University of Missouri-Rolla and the 
Department of Transportation VOLPE Center, one or both were to provide us with the 
plume velocity profiles at the location of the LIDAR scan plane. The search of literature 
and reports made by the latter were not successful. The website of Boeing Aircraft 
Company shows contour plots of velocity and temperature behind some of their aircraft, 
but the purpose is for safe ground operations and the values appear to be extremes rather 
than the means needed for the flux calculations. We had also hoped an engine or aircraft 
manufacturer might have models that would suffice. These hopes all proved to be vain, 
forcing us to consider other approaches. After much thought and discussion with Roger 
Wayson and some checking in the literature on high Reynolds number jets, we 



 28

determined that a theoretical approach based on simple physical principles and engine 
specifications would suffice. The simplicity of this approach actually proves to be an 
advantage. 
 
We instead estimated vx (y, z)  by applying conservation of mass and momentum, 
meaning the velocity “plume” had the same shape and cross-sectional area as  c(y, z). The 
effects of the ambient wind can be neglected for measurements so close behind the 
engines. The equation for the flux then becomes 

     ( )[ ] dydzzyc
Q

ThF
zyamb

2

,

,∫∫=
ρ

 ,            (Eq. 30) 

 
where: 
Th = engine thrust (i.e., the momentum of the exhaust air generated by the engine) 
ρamb = density of the ambient air. 
 
The LIDAR measured the area integral of c using η, Th was determined from engine 
specifications and power setting, and ρamb was calculated from airport temperature and 
pressure data. Details of the measurements and theory for determining emission indexes 
are described in the next section. 
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Figure 6: Experimental layout for trial soot emission measurements by LIDAR from 
a stationary aircraft with one engine operating. For higher power settings of wing-
mounted engines, the starboard engine was also operated at equal or less power 
than the primary engine on the port side. 
 
 
 
For tail-mounted engines with the plume still separated from the surface, the LIDAR 
system measured the plume’s vertical profile (Fig. 7 left frame) and the horizontal profile 
was assumed the same, i.e., σy = σz. The LIDAR’s vertical resolution is much better than 
the horizontal resolution, and the horizontal width close behind the engine couldn’t be 
resolved. For a single, wing-mounted engine, the plume was in close contact with the 
ground and had an asymmetric profile, for which we assumed more width than height, 
i.e., σy = 2σz. At higher throttle settings, both wing-mounted engines had to be running 
(Fig. 7 right frame), so the output from just one engine was calculated from the data for 
two engines. 
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Figure 7:  Difference during Single Engine and Two Engine Testing 

 
 
2.3.5 Mass from Backscatter 
 
The relationship between the observed plume backscatter and the mass concentration of 
soot (total aerosol) is given by  
 

c = η βp              (Eq. 31) 
 
where the units we use are g m-3 for  c, m-1 sr-1 for βp , and g sr m-2 for η. Scattering 
calculations or measurements in controlled conditions are required to determine η 
accurately. For this initial attempt at soot measurements we chose a simple and 
convenient method to calculate η. We elected to apply Mie scattering theory and the 
volume mixing rule, which are often used, and produced the data in Fig. 9. Because soot 
particles are decidedly nonspherical, the limitations of these assumptions must be kept in 
mind. The refractive index and density of soot must be known for these calculations. 
After reviewing the literature, which reports a variety of refractive index values, many 
without the associated data on particle density, it was decided to follow Horvath (1993). 
Lognormal size distributions were assumed, which are widely reported in the literature as 
describing jet engine particles, and calculated for a variety of mass geometric mean 
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diameters and particle density using the volume mixing rule. In consultation with Roger 
Wayson and Rick Miake-Lye a particle density of 1 g cm-3 was assumed for this project. 
Based on the literature, a typical value of 0.07 μm for the mass geometrical mean 
diameter was assumed. This gave η = 9.35 g sr m-2 (Fig. 19). 
 

   
Figure 8: LIDAR backscatter per unit mass of soot (η-1) at 355-nm wavelength 
versus geometrical mean diameter for lognormal size distributions of spherical soot 
particles with geometrical standard deviation of 1.65 at the indicated values of 
particle density and associated refractive index using the volume mixing rule. The 
unlabeled curves are for steps in density of 0.25 g cm-3 and corresponding changes 
in refractive index. 
 
 
2.3.6 Engine Parameters 
 
The data and calculation to determine the values of Th and other parameters for each 
engine and power setting are listed in the StaticEngineParameters.xls file on the CD, and 
calculations for power settings for each stationary aircraft are in the “Eng” worksheets in 
the aircraft files.  
 
ICAO data on fuel flow (FF) were available at 7, 35, 80, and 100% throttle for each 
engine, and were interpolated and extrapolated to the other power settings experienced 
during the tests. Thrust at 100% throttle was obtained from ICAO, and air mass flow Φ0 
through the engine at 100% was obtained by George Noel from the Jane’s data base. 
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Thrust was assumed proportional to throttle setting, an assumption verified by industry 
experts as very reasonable. Velocity of air at the exit nozzle was calculated from  
 
     v0 = Th / Φ0               (Eq. 32) 
 
at 100% throttle. Both mass flow and velocity at the exit nozzle were assumed to vary 
with the square root of the thrust, ie., Eq. 25 holds at power settings below 100% with the 
proportionality between v0 and Φ0 constant. The temperature of the air exiting the nozzle 
was calculated from the net heat of combustion of  the fuel Hc

 = 43.2 ×106 J kg-1 (which 
is a typical value), the fuel flow rate, and assuming all the energy not used for 
accelerating the air mass flow through the engine increased the temperature of the 
exhaust. The equation for temperature increase above ambient is 
 

[ ] [ ]pc cvHFFT 0
2

00 /5.0 ΦΦ−=Δ   ,             (Eq. 33) 
 
where ΔT is in °C or °K and cp = 1005 J kg-1 °K-1 is the specific heat of dry air at constant 
pressure. The values of bypass ratio BPR, also used in the emission index calculations, 
was obtained from the ICAO data base. 
 
The accuracy of these calculations could be checked if good measurements were 
performed of exhaust temperature and velocity at the in situ probe used in the tests.      
   
 
2.3.7 Emission Index from Enhanced Backscatter 
 
The emission index derived from Eq. 23 assuming a Gaussian profile in both vertical and 
horizontal directions for concentration (and velocity) is 
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where  
=η the inverse of the mass backscatter LIDAR efficiency = c/β 

c = soot concentration (g/m3) 
Th = thrust 
FF = fuel flow rate 
Ρamb = ambient air density 
σy, σz = standard deviation of c(y,z) 
 
B is the enhanced backscatter integrated over the cross section of the plume 
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For the half Gaussian in the vertical, the 4π changes to 2π/(1-2/π)1/2  which is 17% 
smaller than 4π. Eq. 34 was first derived assuming constant velocity and air density 
across the exhaust nozzle. It was derived again assuming the core and bypass air were 
separated and had different velocities, with the same result. The derivation was also 
performed assuming higher pressure at the exhaust nozzle than ambient, but when the 
plume was allowed to expand perpendicular to the axis, which it will quickly do, the 
result was as listed in Eq. 34. As mentioned above, the derivation applies conservation of 
mass and momentum, which are fundamental principles in high speed jet theory 
(Schlichting and Gersten, 2000). Thus, Eq. 34, with 4π or other appropriate form factor 
depending on plume shape appears to be robust as well as simple. 
 
The EIenh results from the experiment are listed in the “Emit” worksheet (column AI) for 
each aircraft.  
 
This equation assumes the engine adds soot to the air and does not otherwise alter the 
LIDAR scattering properties of the air passing through the engine. However, there are 
changes, which are discussed and accounted for in the next section.  
 
 
2.3.8 Adjustments to Emission Index for Secondary Effects  
 
Three physical effects in the plume will alter the measured backscatter and the emission 
index. One is the destruction of ambient particles in the extremely hot air passing through 
the core of the engine where the fuel is burned, causing a loss of backscatter. A second is 
the dilution of the air density, because the plume is warmer than ambient, which also 
decreases backscatter. The third is loss of adsorbed water from particles in the bypass air 
and also as the exhaust mixes with particles in the ambient air, also causing a decrease in 
backscatter. The proof that these type of mechanisms occur is that the LIDAR has 
observed a “negative” plume, i.e., the signal where the plume should be was consistently 
less than ambient, on a number of occasions, particular when humidity was high. In fact, 
slightly negative plumes were observed at some power settings during the stationary 
tests, but not nearly as dramatic as some runway examples, particularly at LAX. A theory 
accounting for the first two is described next. Funding limitations have required 
postponement of theoretical examination of the loss of adsorbed water for future 
research. 
 
The current assumption is that all the ambient particles passing through the engine core 
are volatized to gas, and all particles in the bypass air are unchanged. The amount of soot 
that compensates to make up the LIDAR backscatter difference from ambient is 
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The amount of soot required to make up the LIDAR backscatter lost due to warm and 
hence lower density plume is 
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The results of the sum of these two adjustments are listed in the aircraft spreadsheets in 
column AL of the “Emit” worksheets on the CD.  
 
A review of the meteorological data suggests that recirculation could also be a cause for 
some of occurrences of these negative plumes. The recirculation of particles in the area, 
which perhaps were larger after cooling and coagulation, presented a better "target" for 
back scatter. 
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3.0 Results and Discussion 
 
 
3.1 Dedicated Engine Tests 
 
The complete reduced dataset for the UMR and ARI component of the dedicated engine 
tests can be found in the attached spreadsheet – Engine Test Analysis – For Archive.xls. 
These data are summarized as a series of five plots associated with each airframe/engine 
studied and these represent the variation in parameters mentioned earlier as a function of 
engine power conditions.  

 
 

3.1.1 Physical Characterization Results 
 
Gas turbine engine emissions are influenced by engine power settings and ambient 
conditions at the engine inlet.  Fig. 9 shows typical particle size distributions as a 
function of engine power acquired at the engine exit plane (1m) (Lobo et al., 2007). The 
mean diameter of the particle size distribution shifts to larger size as the engine power 
setting is increased. For discussions of the influence of test operating conditions on the 
exhaust aerosol, it is convenient to represent the size distributions with characteristic 
parameters: number based geometric mean diameter (Dgeom), geometric standard 
deviation (Sigma), mass based geometric mean diameter (DgeomM), and total 
concentration; and the derived parameters: number-based emission index (EIn) and mass-
based emission index (EIm). All data presented here has been acquired using the 
DMS500 and has also been corrected for line loss using the function shown in Appendix 
B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Typical particle size distributions acquired at the engine exit plane (1m) 
 
Figs. 10-15 represent the variation of a given aerosol parameter as a function of engine 
power setting, for each engine studied. 
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A/C # 908 – Aircraft: MD-88, Engine: JT8D-219 
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Figure 10a: Engine Emissions Parameters as a Function of Engine Power for  

AC # 908 
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Figure 10b: Engine Emissions Parameters as a Function of Engine Power for 

 AC # 908 
 
 
Dgeom 
Dgeom increases with engine power setting from a minimum of 21nm to a maximum of 
40nm. This trend is consistent with behavior of the CFM56-2C1 engine studied in APEX 
campaign (Lobo et al., 2007)   
 
Sigma 
Sigma increases slightly with power from 1.7 at low power to 1.8 at high power.  
 
DgeomM 
DgeomM is initially higher at low power, goes through a minimum at 30% power and 
then increases with power.    
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EIn  
EIn is higher at the low power conditions, exhibits a minimum at 30% power and then 
increases with power. Again this trend is consistent with that observed in APEX. 
 
EIm  
EIm is similar to EIn, higher at the low power conditions, exhibits a minimum at 30% 
power and then rapidly increases with power. 
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A/C # 918 – Aircraft: MD-88, Engine: JT8D-219 
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Figure 11a: Engine Emissions Parameters as a Function of Engine Power for  
AC# 918 
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Figure 11b: Engine Emissions Parameters as a Function of Engine Power for  

AC# 918 
 
This was the second aircraft with JT8D engines to be studied. The characteristic PM 
parameters and trends as a function of power were similar to those of first engine studied. 
 
Dgeom 
Dgeom increases with engine power setting from a minimum of 24nm to a maximum of 
42nm.  
 
Sigma 
Sigma increases slightly with power from 1.7 at low power to 1.8 at high power.  
 
DgeomM 
DgeomM is initially higher at low power, goes through a minimum at 30% power and 
then increases with power.    
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EIn  
EIn is higher at the low power conditions – 14x1015 particles/kg fuel burnt at 4% power, 
exhibits a minimum at 30% power and then increases with power. This behavior is 
consistent with the previous JT8D engine studied. 
 
EIm  
EIm is similar to EIn, higher at the low power conditions, exhibits a minimum at 30% 
power and then rapidly increases with power. 
 

 

3.1.1.1 Comparison of PM emissions from JT8Ds 
 
The average percent difference and rms percent difference between the two JT8D-219 
engines studied is presented in Table 3. Two sets of data are presented – one with the 
percent difference for each parameter at all powers and the second with average percent 
difference for each parameter at all but the 4% and 7% power conditions. The 4% and 7% 
power conditions were excluded in the second average because the engine is usually not 
operating efficiently at these power conditions and there is greater variation in the 
measured parameters.  
 
 

Table 3: Comparison of PM parameters from JT8D-219 engines studied 
 
Engine Dgeom Sigma DgeomM EIn EIm 
 Avg 

% 
Diff 

RMS 
% 
Diff 

Avg 
% 
Diff 

RMS 
% 
Diff 

Avg 
% 
Diff 

RMS 
% 
Diff 

Avg 
% 
Diff 

RMS 
% 
Diff 

Avg 
% 
Diff 

RMS 
% 
Diff 

JT8D-
219 (all 
powers) 

-5 5 -1 2 -6 9 -25 65 -45 83 

JT8D-
219 
(w/o 
4&7%) 

-2 8 0 1 -3 5 12 16 -2 20 

 
 
The results indicated that the differences observed between the two JT8D-219 engines are 
small. The second JT8D engine (AC#918) has smaller soot particles, and more of them, 
yet its mass-based emission index is lower on average. This can be attributed to that fact 
that these smaller particles have very little mass associated with them. 
 
The inclusion of the data from the idle conditions, 4% and 7% power, does influence the 
percent difference.   
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A/C # 134 – Aircraft: B767-300, Engine: GE CF6-80A2 
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Figure 12a: Engine Emissions Parameters as a Function of Engine Power for  

AC# 134 
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Figure 12b: Engine Emissions Parameters as a Function of Engine Power for  

AC# 134 
 
 
This engine was the first of the high power engines studied. For this engine, PM 
emissions could only be acquired from idle to 30% power. At higher engine power 
conditions the probe stand assembly became unstable, thus limiting the extent to which 
exhaust sample could be acquired.  
 
The data acquired is very limited and no trends with engine power condition can be 
discerned. However, the values of the PM parameters at these low power conditions are 
similar in magnitude to those of the JT8D engines studied previously.  
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A/C # 1816 – Aircraft: B767-400ER, Engine: GE CF6-80C3B8F 
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Figure 13a: Engine Emissions Parameters as a Function of Engine Power for  
AC# 1816 
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Figure 13b: Engine Emissions Parameters as a Function of Engine Power for  

AC# 1816 
 
 
This engine is similar to the previous CF6-80 studied, but is a different model with about 
20% more thrust. The probe assembly was modified so that a full range of PM emissions 
could be acquired. While modification did allow for exhaust samples to be collected from 
idle to the 60% engine power condition, the high power conditions were not able to be 
run. Once again, due to the limitations of this dataset, no meaningful trends can be 
inferred from the data acquired.  
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A/C # 635 – Aircraft: B757-200, Engine: PW 2037 
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Figure 14a: Engine Emissions Parameters as a Function of Engine Power for  

AC# 635 
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Figure 14b: Engine Emissions Parameters as a Function of Engine Power for  
AC# 635 

 
 
This engine was the first of the PW2037 engines studied. For this engine, PM emissions 
could only be acquired from idle to 50% power. At higher engine power conditions the 
probe stand assembly became unstable, thus limiting the extent to which exhaust sample 
could be acquired. The data acquired is very limited and no trends with engine power 
condition can be discerned.  
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A/C # 640 – Aircraft: B757-200, Engine: PW 2037 
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Figure 15a: Engine Emissions Parameters as a Function of Engine Power for  

AC# 640 
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Figure 15b: Engine Emissions Parameters as a Function of Engine Power for  

AC# 640 
 
 
 
This engine is similar to the previous PW2037 studied. Once again, the instability of the 
probe stand at the higher power limited the collection of exhaust samples from idle to the 
70% engine power condition.  
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3.1.2 ARI Data 
 
Due to the greater absolute thrust rating for the CF6 and 2037 engines and fears of the 
probe stand not being able to withstand the force, the higher engine settings were not 
sampled during this work. Despite this deficit, the particle mass loadings for black carbon 
(soot) appear to be similar to the APEX-1 result. Fig. 16 shows the black carbon mass 
loading emission index as a function of the nominal fraction of engine rated thrust for 
several engines studied. The APEX-1 data for the CFM56 engine is also on the figure as 
the grey points connected with the dashed line.  The two JT8D engines in this study have 
the greatest black carbon emission indices.  This is due to a prevalent soot mode at 40-80 
nm (particle mobility diameter).  The CF6 and PW2037 engines emit soot in a smaller 
size mode, < 50nm with overall less total black carbon mass. These engines, however, 
have a greater particle number emission index than the JT8D. Anecdotally, the JT8D 
emits fewer but larger particles while engines designed to reduce smoke number 
certification measurements emit more numerous quantities of smaller particles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: The lower panel portrays the black carbon mass loading emission index 
vs. the nominal fraction of engine rated thrust for several engines in this study.  The 
upper panel shows the particle number emission index for one of the CF6 engines 
with an off- trend data point at 15% of rated thrust in the black carbon EI. 
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Because the exhaust for all engines was sampled at ~1m from the engine exit plane, it is 
too hot for condensable species to be present on the soot particulate. Fig.17, however, 
indicates that condensation is taking place in the probe.  In the figure, the yellow and 
orange points are the lower throttle data points (ground idle ~4% and 7%).  When looking 
at the yellow and orange points in this figure only, four bands emerge and are the pastel 
blobs.  From least EIn to greatest, the trend for these clusters is CF6-80C2B8F, PW2037, 
JT8D-219 and CF6-80A2.  The ICAO 7% certification point for each engine is indicated 
with an arrow to help guide the eye.  The AMS Organic particulate loading qualitatively 
correlates with the ICAO UHC with a couple of outliers in the JT8D-219.  This is 
somewhat sensible, when the engine emits unburned hydrocarbons, it is quite likely that 
the mechanism leading to incomplete combustion is producing partially combusted low 
volatility species which can either participate in nucleation or condense to available soot 
surface area.  In the case of the JT8D-219 engine, the latter is quite likely due to the 
presence of a relatively greater black carbon emission index. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 17: Organic Particulate loading vs. Particle number emission index.  The 
results for all aircraft in this study are plotted, colored by the nominal fraction of 
rated thrust.  
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3.1.3 LIDAR Results 
 
Measurements were performed on six different aircraft using the arrangement shown in 
Fig. 18. The LIDAR and its pointing azimuth were fixed, and each aircraft was 
positioned with its primary engine approximately 310 m away and with the aftmost part 
of the stabilizer 10 m from the scan plane. The distance from engine exhaust nozzle to the 
scan plane varied and was > 10 m. Table 4 lists pertinent facts for each aircraft event. 
 

Table 4: Stationary Aircraft Measurements. Times are UTC 
 

Date Time 
Start 

Time 
End 

Aircraft 
Type 

Engine  
Type 

Primary 
Throttle 

Settings (%) 

Secondary 
Engine? 

9/22/2004 0614 0715 MD88      
(a) § 

JT8D-219 4, 7, 30, 50, 
70, 85, 100 

no 

9/23/2004 0532 0655 MD88   
(b) 

JT8D-219 4, 7, 30, 50, 
70, 85, 100 

no 

9/23/2004 1000 1054 B767-300   
(A) 

CF6-
80C2A1 

4, 7, 22 no 

9/24/2004 0430 0613 B767-
400ER     

(B) 

CF6-
802CB8 

4, 7, 15, 22, 
30, 40, 45, 50, 
60 

yes 

9/24/2004 0833 0929 B757-200   
(a) 

PW2037 4, 7, 15, 30, 
45, 50 

yes 

9/25/2004 0604 0802 B757-200   
(b) 

PW2037 4, 7, 30, 50, 
70, 85, 100 

yes 

  
§The letters in parentheses differentiate between like aircraft types in the graphs of 
results. 
 
The LIDAR performed repeated sweeps up and down through the exhaust plume, each 
one-way pass including ≈ 50 pulses. After typically 1-2 minutes at a steady power setting, 
the throttle was changed and the engines stabilized at the next power setting before data 
acquisition resumed. The throttle was usually cycled through the settings more than once. 
The “PP” worksheet in the spreadsheet files on CD for each aircraft in Table 4 has the 
measured plume parameters for each sweep. The “Ave” worksheet has the averages and 
sample standard deviations for the sweeps at each power setting. The detailed results are 
listed in spreadsheets with file names with the aircraft type and letter designator on the 
attached CD. When a power setting was used multiple times for an aircraft, these were 
averaged to form the final LIDAR result. 
 
Fig.18 shows the enhanced backscatter for one sweep through the plume from a single 
tail-mounted JT8D219 engine, and Fig. 19 is for two wing-mounted engines both at the 
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same throttle setting. The patchiness in the plume is a result of the turbulent mixing with 
the ambient air, and also perhaps unsteady soot emission rates from the engine. The 
averaged vertical profile was close to Gaussian in shape. The LIDAR was able to resolve 
the vertical profile, but the horizontal resolution was too coarse to measure the true width 
of the plume. For the single, tail-mounted engine, the horizontal profile was assumed 
Gaussian with the same spatial standard deviation as the measured vertical profile. The 
vertical profile from the wing-mounted engines was approximately a half-Gaussian, i.e., a 
maximum near the ground and decreasing as a Gaussian curve above the maximum. An 
attempt to deconvolve the LIDAR range gate was not accurate enough to rely on. It was 
noted that the engines tilt downward slightly, so the plume from engines mounted low on 
the wings would be expected to spread faster horizontally than vertically. The horizontal 
profile from each engine was assumed Gaussian in shape with a spatial standard 
deviation twice the standard deviation of the standard deviation of the vertical Gaussian, 
an assumption consistent with the coarse deconvolution result and the expected 
spreading.  
   

  
 
Figure 18: Enhanced backscatter for one sweep 10 m aft of the tail of an MD88 with 
a single, tail-mounted engine operating at 100% throttle. Note the vertical scale is 
expanded about 4 times. 
 
 
For power settings with low emission rates and no plume contrast against background, 
the plume sizes were assumed identical to visible plumes at other power settings from the 
same aircraft. 
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Figure 19: Enhanced backscatter for one sweep 10 m aft of the tail of a B757 with 
both wing-mounted engines operating at 70% throttle. Note the vertical scale is 
expanded about 7.5 times. The upward stepping of the plume at the bottom is due to 
a slight rise in height of the ground. 
   
 
3.1.3.1 Emission Index Results 
 
The final value for soot emission index is 
 

Tvolenh EIEIEIEI Δ++=  .             (Eq. 38) 
 
When only one engine was running, Eq. 36 was applied directly. When two engines were 
operated at identical power setting, the EI for both engines was determined and the result 
divided by two to obtain the emission value corresponding to the primary engine. When 
the secondary engine operated at a different throttle setting than the primary engine, the 
EI was obtained for both engines, the emission rate from the secondary engine was 
determined from results of both engines at lower power settings, and the latter was 
subtracted to isolate the emission rate from the primary engine. This bootstrapping 
procedure was less accurate than if we had always had only the primary engine operating 
or two operating at identical throttle settings. 
 
The experimental values of EIenh for individual power settings ranged from -.138 to 0.662 
g/kg. The value below zero is from a slightly “negative” plume, for which the noise in the 
data, non-uniform ambient conditions, and inadequacies in the theory or yield an 
unphysical result. The values for the sum of the second and third terms for single runs at 
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one power setting ranged from 0.006 to 0.036 g/kg, so these adjustments are very 
significant for engines with low emission rates but are minor for engines with strong soot 
emission. 
 
The results for like power settings for each aircraft were averaged and are shown in Table 
5 and Figs. 20-22. The MD88 aircraft exhibited strong emissions at high power settings, 
substantial emissions at idle (4%) and taxi (7%) power settings, and low emissions at 
other power settings. The B767’s had low emissions, even negative values. (It is of 
course impossible to have negative soot emissions, but the noise in the data, non-uniform 
ambient, and imperfections in the theory could all contribute to negative values of EI. 
These negative EI values help indicate the limits of accuracy in the current LIDAR 
method). The B757’s had emission index values that overall were between those of the 
MD88’s and the B767’s. Differences between the two aircraft of one type were smaller 
than differences between types of aircraft.   
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Table 5: Stationary aircraft parameters and emission index results from LIDAR 
 
Aircraft Throttle  

% 
Fuel 
flow     

(kg/s) 

Thrust  
(kNt) 

Air 
mass 
flow 

(kg/s) 

# 
cycles 

in 
average

Nozzle 
velocity 

(m/s) 

Nozzle 
ΔT 

(°K) 

Emission 
Index 
(g/kg) 

MD88(a) 4 0.0980 3.861 44.20 2 87.3 91.5 0.080 
" 7 0.1344 6.756 58.47 2 115.6 92.2 0.042 
" 30 0.3817 28.96 121.1 2 239.2 107.1 0.019 
" 50 0.6100 48.26 156.3 2 308.8 120.3 0.096 
" 70 0.8650 67.56 184.9 2 365.4 134.7 0.328 
" 85 1.085 82.04 203.8 2 402.7 148.2 0.554 
" 100 1.354 96.52 221.0 2 436.7 168.5 0.618 

MD88(b) 4 0.0980 3.861 44.20 1 87.3 91.5 0.309 
" 7 0.1344 6.756 58.47 3 115.6 92.2 0.085 
" 30 0.3817 28.96 121.1 3 239.2 107.1 0.044 
" 50 0.6100 48.26 156.3 2 308.8 120.3 0.046 
" 70 0.8650 67.56 184.9 2 365.4 134.7 0.238 
" 85 1.085 82.04 203.8 2 402.7 148.2 0.373 
" 100 1.354 96.52 221.0 3 436.7 168.5 0.542 

B767(A) 4 0.142 10.30 160.4 3 64.2 36.0 -0.043 
" 7 0.200 18.02 212.2 3 84.9 36.9 0.095 
" 22 .0480 56.63 376.2 2 150.5 43.6 -0.033 

B767(B) 4 0.144 10.68 160.4 4 66.6 36.4 -0.029 
" 7 0.205 18.69 212.2 3 88.1 37.7 -0.009 
" 15 0.366 40.05 310.6 3 128.9 42.4 0.009 
" 22 0.510 58.74 376.2 3 156.2 46.1 -0.019 
" 30 0.688 80.11 439.3 3 182.4 50.8 -0.025 
" 40 0.910 106.8 507.2 3 210.6 55.1 -0.015 
" 45 1.028 120.2 538.0 1 223.3 57.3 0.005 
" 50 1.150 133.5 567.1 4 235.4 59.6 -0.018 
" 60 1.410 160.2 621.2 1 257.9 64.5 0.026 

B757(a) 4 .108 6.65 121.6 3 54.7 36.7 0.041 
" 7 .152 11.64 160.9 2 72.4 38.0 -.004 
" 15 .260 24.95 235.5 2 106.0 41.9 0.023 
" 30 .458 49.91 333.0 2 149.9 47.9 0.122 
" 45 .670 74.86 407.9 1 183.5 53.9 0.274 
" 50 .750 83.18 429.9 3 193.5 56.4 0.293 

B757(b) 4 .108 6.65 121.6 4 54.7 36.7 -0.077 
" 7 .152 11.64 160.9 3 72.4 38.0 -0.057 
" 30 .458 49.91 333.0 3 149.9 47.9 0.075 
" 50 .750 83.18 429.9 4 193.5 56.4 0.256 
" 70 1.060 116.4 508.7 4 228.9 63.5 0.259 
" 85 1.307 141.4 560.5 1 252.2 68.6 0.190 
" 100 1.571 166.4 608.0 1 273.6 73.8 0.202 
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Figure 20: EI results from LIDAR for MD88 stationary aircraft. 
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Figure 21: EI results from LIDAR for B-767 stationary aircraft. 
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Figure 22:  EI results from LIDAR for B-757 stationary aircraft. 
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3.1.4 Comparison of Emission Indices obtained from Probe sampling and LIDAR 
 
LIDAR sampling was done concurrently with exhaust probe sampling, which permitted a 
direct comparison of PM mass measured from the probes (the “gold” standard) to the 
LIDAR system.   
 
Table 6 lists the individual comparative data for each engine tested.  The estimated root-
mean-square uncertainty in LIDAR measurements, assuming its several sources of error 
are independent, is ± a factor of 2 with an additional ±0.05 g/kg. The factor of 2 
uncertainty is principally from potential bias, especially the value of η. The ±0.05 g/kg is 
mostly from random measurement errors.  
 
While the correlation with some engines as compared to others was better, it can be seen 
from this table that in general, the differences were substantial.  However, the uncertainty 
in the analysis must be considered.  If the probe samples are very near zero, as occurs for 
some engines, the error limits for both measurement techniques would have to be 
considered.  In the best case, values varied by a factor of 0.3 (JT8D-219).  For the worst 
case, values varied by a factor of almost 511.  The average error was a negative factor of 
17.3.   
 
These errors are thought to have occurred for two reasons.  First, too many assumptions 
had to be made.  If further testing were to be done, these assumptions could be greatly 
limited by collection of specific data (e.g., temperature and wind parameters).  The 
second problem may be related to understanding the true efficiency of the measurement.  
It was assumed that η was known.  This parameter is crucial and could have a large 
impact on the reported results. 
 
To further test the applicability of the LIDAR mass remote sensing, trends were 
analyzed. Figures 23 through 28 show scatterplots comparing LIDAR and probe 
sampling results for the engines tested. It can be seen graphically that some engines, such 
as the JT8D-219, show excellent correlation. Others, such as the PW2037, have almost 
no agreement. Even the same class of engines does not show the same agreement on 
occasion.  The R2 values for the two JT8D-219 engines are 0.966 and 0.959, while the 
values for the two PW2037 engines are 0.512 and 0.001.   

 
There are two potential reasons for observing different results from the same engine 
types.  The first is the size of the particulate matter being emitted.  Engines vary and the 
LIDAR is working in the lower range of detectability, where small changes in particulate 
matter emissions can have tremendous impacts on the results.  In the case of the PW2037, 
there was also a compounding factor.  During the test with very low correlation, the wind 
was blowing from the tail to the front of the aircraft.  Recirculation was occurring.  While 
the probes were not tremendously affected, the LIDAR saw the entire ambient PM, 
resulting in much higher PM results. In addition, the recirculated PM was most likely 
larger due to growth of the particles that typically occur in the atmosphere and the 
condensation of volatile PM. 

 



 59

Table 6:  EI Data Derived by LIDAR Compared to Probe Sampling by UMR 
 

  % Power EI, LIDAR EI UMRDMS Absolute Fractional 
AC Engine Setting (g/kg fuel) (g/kg fuel) Difference Difference

CF6-80C2A1 4 -3.07E-02 5.64E-04 3.13E-02 54.5
  7 1.06E-01 2.08E-04 -1.06E-01 -510.7
  22 -2.45E-02 1.95E-04 2.47E-02 125.9
  30   4.49E-04 NA NA
PW2037 4 5.75E-02 1.47E-02 -4.29E-02 -3.9
  7 1.71E-02 2.23E-03 -1.49E-02 -7.7
  15 3.31E-02 1.44E-03 -3.16E-02 -23.0
  30 1.49E-01 2.27E-03 -1.46E-01 -65.5
  45 2.79E-01  NA NA
  50 2.99E-01 5.02E-03 -2.94E-01 -59.6
PW2037 4 -6.99E-02 1.97E-02 8.97E-02 3.6
  7 -4.71E-02 8.17E-03 5.53E-02 5.8
  30 8.18E-02 2.77E-02 -5.41E-02 -2.9
  50 1.05E+00 2.74E-02 -1.02E+00 -38.1
  60  1.80E-02 NA NA
  70 2.64E-01 2.70E-02 -2.37E-01 -9.7
  85 1.94E-01  NA NA
  100 2.06E-01   NA NA
CF6-80-C2B8 4   2.76E-04 2.76E-04   
  7 2.28E-03 2.13E-04 -2.07E-03 -10.7
  15 1.84E-02 1.84E-03 -1.66E-02 -10.0
  22 -1.12E-02 6.50E-04 1.18E-02 17.2
  30 -1.83E-02 9.57E-04 1.93E-02 19.2
  40 -9.14E-03 1.34E-03 1.05E-02 6.8
  45 1.08E-02  NA NA
  50 -5.22E-02 1.79E-03 5.40E-02 29.2
JT8D-219 60 3.03E-02 1.39E-03 -2.89E-02 -21.7
  4 7.06E-02 1.79E-02 -5.27E-02 -3.9
  7 4.40E-02 4.13E-03 -3.99E-02 -10.7
  30 2.40E-02 1.30E-03 -2.28E-02 -18.6
  50 7.66E-02 1.23E-02 -6.43E-02 -6.2
  70 2.40E-01 8.29E-02 -1.57E-01 -2.8
  85 3.99E-01 2.26E-01 -1.73E-01 -1.5
JT8D-219 100 4.44E-01 2.84E-01 -1.60E-01 -1.3
  4 2.33E-01 1.06E-01 -1.27E-01 -2.1
  7 7.39E-02 4.01E-02 -3.39E-02 -1.8
  30 4.10E-02 1.29E-03 -3.97E-02 -31.8
  50 4.11E-02 1.34E-02 -2.77E-02 -3.0
  70 1.76E-01 1.19E-01 -5.64E-02 -1.4
  85 2.71E-01 1.85E-01 -8.59E-02 -1.3
  100 3.90E-01 2.45E-01 -1.45E-01 -1.3
Average Error       -8.24E-02 -17.3
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Additionally, the APEX series of experiments show that particulate matter sizes and 
numbers change with power setting (Wey et al., 2006; Lobo et al., 2007). Both of these 
parameters would have a large effect on the measured backscatter and η. 
 
The next question analyzed was how LIDAR performed for all engines in an aggregated 
analysis.  Fig. 29 shows a scattergram of all data compared to the power settings. Fig. 30 
shows the correlation between the LIDAR and probe EIs.  It can be seen that a definite 
trend occurs. 
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Figure 23: Comparison of LIDAR Results (Red) to Probe Sampling (Blue) for the 
JT8D-219 (one case) 
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Figure 24: Comparison of LIDAR Results (Red) to Probe Sampling (Blue) for the 
JT8D-219 (second case) 
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Figure 25: Comparison of LIDAR Results (Red) to Probe Sampling (Blue) for the 

PW2037 (one case) 
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Figure 26: Comparison of LIDAR Results (Red) to Probe Sampling (Blue) for the 

PW2037 (second case) 
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Figure 27: Comparison of LIDAR Results (Red) to Probe Sampling (Blue) for the 

CF6-80-C2A1 
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Figure 28: Comparison of LIDAR Results (Red) to Probe Sampling (Blue) for the 

CF6-80-C2B8 
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Figure 29: Scattergram of the LIDAR and Probe EIs as a function of Engine Power 

Setting 
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Figure 30: Correlation of the LIDAR and Probe EIs 
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3.2 Airport Study 

 
Several aircraft engine plume events have been chosen and their preliminary results will 
be discussed.  These ‘showcase’ events are meant to illustrate the tremendous promise a 
complete analysis of this data would yield. A number of questions are posed by these 
events and looking at the rest of the data would allow very significant statements to be 
made about the differences and similarities between engine technologies as well as 
differences and similarities to the International Civil Aviation Organization (ICAO) 
reference points. 
 
 
3.2.1 Background Identification and Characterization 
 
The airport environment is very dynamic in nature and there are a periods of relatively 
high and low frequency departures in addition to varying levels of activity at the main 
terminal area. Since throughout this study, the airport complex was immediately upwind 
of the sampling location, the background air was also changing throughout the day. This 
background must be quantified in order to ascertain the true emissions from aircraft 
related activities that were being investigated. 
 
Background points were identified approximately every fifteen minutes by finding the 
relative minima of three PM quantities: average total concentration, total concentration 
standard deviation, and total concentration slope standard deviation. The above three 
quantities were calculated over 61 second time intervals with each interval matched to its 
midpoint.  Sixty-one seconds was chosen for the width of the interval because such a 
duration would completely contain entire plume events (and possibly more than one 
event) leading to relatively higher values of all three quantities for these intervals. The 
quantities used for identification were chosen because the background corresponds to 
periods of relatively low concentration, periods of relatively small variation in the 
concentration, and periods of relatively small variation in the rate of change of the 
concentration.  Figs. 31, 32, and 33 are graphs of these three quantities versus time. The 
six background points identified in this time interval are shown on these figures with 
diamond markers.   
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Average Total Concentration Vs. Time
(for 1 minute intervals)
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Figure 31: Average Total Concentration vs. Time (selected Background Points 
Shown as Pink Diamonds) 

 
Normalized Standard Deviation of the Total Concentration V. Time

(for 1 minute intervals)
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Figure 32: Normalized Standard Deviation of the Total Concentration vs. Time 
(selected Background Points Shown as Pink Diamonds) 
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Normalized Standard Deviation of the 
Total Concentration Slope Vs. Time

(for 1 minute intervals)
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Figure 33: Normalized Standard Deviation of the Total Concentration Slope vs. 

Time (selected Background Points Shown as Pink Diamonds) 
 
 
This same procedure was used to identify the background points for the other times and 
days. With all of the background points identified, the background was then characterized 
for each particle size measured by the DMS500. Sizes which contributed at least one-
percent to the background by either number concentration or mass concentration at any 
point during a given day were considered a significant contributor to the background.  
For each of these significant sizes on an individual day, a least-squares polynomial curve 
fit was found as a function of time for the differential concentration of that size. The 
curve fitting algorithm used takes into account the uncertainty in the value at each point 
and can produce up to a tenth-order polynomial. Tenth through third order polynomials of 
the data points for a given size were compared to those data points and the order of the 
curve fit that was felt to best describe the data was used for that size. In other words, each 
significant size may have a different order polynomial describing it. All the curves 
corresponding to different significant sizes taken as a whole define the background for a 
given day and may be subtracted from the size distributions of the plume events to find 
each event’s particulate signature as described in the previous section.   
 
The total background concentration for a day may be found in two ways: either though a 
curve fit to the total background concentration data points or as a sum of the 
concentrations of all of the curves of the significant sizes for that day.  Fig. 34 shows a 
comparison of these two methods and the mean of the two methods to the actual data for 
September 28, 2004.  It can be seen that the average of the two methods reasonably 
closely resembles the actual data, so these values are used for the background total 
concentration.   
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Figure 34: Background Prediction Summary as Compared to the Actual Data 
Points for September 28, 2004. 

 
 
 
3.2.2 Plume Identification  
 
In the airport portion of the study, data was acquired continuously in real-time for a 
period of several hours each day.  From this multitude of data, events must be found and 
matched to the aircraft producing the emissions.  Though on the surface this may seem a 
straight forward task, the multitude of data as well as the variance in take-off frequency 
necessitate a thorough strategy be developed that is more rigorous than simply “finding 
peaks.” 
 
Concentration profiles for a typical isolated take-off event are shown in Fig. 35. The 
concomitant rise in particle number and volume concentration and CO2 concentration 
indicates that this event is caused by aircraft activity. From data recorded by the UMR 
weather station and mobile laboratory’s location relative to the runway, a predicted drift 
time for the plume can be found for each event. This predicted drift time is then 
subtracted from the event start time to find an estimated take-off time for the aircraft 
producing the plume. This time is then compared to the recorded take-off times to 
correlate the plume to a particular aircraft.   
 
This correlation of plumes to aircraft is trivial in the case of isolated events, but at a large 
commercial airport, the high frequency of departures and changes in the prevailing wind 
speed and direction make this task more difficult. In such cases, the technique employed 
to match plumes with aircrafts is to plot the total particle/volume concentration vs. CO2 
concentration (see Fig. 36). A regression analysis can then be performed and then slope 
of the line gives the emission ratio for a particular plume. For the isolated event shown in 
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Fig. 35, a regression analysis has been performed on the ascending as well as the 
descending side of the plume. In both cases, fits are quite good and indicate that this 
plume has not mixed with another. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 35: Concentration profiles for an isolated plume 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 36: Total Number Concentration vs. CO2 Concentration for a plume event 
shown in Fig 35. 
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Computation of EIn and EIm depend on the interplay between particle and CO2 
concentrations (see Fig. 36). EIn is given by the slope of the total number concentration 
vs. CO2 concentration multiplied by a constant (see Eq. 6). Similarly, the EIm is given by 
the slope of the total mass concentration vs. CO2 concentration multiplied by a constant 
(see Eq.7). The uncertainties in these emission indices are given by the standard 
deviations in the number (or mass) vs. CO2 concentration points with respect to their 
linear fits (Fig. 36).  
 
The correspondence between UMR and ARI of signal receipt times from departing or 
taxiing aircraft was good, with no definite lag in either direction between the two 
receipts; that is, neither UMR nor ARI consistently received a signal before the other.  
The use of two different methods to identify events gives more confidence in the event 
classification. The independent identification of plumes and their subsequent matching to 
aircraft by UMR and ARI yielded excellent agreement. 
 
Those plumes which were matched to aircraft have been categorized by engine type.  For 
all of these categorized events, the background has been subtracted from the signal in 
order to quantify the particulate emissions from aircraft activity on the taxiways and 
runways.   
 
 
3.2.3 Selected Analysis 
 
Over 500 aircraft plumes have been identified from this work.  In order to evaluate the 
quality of this dataset, the following aircraft plume events have been selected for a 
preliminary analysis. The analysis teams (UMR and ARI) chose these events as 
representative of both datasets. They were chosen to cover a variety of engine 
technologies and conditions.  In order to facilitate a discussion of the first results, 
however, the Engine Model category is represented by an alphabetic character and a 
number.  The alphabetic character is indicative of a general class of engine such as a 
CFM56, a JT8D or an RB211, which the numeric character refers to a specific model 
within that ‘class’ of engine.  They are listed in Table 7. 
 

 
 
 
 
 
 
 
 
 
 
 
 



 71

 
Table 7: Selected Events for Analysis 

 
 Date Begin 

Time 
End 
Time 

Airframe Engine 
Model 

Engine  
Designator 

Assigned 
Activity 

1 9/29/04 17:57:57 17:59:37   A1 Take-Off 
2 9/29/04 16:20:02 16:20:49 B767-

400ER 
CF6-
80C3B8F 

A2 Take-Off 

3 9/27/04 15:58:11 15:59:47 B767-
300 

CF6-80A2 A1 Take-Off& 

4a 9/27/04 12:40:32 12:41:10 B747 CF6-
80C2B1F 

A3 Take-Off 

4b  12:39:59 12:40:29   A3 Idle 
4c       TaxiAccel 
        
5 9/29/04 16:17:06 16:17:46 B737-

800 
CFM56-7 B1 Take-Off 

6 9/27/04 12:53:22 12:54:08 B737-
700 

CFM56-
7B20 

B2 Take-Off 

7a 9/29/04 16:17:48 16:19:28 A340-
400 

CFM56-
5C4 

B3 Take-Off 

7b      B3  
        
8 9/27/04 12:33:03 12:33:34 B757-

200 
PW2037 C1 Take-Off 

        
9 9/29/04 17:14:24 17:14:42 CRJ CF34-3B1 D1 Take-Off 
        
10 9/29/04 16:23:10 16:23:41 B717 BR715A1-

30 
E1 Take-Off 

        
11 9/29/04 15:08:33 15:08:54 MD-88 JT8D-219 F1 Take-Off 
12 9/27/04 16:40:02 16:41:47 MD-88 JT8D-219 F1 Take-Off 
13a 9/27/04 15:14:56 15:15:35 MD-88 JT8D-

217C 
F2 Take-Off&

13b  15:13:21 15:14:15   F2 Idle 
&These take-off plumes contain an interesting phenomenon identified by atypical 
emissions immediately prior to the arrival of the take-off plume.  This is described more 
fully in the text and in this work is referred to as ‘spool-up’. 
 

3.2.3.1 Gas Phase Measurement Results 
 
The analysis techniques are described first for the gas-phase data for the plume encounter 
for event #1. A time series is shown in Fig. 37. This figure depicts the mixing ratio 
measurements before the arrival of the plume, as the plume arrives and after it departs.  
The increase in carbon dioxide, CO2 of ~ 70 ppmv (at the maximum point) is due to the 
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diluting plume passing by the sampling point.  In addition to the increase in CO2 this 
figure shows increases in carbon monoxide (CO), NO2 and total NOx as well as 
formaldehyde (HCHO).  The only species shown on this figure which does not have a 
statistically significant increase is formic acid (HCOOH).  The time response of each 
individual measurement is well matched with respect to each other; each has a response 
time less than 1.5 s. The plumes as defined by a full width half max event are much 
longer in duration (15 – 60 s) than the measured time responses of the various 
instruments (<1.5 s).  These factors allow a direct determination of the emission ratio by 
plotting the time series data vs. CO2.  This approach to data analysis is shown in Fig.38.  
The data in Fig.38 shows remarkable correlation between the NOx and CO2. The 
concomitant rise of both NOx and CO2 is so good that two lines appear to emerge.  The 
greater of the two is associated with the take-off of the aircraft in question, Event #1 
(N126DL). The lesser of the two may be due to a previous take-off or a taxiway 
acceleration arriving during this plume event. The entire event emission ratio is (7.5 ± 
0.3) ppbv ppmv-1 while the central plume value is ~ 11% greater, (8.3 ± 0.5) ppbv  
ppmv-1. This underscores the need to very carefully regard this data in order to maximize 
the accuracy of the analysis.  We are in the process of using multiple approaches in the 
analysis in order to flag anomalous results within an event.  This will allow an automated 
analysis to process the very large number of plumes within this dataset as well as note 
which events require additional study for the greatest accuracy and understanding of the 
method. 
 
Two of the particulate emissions measurements are shown vs. time in Fig. 39 for the 
same event discussed previously. This figure depicts the total particulate number as 
measured by the condensation particle counter (CPC) in the top panel.  The middle panel 
shows the preliminary result for the Multi-Angle Absorption Photometer (MAAP) vs. 
time.  In the lowest panel, the CO2 concentration in the solid line as well as the CO2 and 
NOx from gas-phase inlet (dashed lines) are shown vs. time.  An isokinetic split, within 
the mobile laboratory is used to minimize any biasing of the particle size distribution, 
however it is estimated that only ~90% of the particle greater than 7nm are transmitted to 
the CPC instrument. Particles smaller than 7nm are not detected by the CPC.  The MAAP 
black carbon mass, and as a result it is estimated that 99% of the particle sizes which 
contribute to the mass measurement are transmitted from the inlet to the instrument 
within the mobile laboratory. None of these measurements has been corrected for the 
estimated losses within the truck. Note that a cyclone on the inlet prevented particles 
larger than 2.5 µm from reaching these instruments. Once the non-refractory components 
of the mass (as measured by the Aerosol Mass Spectrometer) are quantified, the sum of 
the two mass measurements in the mobile laboratory will very closely reflect a 
measurement of PM2.5.   
 
The shaded region in Fig. 39 reflects a very different black carbon and total number count 
from the non-shaded portion. This corresponds to the same issue detected in the analysis 
of the gas-phase data. A detailed examination of the notes and video indicate that the 
plume from the previous take-off is influencing the initial portion of this ‘event’. The 
time series data for these particulate measurements is plotted vs. the dilution fiduciary in 
Fig. 40. The ‘hollow’ points in this figure correspond to those points within the shaded 
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region in Fig. 39 and are not included in the least-squares fits. The results of these fits are 
presented for this event #1 together with all of the events identified for the selected 
analysis in Table 8. This table shows the Engine Model, the NOx emission index, the 
inferred thrust, the CO emission index, the inferred ICAO CO emission index, the HCHO 
emission index, the CPC particle number based emission index and the MAAP black 
carbon emission index. The thrust column has been computed by comparing the 
measured NOx emission index to ICAO reference points.  This metric has been computed 
only to provide a simple basis for comparison.  The data in this table is shown visually in 
Fig. 41.  The lowest panel shows the NOx emission index results. The thrust has been 
computed from ICAO-NOx and this result might be regarded as a self-fulfilling trend.  
This figure demonstrates it usefulness is portraying the CO and HCHO data.  The middle 
panel of Fig. 41 shows the emission indices for CO in green and HCHO in red.  The top 
panel shows two of the particulate emission metrics, the CPC in magenta/pink and 
MAAP black carbon in black. Unlike the gas-phase data a clear trend does not 
immediately emerge in this figure.  The MAAP black carbon data is shown in Fig. 42.  In 
this case, the style of point marker indicates the engine type. Because engine type A and 
F each had over four occurrences within that class of engine covering the range of 
estimated thrust, trend lines have been included. This figure shows that engine 
technology may be the strongest driver for gauging mass-based emission indices.  
 
The SMPS records a particle size distribution over its measurement interval. For this 
work, one minute sweeps were used to record number count vs. diameters covering 18-
500 nm.  Previous figures show that that timescale of plume arrival is not at all consistent 
for an entire minute. As a result, capturing a representative size distribution in a single 
plume using the SMPS is not feasible. This does not mean that it is not a useful 
measurement though.  In Fig. 43, multiple plume encounters have been averaged and 
binned according to the 1s data for several hours of data on the 27th.  Six different size 
distributions are calculated according to three concentration steps of excess CO2 and a 
binary pair of HCHO emission indices.  The size distributions shown by the triangles are 
those when the estimated HCHO emission index was greater than 50 mg kg-1.  The size 
distributions depicted with solid circles are when the HCHO emission index is less than 
50 mg kg-1.  Due to the trend in Fig. 41, it is reasonable to assume that the excess CO2 in 
the size distributions represented by triangles are due to ‘idle’ and the circles are ‘take-
off’.  Fig. 43 reveals a qualitative difference in the averaged size distributions between 
these two modes of operation. The ‘idle’ plumes contain an actively nucleating ‘ultrafine’ 
mode at ~ 25 nm while the ‘take-off’ plumes appear to have a larger ‘soot’ mode at 50-70 
nm. This is consistent with the findings published recently which used a different 
instrumentation package (Herndon et al., 2005). The algorithm used to generate this 
figure could benefit greatly from further refinement; however, the initial analysis 
indicates that important statements about the nature of the emissions under different 
operational conditions can be made. 
 

 
 



 74

440

420

400

380

C
O

2
 (p

p
m

)

17:58:00
9/29/04

17:58:15 17:58:30 17:58:45 17:59:00 17:59:15 17:59:30

120

110

100

90

80

70

C
O

 (
p

p
b

)

5

4

3

2

1

0H
C

H
O

, H
C

O
O

H
 (p

p
b

)

600

400

200

0

N
O

2
, N

O
x 

(p
p

b
)

CF6 Take-Off
N126DL

 
Figure 37: Gas-phase time series for a take-off plume 

 
The data shows various gas-phase species before and after the take-off plume due to 
N126DL.  The CO2 and CO data is shown on the lowest panel in units of ppmv and ppbv 
respectively.  On the middle panel, the direct NO2 measurement is depicted in blue while 
the total of NO and NO2, or NOx is the magenta trace.  Note that the NO2/NOx ratio is 
lowest during the heart of the plume.  On the top panel, formaldehyde, HCHO (orange) 
and formic acid, HCOOH (green) are shown in ppbv.   
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Figure 38: NOx vs. CO2 for a take-off plume 
 
The total NOx, computed by summing the 1s NO and NO2 measurements is plotted vs the 
1s measurements of CO2 for the data shown in Figure 1.  The NOx data points are shaded 
according to the 1s CO measurements.  Two fits, one for the entire event (dashed 
magenta) and one for only the central plume (solid black) are shown.  See text for 
additional details.  
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Figure 39: Time series of the Particulate data 
 
The figure shows the time series of the condensation particle counter (CPC), the multi-
angle absorption photometer (MAAP) and CO2 measurements on Inlet #1.  Repeated data 
from a previous figure is shown from the gas-phase NOx and CO2 measurements.  Note 
that the two CO2 measurements are lagged by ~3 seconds but they show very good 
agreement during the entire plume event. The shaded region labeled ‘period of 
anomalous…’ is described in the text. 
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Figure 40: Correlation Figure of Particulate Measurements with CO2 
 
This figure shows the 1s CPC (grey, top panel) and the 1s MAAP (black, bottom panel) 
data plotted vs CO2.  The open symbols have been excluded from the fit and are indicated 
by the shaded region of a previous time series figure.  See text for quantification of the 
EIn and EI determined from this plot. 
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Table 8: Selected Events Analysis Results 
 

Engine  
Model 

NOx 
(g kg-1) 

Thrust1 CO 
(g kg-1) 

ICAO 
CO2 
(g kg-1) 

HCHO 
(mg kg-1) 

CPC 
EIn 
(# kg-1) 

BC3 

EI 
(g kg-1) 

A1 27.4±1.6 89% 1.0±0.1 1.07 65±7 3.7 × 1015 0.59±0.062

9 

A2 20±0.9 83% 0.2±0.07 0.5 0 ± 6 9.0 × 1015 0.12±0.022

9 

A1 19.4±0.7 61%   31±4 5.0 × 1015 0.48±0.082

7 

A3 1.7±0.3 <7% 59±2  506±35 4.3 × 1015 0.03±0.03 
A3 15.6±0.7 68% 0.9±0.4  20±12 2.7 × 1015 0.24±0.03 
A3 2.8±0.7 6% 31±7  243±8 6.0 × 1015 0.02±0.04 
B1 7.2±0.9 <30% 3.1±0.2  84±24 6.8 × 1015 0.27±0.04 
B2 12±1 ~45% 1.4±0.3  164±20 2.4 × 1015 0.26±0.11 
B3 27±1.6 83% 1.2±0.2  6±7 1.1 × 1016 0.52±0.6 
B3 2.7±0.5 <7% 40±8  452±86 7.5 × 1015 0.06±0.1 
C1 30.4±1 98% 0.2±0.07 0.4 25±9 2.5 × 1015 0.52±0.02 
D1 5.5±0.6 <30% 1.2±0.2  16±13 3.0 × 1015 0.45±0.10 
E1 16.2±0.7 79% 1.1±0.4  5±24 8.5 × 1015 0.61±0.11 
        
F1 13.8±0.6 85% 0.8±0.1  0±40 1.9 × 1015 2.1±0.2 
F1 14.5±0.7 87% 1.6±0.2  98±24 2.2 × 1015 1.4±0.1 
F2 9.0±1.0 ~45% 2.5±0.4  53±10 4.0 × 1015 1.7±0.1 
F2 2.6±0.3 8% 11±0.6  222±30 5.0 × 1015 0.35±0.05 
1ICAO Thrust is computed from the measured NOx EI, assuming a linear relationship 
between the defined 100% and 85% ICAO data points for the listed engine. 
2ICAO CO is computed (for take-off) by matching the ICAO Thrust (in this table) to an 
exponential fit of the 30%, 85% and 100% ICAO data. 
3These BC number have not been quality assured.  The raw data needs to be re-run in the 
latest MAAP/Petzold formulation as well as flow rates verified. They have all been 
computed from fixed parameters, though and can reveal useful trends within the category. 
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Figure 41: Summary of Emission Indices 
 
This figure shows the emission index for various species, NOx, CO and HCHO, CPC and 
BC vs. the fraction of rated thrust.  Starting from the bottom, NOx is shown in blue. CO 
and HCHO are depicted in the middle panel in green and red respectively.  On the top 
panel, the CPC and ~BC emission indices are shown in magenta and black respectively.  
See text for a more complete discussion of this figure. 
 



 80

 
 

Figure 42: MAAP Black Carbon Emission Index 
 
The MAAP black carbon emission index is result is plotted vs. fraction of rated thrust for 
various types of engines. The red triangle data and red trend line depict the four results 
for the engines of type “F”. The blue diamonds and blue trend line show the six results 
for the engines of type “A”. The figure shows that black carbon emissions may be a 
strong function of engine model. 
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Figure 43: Average Size Distributions based on CO2 and HCHO Emission Index 
 
 
This figure shows some average size distributions derived from the scanning mobility 
particle sizer (SMPS) data.  The algorithm used to sort the ‘slow’ SMPS data (1 sweep 
every minute) using the 1s measurements of HCHO and CO2 is described in the text.  
When the HCHO emission index is greater than 50 mg kg-1, it is presumably due to an 
engine operating at low thrust. This figure shows an ‘ultra fine’ mode (<25 nm) 
indicative of low thrust and a ‘soot’ mode emerging at ~65 nm which is presumably due 
to higher thrust settings.  
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3.2.3.2 PM Physical Characterization Results 
 
The “show-case” events are categorized by engine type so that they might be compared 
and trends for each engine type can possibly be identified. Table 9 summarizes pertinent 
information that can be gleaned from the UMR analysis of events. 
 
Table 9: Summary of the Important Characteristics and Identifiers for Each of the 

Sample Events 
 

Date Time Airframe Engine
ARI Engine 
Designation

Peak Number 
Concentration

Peak Volume 
Concentration

Peak CO2 
Concentration 

Delta

Primary 
Number Mode 

Peak Size

Small Particle 
Volume Mode 

Peak Size

Large Particle 
Volume Mode 

Peak Size
(Mparticles/cc) (μm3/cc) (ppm) (nm) (nm) (nm)

9/27/2004 12:40:00 747 CF6-80C2B1F A3 12.8 14.5 176 7.5 12 130
9/27/2004 15:58:21 767-300 CF6-80A2 A1 11.4 19.9 188 7.5 11 75
9/29/2004 16:19:49 767-400ER CF6-80C2B8F A2 15.7 10.6 -- 7.5 10 55
9/27/2004 12:52:47 737 CFM56-7B20 B2 11.0 7.0 104 7.5 14 85
9/29/2004 16:16:34 737-800 CFM56-7 B1 6.9 12.9 114 8.5 11 55
9/29/2004 16:17:31 A340-400 CFM56-5C4 B3 13.9 15.5 145 7.5 14 55
9/27/2004 15:14:47 MD-88 JT8D-217C F2 14.1 36.1 197 7.5 10 90
9/29/2004 15:07:57 MD-88 JT8D-219 F1 178.0 131.0 594 6.5 10 130
9/29/2004 16:40:41 MD-88 JT8D-219 F1 3.5 42.4 207 5.6 20 75
9/27/2004 12:32:26 757-200 PW 2037 C1 8.9 10.6 138 7.5 10 75
9/29/2004 16:22:45 717 BR715A1-30 E1 11.8 14.8 83 7.5 10 55
9/29/2004 17:13:28 CRJ CF34-3B1 D1 3.6 8.0 48 5.6 5.6 55  
 
There are three plots associated with each event identified in the table above.  The first of 
these plots shows the total number concentration in millions of particles per cubic 
centimeter of air, the total volume concentration in cubic microns of particles per cubic 
centimeter of air, and the carbon dioxide concentration in parts per million versus time in 
seconds after midnight local time of the given day. This plot also indicates the time 
period during which the event is received by bold lines and a double arrow.  The second 
is a plot of differential number concentration of particles versus time, while the last is a 
plot of the differential volume concentration of particles versus time. Each set of plots for 
each event includes a bulleted list of important features.   
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Sample Event 1 

Boeing 747 Airframe with CF6-80C2B1F Engines 
9/27/2004     12:40:00
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Figure 44a: Sample Event 1 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 

• This take-off event spans times from 45627 to 45662 SAM and has two peaks 
possibly because this is a four engine aircraft. 

• The second peak is weaker in number concentration because it has had about 15 
seconds longer to disperse with the ambient air and/or the small particles have 
agglomerated into larger ones. 

• The second peak has a larger average size for the small particle volume mode 
because the longer travel time has allowed more agglomeration to occur. 
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Figure 44b: Sample Event 1 - Particle Number Concentration Size Distribution as a 
Function of Time 
 

 
 
Figure 44c: Sample Event 1 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 2 

Boeing 767-300 Airframe with GE CF6-80A2 Engines 
9/27/2004     15:58:21
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Figure 45a: Sample Event 2 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 
 

• This take-off event spans times from 57517 to 57545 SAM and is a “spool” event 
(as identified from compositional measurements made by ARI) in which the 
engine proceeds from low power to high power. 

• The “spooling” is evident from the lack of the normally sharp leading edge at 
event arrival and by the two larger particle volume modes the smaller of which 
corresponds to lower power and the larger to high power. 

• There is a clear and distinct shift in particle size once a certain engine power is 
reached at about 57528 SAM. 
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Figure 45b: Sample Event 2 – Particle Number Concentration Size Distribution as a 
Function of Time 
 

 
Figure 45c: Sample Event 2 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 3  

Boeing 767-400ER Airframe with CF6-80C2B8F Engines 
9/29/2004     16:19:49
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Figure 46a: Sample Event 3 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 

• This take-off event spans 58817 to 58849 and does not have complete carbon 
dioxide information because of instrument auto-calibration. 

• This event exhibits typical behavior in its sharp leading edge at arrival and slower 
declination thereafter.   

• This event’s volume concentration is dominated by the small particle mode which 
is somewhat atypical. 
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Figure 46b: Sample Event 3 – Particle Number Concentration Size Distribution as a 
Function of Time 

 
Figure 46c: Sample Event 3 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 4  

Boeing 737 Airframe with CFM56-7B20 Engines 
9/27/2004     12:52:47
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Figure 47a: Sample Event 4 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 
 

• The takeoff event spans 46398 to 46437 and is a typical take-off plume. 
• This take-off event shares large and small particle volume modes of like 

magnitude. 
• This take-off event occurred during a high take-off frequency period which 

accounts for the great fluctuations both preceding and following it; these 
fluctuations are due to mixing of multiple aircraft emissions, which is unavoidable 
during high departure frequency. 

• This take-off plume is 39 seconds long while event activity during this time 
corresponds to one event approximately every 50 seconds. 
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Figure 47b: Sample Event 4 – Particle Number Concentration Size Distribution as a 
Function of Time 

 
Figure 47c: Sample Event 4 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 5  

Boeing 737-800 Airframe with CFM56-7 Engines 
9/29/2004     16:16:34
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Figure 48a: Sample Event 5 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 
 

• This take-off event spans 58624 to 58653 and is both preceded and followed by 
other take-off events. 

• The preceding event from58566 to 58577 is the take-plume of a regional jet. 
• The following event is the A340-400 take-off featured next in the sample events. 
• Immediately before this take-off there is an unassigned idle signature from 58595 

to 58623 possibly from a taxiing aircraft in line for take-off.   
• This take-off event is dominated by the small particle volume mode. 
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Figure 48b: Sample Event 5 – Particle Number Concentration Size Distribution as a 
Function of Time 
 

 
Figure 48c: Sample Event 5 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 6  

A340-400 Airframe with CFM56-5C4 Engines 
9/29/2004     16:17:31
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Figure 49a: Sample Event 6 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 

• This take-off event spans 58673 to 58736 and has two peaks possibly because this 
is a four engine aircraft.   

• The preceding event is the 737-800 which is the immediately previous event 
featured. 

• The second peak is weaker in number concentration because it has had about 15 
seconds longer to disperse with the ambient air and/or the small particles have 
agglomerated into larger ones. 

• The second peak has a larger average size for the small particle volume mode 
because the longer travel time has allowed more agglomeration to occur, similarly 
to the 747 discussed above. 
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Figure 49b: Sample Event 6 – Particle Number Concentration Size Distribution as a 
Function of Time 

 
Figure 49c: Sample Event 6 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 7  

MD-88 Airframe with JT8D-217C Engines 
9/27/2004     15:14:47
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Figure 50a: Sample Event 7 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 

• This take-off event spans 54897 to 54929 and is immediately preceded by the idle 
signature of the same aircraft from 54878 to 54896. 

• While the take-off and idle have about the same particle number concentration, 
the take-off has a much higher volume concentration. 

• The above trend is possibly because of the increase in the magnitude of the large 
particle volume mode at the higher power of take-off versus the relatively lower 
power idle. 

• The peak size of the large particle volume mode does not increase from low 
power to higher power which is distinctly different than the “spooling” event 
(CF6-80A2 engines) analyzed earlier perhaps because of the differing engine 
type. 
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Figure 50b: Sample Event 7 – Particle Number Concentration Size Distribution as a 
Function of Time 
 

 
Figure 50c: Sample Event 7 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 8  

MD-88 Airframe with JT8D-219 Engines 
9/29/2004     15:07:57
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Figure 51a: Sample Event 8 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 
 

• This take-off event spans 54510 to 54528 and is extremely atypical because of its 
extremely high particle and carbon dioxide concentrations. 

• The order of magnitude increase in concentrations for this event is as yet 
unexplained, but clearly is indicative of a higher fuel consumption rate. 

• The concentration of carbon dioxide produced is well below what can be 
produced by the stoichiometric reaction of commercial jet fuel with air, meaning 
this high concentration is not chemically impossible. 

• The volume size distribution is sharply bimodal with each mode having about the 
same peak differential concentration of about 140 cubic microns of particle per 
cubic centimeter of air. 
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Figure 51b: Sample Event 8 – Particle Number Concentration Size Distribution as a 
Function of Time 
 

 
Figure 51c: Sample Event 8 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 9 
 

MD-88 Airframe with JT8D-219 Engines 
9/29/2004     16:40:41
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Figure 52a: Sample Event 9 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 
 

• This take-off event spans 60063 to 60097 and is immediately preceded by an 
unassigned idle signature from 60044 to 60060. 

• This take-off event is not identifiable by number concentration alone as it exhibits 
almost no increase in the number of particles; this phenomenon appears typical of 
most JT8D take-off plumes. 

• This take-off event is clearly identifiable by volume concentration as the volume 
of large particles produced increases greatly from background conditions.   

• This take-off event contains practically no small particle volume mode. 
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Figure 52b: Sample Event 9 – Particle Number Concentration Size Distribution as a 
Function of Time 
 

 
Figure 52c: Sample Event 9 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 10  

Boeing 757-200 Airframe with PW 2037 Engines 
9/27/2004     12:32:26
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Figure 53a: Sample Event 10 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 

• This take-off event spans 45785 to 45226 and is fairly typical in structure.   
• This take-off event is bimodal in volume concentrations with a small particle 

mode that peaks at 10 nm, and a large particle mode that peaks at 75 nm. 
• The peak values of the small and large particle volume modes are approximately 

the same. 
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Figure 53b: Sample Event 10 – Particle Number Concentration Size Distribution as 
a Function of Time 

 
Figure 53c: Sample Event 10 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Even 11  

Boeing 717 Airframe with BR715A1-30 Engines 
9/29/2004     16:22:45
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Figure 54a: Sample Event 11 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 
 

• This take-off event spans 58991 to 59025 and is preceded by another take off 
event that corresponds to a 737 with JT8D-15A engines from 58937 to 58990. 

• This take-off event is dominated by its small particle volume mode, whereas the 
737 preceding it on this plot is dominated by the large particle mode consistent 
with JT8D engines. 

• The number concentration of particles produced by this 717 is larger than that for 
the 737 preceding it, although the 737 produces a larger particulate volume 
concentration. 
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Figure 54b: Sample Event 11 – Particle Number Concentration Size Distribution as 
a Function of Time 
 

 
Figure 54c: Sample Event 11 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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Sample Event 12  

CRJ Airframe with CF34-3B1 Engines 
9/29/2004     17:13:28
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Figure 55a: Sample Event 12 - Total Particle Concentration (Number and Volume) 
and CO2 Concentration as a Function of Time 
 

• This take-off event spans 62061 to 62093 and is practically dwarfed by 
surrounding aircraft activity. 

• This take-off event is preceded by the take off of an MD-88 with JT8D-219 
engines.   

• This take-off event would be unidentifiable by volume concentration alone. 
• This take-off event is dominated by a large particle volume mode, while the small 

particle volume mode is practically non-existent. 
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Figure 55b: Sample Event 12 – Particle Number Concentration Size Distribution as 
a Function of Time 
 

 
Figure 55c: Sample Event 12 - Particle Volume Concentration Size Distribution as a 
Function of Time 
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3.2.3.3 Engine-specific Emission Index Averages from Advected Plume 
Measurements 
 
This study yielded 500 unique aircraft related events, of which 289 were clearly 
identified as takeoff plumes, from the six most common engine types, then operating at 
Atlanta Hartsfield. It is informative to examine averages of PM number- and mass-based 
emission indices for selected engine types and for each of the three sampling days to 
capture impacts due to changes in ambient conditions and background PM.  
 
Fig. 56 represents the overall daily averages of number-based emission indices for the six 
engine types – BR715, CF34, CF6-80, CFM56, JT8D, and PW2037. These are weighted 
averages based on the uncertainties associated with each plume event. The error bar on 
each vertical bar represents the statistical uncertainty in the average due to the individual 
plume uncertainties, discussed in section 3.2.2. The number on each vertical bar gives the 
number of takeoff events for a given engine on a given day. A composite for all three 
days is also included in the figure. Its error bar represents the standard deviation (1σ) in 
the three day average.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 56: Overall Average EIn for Six Aircraft Engine Families 
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There is a significant day-to-day variation in number-based emission index. The day-to-
day change is bigger than the uncertainty in the average for a given day. The behaviors of 
engines of a given class are remarkably similar on a given day. It should be noted that the 
error bars on the composite are significantly larger than on the daily averages. This 
variation can be attributed to changes in ambient conditions.  
 
The sign of the EIn change from day-to-day (with changing ambient conditions) was the 
same for all engines.  The emissions from the engines either collectively, all increased or 
all decreased together with changes in ambient conditions. The ambient conditions which 
caused the emission changes have not been identified, but temperature, relative humidity, 
and pressure significantly changed from one day to the next. Further research is 
warranted for correlating changing atmospheric conditions to changes observed in the 
emissions. 
  
The emissions from the JT8D engines, oldest technology engine in this comparison 
group, stands out from the other engines.  While on average, the JT8D engines have a 
relatively lower number-based emission index, the average mass-based emission index is 
the highest, when compared to the other engines (see Fig. 57). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 57: Overall Average EIm for Six Aircraft Engine Families 
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3.2.4 LIDAR Results  
 
Airfield testing was accomplished using LIDAR, in the same manner for the UNA-UNA 
study as at LAX (Wayson et al., 2004). Except for a few engineering improvements, the 
same system (OPAL) was used (see Fig. 2). Shown mounted on top of the trailer, the 
ultraviolet beam is emitted and the backscatter is measured through precise mirror 
alignment. The precision in elevation pointing was improved for UNA-UNA, allowing 
measurements closer to the ground. 
 
LIDAR system operates at an ultraviolet wavelength of 0.355 μm and measures the 
backscatter from the aerosols emitted by the aircraft engines. It should be noted that these 
aerosol components are very small, typically less than 100 nanometers with reported 
average diameter of about 30 nanometers.   
 
The LIDAR System had to be placed so that the plume cross sectional results could 
provide meaningful information.  Fig. 58 shows an idealized view of how the system was 
located, and it lists key measurement parameters for the LIDAR system.   
 
 
 

 
 

Figure 58: Idealized View of LIDAR during Airfield Sampling and Key LIDAR 
Parameters 
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The aircraft plumes were measured during initial take-off roll, as at LAX.  Testing was 
done on multiple days and at two different airport positions on various days.  The 
position of the LIDAR system was dependent upon the wind direction during 
measurements.  Testing occurred on two different runways (two LIDAR positions) due to 
a change in wind direction during the test days. 
 
Measurements on 26 September 2004 were made at one runway (Fig. 59). The LIDAR 
was approximately 570 m from the center of the runway. The angle between the 
perpendicular to the centerline and the LIDAR beam was 27°. The beam crossed the 
center of the runway ≈ 30 m from the end. The beam was typically just in front of the tail 
of the aircraft when they completed the turn onto the runway. Most of the time the 
LIDAR scan plane was fairly close to the hindmost part of the tail when the aircraft 
commenced takeoff acceleration. 
 
The active runway was then changed because of a shift in winds, so the LIDAR was 
moved before continuing measurements at a different runway on 29-30 September. The 
LIDAR was approximately 670 m away, the angle was 23°, and the beam crossed the 
center of the runway ≈ 80 m from the end. The beam was in front of the aircraft after they 
completed the turn onto the runway. For this setup, the aircraft had almost always 
commenced takeoff acceleration by the time the tail passed the LIDAR 's scan plane. 

 
      

                              
 

Figure 59:  Beam geometry for measurements on 26 September 2004. The blue line 
shows the approximate position in plan view of the LIDAR’s beam. Takeoffs were 
toward the right. Runway width is 46 m (150 ft). 
 
The LIDAR measured exhaust plumes behind 458 aircraft. A number of these events 
were eliminated during processing and quality assurance because of signal too weak to 
detect a plume, merging of one plume with that from the previous aircraft, and other 
reasons. A total of 342 aircraft takeoff events remained in the final data set. The total 
number of sweeps in the final data set was 1794. 
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3.2.4.1 Data reduction 
 
The data collection resulted in raw data sweeps that required extensive quality control by 
NOAA prior to final formatting and analysis. Fig. 60 shows a typical sweep containing 
raw data.  Further processing by NOAA was required to allow the information to be 
viewed in a more meaningful fashion.  This included redefining the graphical views and 
further tabulation of the data. Fig. 61 shows a typical sweep after this additional 
processing. 
 
 

 
 

Figure 60:  Example Output from the OPAL System 
 
 
Only after the quality control process was complete could computer graphics be 
generated to characterize the plume. It was possible to locate the plume center (Zcenter), 
the plume width and the plume height. By following the plume center from multiple 
sweeps for an aircraft takeoff, plume rise could also be determined. The time between 
each sweep was approximately 5 seconds. The manual analysis was based on pattern 
recognition of the plume from the key parameters shown in Fig. 61. The manual 
processing was conducted on one day’s worth of Delta-Atlanta Hartsfield data using the 
manual human pattern recognition process detailed in the LAX report (Wayson et al., 
2004). 
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Figure 61:  Typical Sweep after Processing 
 
It was thought desirable to automate the data processing so that future sampling could be 
accomplished much more rapidly, and data review could occur in the field. This would 
allow reporting time to be greatly reduced for future measurement campaigns. As such, 
NOAA processed the data in multiple ways to determine key variables that could be used 
in lieu of the manual pattern recognition method. The variables that were evaluated are 
listed in Appendix C. It can be seen that many parameters had to be calculated, multiple 
approaches applied, and results checked. 
 
 
3.2.4.2 Data analysis 
 
For each aircraft event, the sweep that represented the second highest value for the center 
of the plume was selected and the value was taken to represent the plume rise in a 
conservative fashion. This also resulted in a conservative approach used to determine the 
standard deviation of the plume in the horizontal (σy) and in the vertical (σz) since the 
same sweep selected for the plume rise was used.  This is the location that is assumed to 
start dispersing downwind and the key input needed using the Gaussian dispersion 
modeling approach. Again, this mirrors the methodology used at LAX. 
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Fig. 61 represents a well-defined plume. The outer dimensions of the plume were 
derived, as in the LAX study, using the concentration gradient displayed in each scan.  
The scale on the side of Fig. 61 should be noted. To make sure that the plume was 
represented in an accurate fashion, and not other concentrations or interferences, the 
plume was only measured to well-defined boundaries.  In Fig. 61, this was to the grey 
area as shown. 
 
Unfortunately, it was not easy to determine the center and fringes of the plume for all 
sweeps. This problem was exacerbated when using the automatic processing software, 
because plume break-up, multiple centers, high plume rise, and irregular shapes led to 
fragments of the plume being included in many of the derived parameters, resulting in 
greater widths and heights than actually occurred.  To overcome this problem, the data 
from September 29th was manually analyzed and all parameters compared to this manual 
pattern recognition analysis.  It was found that for the standard deviation in the horizontal 
the derived parameter dhor (signal-weighted absolute deviation in the horizontal about 
xmedian) and for the standard deviation in the vertical dver (signal-weighted absolute 
deviation in the vertical about zmedian) provided the best results.  These parameters were 
then used for further analysis. 
 
 
3.2.4.3 Plume characterization results 
 
The data analysis procedure defined in previous section yielded the in-situ analysis 
results shown in Table 10.   
 

Table 10:  Final Plume Characterization Derived Parameters 
 

Derived Parameters 
(meters) 

Full Data Set 2nd Highest Plume 
Center Data Set 

Date Total 
# of 

Aircr
aft 

Scan
ned 

Total # of 
Aircraft 
Types 

Scanned 

Total # 
of 

Scans 

σy σz Plume 
Rise 

σy σz Plume 
Rise 

26-Sep 73 21 503 12.0 4.3 8.5 13.8 5.1 10.1 

29-Sep 140 22 619 10.8 3.8 7.2 11.2 3.6 7.0 

30-Sep 129 21 672 11.0 4.5 8.3 11.2 4.7 8.9 

Averages of All Three Days  11.2 4.2 8.0 11.2 4.3 8.4 

 
If the overall averages of the three days are compared to the overall derived parameters 
from the LAX measurements campaign (σy = 10.5 meters, σz = 4.1 meters, Plume Rise = 
12 meters), it can be seen that the standard deviations of the plume width and height are 
very similar. Plume rise was less at UNA-UNA than at LAX by approximately 3.6 
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meters, but it was still relatively close, and therefore tends to validate the previous 
results. 
 
Statistical testing of the data was also used to determine if variance in the weather or the 
type of aircraft resulted in correlated changes with the determined plume parameters.  
This testing was done by first combining key measured data with reported meteorological 
data taken at the airport by NOAA.   
 
 
3.2.4.4 Statistical Testing of Airfield Data for Changes Due to Weather and/or 
Aircraft Types  
 
Data were analyzed to see if trends existed either for aircraft types or key weather 
parameters (temperature, wind speed, and wind direction).  This section presents these 
results. 
 
 
3.2.4.4.1 Aircraft Type Trends 
 
Results from LAX seem to indicate a difference based on the aircraft, especially the 
location of the engine mounting.  Aircraft measurements were divided into the same three 
groupings as at LAX: wing mounted engines, fuselage mounted engines, and commuter 
aircraft.  Table 11 shows the results for the three plume parameters for this analysis. 
 

Table 11: Aircraft Type Analysis Results for Airfield Sampling 
 

 Wing Mounted 
 

Fuselage Mounted 
 

Commuter 
 

Date Plume 
Rise 
(m) 

hor std 
dev 
(m) 

vert std 
dev 
(m) 

Plume 
Rise 
(m) 

hor std 
dev 
(m) 

vert std 
dev 
(m) 

Plume 
Rise 
(m) 

hor std 
dev 
(m) 

vert std 
dev 
(m) 

Sept. 26 8.9 13.6 4.7 12.6 16.5 6.2 7.1 8.7 3.6 
Sept. 29 6.4 13.1 3.3 9.7 11.7 5.0 4.6 7.6 2.3 
Sept. 30 9.1 13.3 4.4 12.3 12.0 6.6 5.4 8.2 3.0 
Average 7.9 13.3 4.0 11.4 13.2 5.9 5.3 8.1 2.8 

 
The aircraft type results in Table 10 were compared to the LAX results in Table 12: 
 

Table 12: Aircraft Type Analysis for the LAX campaign 
 

Wing Mounted 
 

Fuselage Mounted 
 

Commuter 
 

Plume 
Rise 
(m) 

hor std 
dev (m) 

vert std 
dev (m) 

Plume 
Rise 
(m) 

hor std 
dev (m) 

vert std 
dev 
(m) 

Plume 
Rise 
(m) 

hor std 
dev (m) 

vert std 
dev (m) 

11.1 11.0 3.8 14.6 10.0 4.8 12.1 10.3 4.1 
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Comparison of the Delta-Atlanta Hartsfield and LAX results above reveals that plume 
rise is similar at both venues for wing and fuselage mounted aircraft, and plume rise is 
lower at LAX for commuter aircraft.  Horizontal and vertical standard deviations were 
substantially lower for wing mounted and fuselage aircraft at Delta-Atlanta Hartsfield 
than at LAX, and somewhat lower for commuter aircraft. 
 
 
3.2.4.4.2 Meteorological Analysis 
 
Plume rise and plume spread can be influenced by local meteorological variables such as 
temperature, wind speed, wind direction, and turbulence. The temperature difference 
between the ambient air and the jet exhaust provide thermal buoyancy that leads to both 
plume rise and vertical dispersion. The wind speed acts against this vertical motion and 
may cause the plume rise and vertical plume spread to be reduced. The wind direction 
could have an effect on the initial parameters if it is blowing across the runway as 
compared to along the runway. As such, each of these parameters was analyzed by 
comparing the NOAA reported meteorological parameters with the initial plume 
parameters. Turbulence could also have an effect on these initial parameters but 
insufficient information existed to evaluate turbulence. Each of the three evaluated 
meteorological variables is discussed below.   
 
Temperature Effects 
In general, plume rise occurs due to the plume’s initial thermal buoyancy and its vertical 
momentum, as was discussed in the LAX report.  Plume rise has been studied intensely 
for stationary sources such as stacks and semi-empirical equations have been developed 
and successfully applied in predicting plume rise.  The important variables used in these 
approaches often include the wind speed, downwind distance, and heat emission rate 
(Stern, 1976). This allows many of the derived models to take the form: 
 

∆h(x) = constant (Qh)a(x)b(u)c               (Eq. 39) 
 
where: 
 ∆h(x)  = plume rise as a function downwind 
 Qh  = heat emission rate 
 x = distance downwind 
 u = wind speed at source height 
 a,b,c = constants 
 
As at LAX, the derived stationary approach cannot be used in this case because most of 
the equations include the vertical velocity of the release, common for stationary sources. 
Also, due to the horizontal release of the aircraft engine, vertical momentum/vertical 
kinetic energy is small when compared to thermal buoyancy. If the jet exhaust is 
considered to have the properties of air, the thermal buoyancy is a function of the 
difference in the absolute temperature of the jet exhaust and the ambient air.   
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The internal temperature of the primary combustion zone of a modern jet/turbine engine 
can reach 2000K. However, the temperatures at the turbine are closer to about 1300 K 
and as such, the exhaust stream from the core engine will be in the range of 1000 K or 
greater.  This temperature is reduced considerably by mixing with the ambient air and the 
bypass air of modern turbofan engines. Regardless, the exhaust temperature of the engine 
is still far above the ambient temperature. This leads to a large heat emission rate and as 
such, a large amount of thermal buoyancy. 
 
Fig. 62 shows an analysis of the plume rise vs. ambient temperature. As at LAX, no 
correlation was shown, with the best fit being an exponential equation with an R2 of only 
0.014.  This would seem to indicate, just as at LAX, that the high exhaust temperature are 
more important than a few degrees change in ambient temperature. At Delta – Atlanta 
Hartsfield there was only about an 8 Degrees K change in ambient temperature over the 
course of the measurement period. Additionally, the weather data, which was only 
reported once per hour, most likely was a reason for the low correlation.  More refined 
data on shorter time increments may improve these correlations. 
 
As at LAX, this would seem to indicate that Equation 39 could be reduced to only a 
function of the heat emission rate or thermal flux as shown in Equation 40: 
 
    ∆h(x) = constant (Qh)a              (Eq. 40) 
 
As at LAX, this implies that high temperature of the jet turbine exhaust is the overriding 
variable for the plume rise.   
 
For completeness, the plume horizontal and vertical standard deviations were compared 
to ambient temperature.  Figs. 63 and 64 show that no significant correlation was shown 
(just as at LAX). 
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Figure 62:  Plume Rise vs. Ambient Temperature 
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Figure 63:  Horizontal Standard Deviation vs. Ambient Temperature 

 
 
 



 118

y = 0.0003e0.0318x

R2 = 0.0088

0

2

4

6

8

10

12

14

16

290 291 292 293 294 295 296 297 298 299 300

Temperature (Kelvin)

Ve
rt

ic
al

 S
td

 D
ev

 (m
)  

   
   

   
 -

 
Figure 64:  Vertical Standard Deviation vs. Ambient Temperature 

 
 
Wind Speed Effects   
Wind speed effects, including the direction, add a vector consideration to the wind.  
Plume rise and the derived plume standard deviations were evaluated to see if there was a 
correlation. Wind speed vs. the three parameters is shown in Figs. 65, 66 and 67. As with 
LAX, no correlation was shown. 
 
 
Wind Direction Effects  
Again, for completeness, wind direction was also tested with the three plume parameters, 
as shown in figures 68, 69 and 70. As with LAX, no correlation was shown. Again, it 
should be noted that hourly averages of the weather parameters from the NOAA database 
were used, which may affect these correlations. 
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Figure 65:  Wind Speed vs. Plume Rise 
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Figure 66:  Wind Speed vs. Horizontal Standard Deviation 
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Figure 67:  Wind Speed vs. Vertical Standard Deviation 

 
 

y = 7.5412e-0.0003x

R2 = 0.0034

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350

Wind Direction (degrees)

Pl
um

e 
Ri

se
 (m

)  
  

 
 

Figure 68:  Wind Direction vs. Plume Rise 
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Figure 69:  Wind Direction vs. Horizontal Standard Deviation 
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Figure 70:  Wind Direction vs. Vertical Standard Deviation 
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3.2.4.5 Differences between the LAX and UNA-UNA studies 
 
Since it can be assumed that the aircraft are similar, then a local condition must be 
causing these differences. A review of weather conditions for both tests show the 
temperatures to be similar. However, although the range of wind speeds was 
approximately the same, the wind speeds were generally lower at Delta-Atlanta 
Hartsfield. This could explain the plume not spreading as far for the commuter aircraft.  It 
does not however explain the plume rise being less at Delta-Atlanta Hartsfield.  
Additional efforts are needed to further understand the effects of stability on the plume 
rise. 
  
Two other differences in sampling at Delta-Atlanta Hartsfield may have also contributed 
to the lesser plume rise than obtained at LAX.  First, the LIDAR’s better elevation angle 
precision allowed measurements closer to the ground and a more accurate and slightly 
lower plume center than in the LAX mode. The sweep time at Delta-Atlanta Hartsfield 
was twice as long as at LAX, resulting in ~ ½ as many sweeps for each aircraft. The 
second highest sweep at Delta-Atlanta Hartsfield tended to be a little closer to the aircraft 
and hence not quite as high. 
 
 
 
3.3 Deliquescence Experiments Results 
 
Fig. 71 shows the comparison of tests while sampling at the engine exit plane (1 m probe) 
and tests done alongside the runway or taxiway (approximately 100 m away).  There is a 
large increase in the SMF for the runway study as compared to the tests done at the 
engine exit plane. Also, there is no substantial variation in SMF from one engine to 
another.   
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Figure 71: Comparison of SMF values obtained at the engine exit plane and 
alongside an active runway/taxiway using the UMR Deliquescence apparatus. 
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4.0 Summary and Conclusions 
 
The following can be summarized from the analysis of the data from the dedicated engine 
tests: 
 
For the JT8Ds, Dgeom increases with engine power setting from minima ~20nm to 
maxima ~ 40nm. Sigma increases slightly with power from ~1.7 at low power to ~1.8 at 
high power. DgeomM exhibits a minimum ~30% power with relatively high values at 
low and high power. EIn is higher at the low power conditions, exhibits a minimum at 
30% power and then increases with power. EIm is similar to EIn, higher at the low power 
conditions, exhibits a minimum at 30% power and then rapidly increases with power. 
These trends are consistent with behavior of the CFM56-2C1 engine studied in the APEX 
campaign. 
 
The two JT8D engines in this study have the greatest black carbon emission indices.  This 
is due to a prevalent soot mode at 40-80 nm (particle mobility diameter).  The CF6 and 
PW2037 engines emit soot in a smaller size mode, < 50nm with overall less total black 
carbon mass.  These engines, however, have a greater particle number emission index 
than the JT8D.  Anecdotally, the JT8D emits fewer but larger particles while engines 
designed to reduce smoke number certification measurements emit more numerous 
quantities of smaller particles. 
 
Studies for CF6-80s were confined to low and mid power conditions due to probe rake 
limitations.  In contrast to the JT8Ds, no statistically meaningful power dependence was 
observed. The range of low and mid power PM parameters for the CF6-80s were 
comparable to those for the JT8Ds. 
 
Data for the PW2037 again suggests a trend of increasing emissions with power, but high 
power points were not sampled due to probe rake limitations. It should be noted that in 
other engines studied (JT8D, CFM56) it was the high power points that made the power 
dependency most evident. The range of low and mid power PM parameters for the 
PW2037s were also comparable to those for the JT8Ds. 
 
From least EIn to greatest, the trend is CF6-80C2B8F, PW2037, JT8D-219 and CF6-
80A2. The AMS Organic particulate loading qualitatively correlates with the ICAO UHC 
with a couple of outliers in the JT8D-219.  This is reasonable since the mechanism 
leading to incomplete combustion and unburned hydrocarbons is also likely to  produce 
partially combusted low volatility species which can either participate in nucleation or 
condense to available soot surface area.  In the case of the JT8D-219 engine, the latter is 
quite likely due to the presence of a relatively greater black carbon emission index. 
 
From the LIDAR analysis, similar trends for the MD88s, CF6-80s and PW2037s are 
observed. The MD88’s (JT8D engines) exhibited strong emissions at high power settings, 
substantial emissions at idle (4%) and taxi (7%) power settings, and low emissions at 
other power settings. The B767’s (CF6-80 engines) had low emissions, even negative 
values. (It is of course impossible to have negative soot emissions, but the noise in the 
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data, nonuniform ambient, and imperfections in the theory could all contribute to 
negative values of EI. These negative EI values help indicate the limits of accuracy in the 
current LIDAR method). The B757’s (PW2037 engines) had emission index values that 
overall were between those of the MD88’s and the B767’s. Differences between the two 
aircraft of one type were smaller than differences between types of aircraft.   
 
The characteristic of advected plumes - plume rise and plume spread (horizontal and 
vertical) were measured using the LIDAR technique.  These measured parameters are key 
variables in dispersion modeling and are being used to help in model development. 
 
The following can be summarized from the analysis of the data from the airport study: 
 
Due to the vast nature of this dataset, analysis is still ongoing for many of the plumes 
observed. In order to demonstrate the potential of this dataset, two specific subset 
analyses were presented. The first encompassed 12 aircraft plume events that were 
selected for detailed analysis. These events were chosen to cover a variety of engine 
technologies and conditions. The following general conclusions from these selected 
analyses can be drawn.  
 

• The combination of the PM and gas analysis of the advected plume provides 
unique identification of the engine operating condition generating the plume, i.e. 
idle, spool-up, maximum thrust, etc.  

• When compared to engine exit plane measurements, it is clear that extensive 
secondary volatile aerosol formation is occurring during plume advection.  

• The black carbon component of the PM emissions detected in the advected plume 
appears to be a strong function of engine model. 

 
The second subset encompassed 289 takeoff plumes, sampled over the three day 
campaign. These plumes were selected because they were generated by six of the most 
common engine types, then operating at Atlanta Hartsfield. Daily engine by engine 
averages of PM number- and mass-based emission indices have been calculated. It should 
be noted that the emission indices were based on DMS500 measurements and were 
corrected for size dependent line loss. Since most of the particles have diameters <20nm, 
these line losses significantly impact the number-based emission index calculations. For 
all engines, for all days, the following range of values was observed: 
 
EIn: 3*1016 – 2*1017 particles/kg fuel  
EIm:  0.1 – 0.35 g/kg fuel 
 
These averages, based on measurements of PM emissions from in-service aircraft under 
normal operating conditions, give credence to the rough averages reported by Penner et 
al., 1999 in the IPCC report – Aviation and the Global Atmosphere. 
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APPENDIX B:  
Line loss Calibration Results  

 
 

 
Line loss function for sampling train associated with the dedicated engine tests 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Line loss function for sampling train associated with the airport study 
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APPENDIX C:  
Derived and Reported Data for LIDAR Airfield Testing 

 
 
Column Parameter Units Bad or 

missing 
flag 

Description 

A day (UTC)  Day of month scan started 
B month (UTC)   
C year (UTC)   
D start hour (UTC)  Decimal time scan started:  21.5000 = 9:30 pm 
E end hour (UTC)  Decimal time scan ended 
F tail 

number 
 XXXXXX Aircraft tail number from spotter and/or departure log  

G A/C  XXXX ICAO code for aircraft type 
H AL  XX IATA code for airline 
I Sweep Dir   -1 = up, 1 = down 
J Nx   Number of horizontal elements in gridded data array 
K x0 m  Horizontal distance from lidar to nearest grid point in data array 
L Δx m  Horizontal spacing of grid points in data array 
M Nz   Number of vertical elements in gridded data array 
N z0 m  Vertical distance from lidar to nearest grid point in data array 
O Δz m  Vertical spacing of vertical grid points in data array 
P Engine 

Type 
  From Jane's or ICAO, retrieved by George Noel according to tail number  

Q Near pwr 
% 

 999 % power setting of engine closest to the lidar 

R Far pwr %  999 % power setting of engine farthest from the lidar 
S ST m^2 / 

(Mm sr) 
-999 Integrated (i.e., total) enhanced backscatter in the 2-D gridded data from the sweep 

T xmean m -999 Horizontal distance from the lidar of the spatial mean of the horizontal profile (signal-weighted 
mean location) 

U �hor m -999 Square root of the signal-weighted spatial variance in the horizontal about xmean 
V ε1ssh  -999 Normalized absolute difference between horizontal profile data points and a Gaussian equation 
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with parameters ST, xmean, and �hor 
W ε2ssh  -999 Square root of normalized squared difference between horizontal profile data points and a 

Gaussian equation with parameters ST, xmean, and �hor 
X γ1hor  -999 skewness of horizontal backscatter profile - the usefulness of these parameters has not yet 

been evaluated 
Y γ2hor  -999 kurtosis of the horizontal backscatter profile - the usefulness of these parameters has not yet 

been evaluated 
Z zmean m -999 Vertical distance above the runway of the spatial mean of the 2-D gridded data (signal-

weighted mean location) 
AA �ver m -999 Square root of the signal-weighted spatial variance in the vertical about the zmean 

AB ε1ssv  -999 Normalized absolute difference between vertical profile data points and a Gaussian fit using 
preceding three parameters 

AC ε2ssv  -999 Square root of normalized squared difference between vertical profile data points and a 
Gaussian fit using preceding three parameters 

AD γ1ver  -999 skewness of vertical backscatter profile - the usefulness of these parameters has not yet been 
evaluated 

AE γ2ver  -999 kurtosis of the vertical backscatter profile - the usefulness of these parameters has not yet 
been evaluated 

AF xmedian m -999 Horizontal distance from the lidar to the location of the signal-weighted median of the horizontal 
profile 

AG �medh m -999 Horizontal standard deviation of distribution assuming a Gaussian shape possessing dhor 
AH ε1mdh  -999 Normalized absolute difference between horizontal profile data points and a Gaussian equation 

with parameters ST, xmed, and �medh 
AI ε2mdh  -999 Square root of normalized squared difference between horizontal profile data points and a 

Gaussian equation with parameters ST, xmed, and �medh 
AJ dhor m -999 Signal-weighted absolute deviation in the horizontal about xmedian 
AK zmedian m -999 Vertical height above the runway of the location of the signal-weighted median of the vertical 

profile 
AL �medv m -999 Vertical standard deviation of distribution assuming a Gaussian shape possessing dver 
AM ε1mdv  -999 Normalized absolute difference between vertical profile data points and a Gaussian equation 

with parameters ST, zmed, and �medv 
AN ε2mdv  -999 Square root of normalized squared difference between vertical profile data points and a 

Gaussian equation with parameters ST, zmed, and �medv 
AO dver m -999 Signal-weighted absolute deviation in the vertical about zmedian 
AP �68h m -999 Horizontal distance from xmed (averaged for the two directions) to which the integrated signal 
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is 34.1% of ST, corresponding to the std dev of a Gaussian distribution 
AQ ε168h  -999 Normalized absolute difference between horizontal profile data points and a Gaussian equation 

with parameters ST, xmed, and ���h 
AR ε268h  -999 Square root of normalized squared difference between horizontal profile data points and a 

Gaussian equation with parameters ST, xmed, and �68h 
AS �68v m -999 Vertical distance from zmed (averaged for the two directions) to which the integrated signal is 

34.1% of ST, corresponding to the standard deviation of a Gaussian dist 
AT ε168v  -999 Normalized absolute difference between vertical profile data points and a Gaussian equation 

with parameters ST, vmed, and �68v 
AU ε268v  -999 Square root of normalized squared difference between vertical profile data points and a 

Gaussian equation with parameters ST, zmed, and �68v 
AV STpth m^2 / 

(Mm sr) 
-999 Total backscatter (area under the curve) of Gaussian equation with parameters Shmax, xpeak, 

and �pth 
AW xpeak m -999 Horizontal distance from the lidar of STpth 
AX �pth m -999 Std dev of dist assuming Gaussian shape and based on the distance from xpeak (averaged for 

the two directions) where the horizontal signal profile is < Shmax/10 
AY ε1pth  -999 Normalized absolute difference between horizontal profile data points and a Gaussian equation 

with parameters STpth, xpeak, and σpth 
AZ ε2pth  -999 Square root of normalized squared difference between horizontal profile data points and a 

Gaussian equation with parameters STph, xpeak, and �pth 
BA Shmax m / (Mm 

sr) 
-999 Peak backscatter in the horizontal profile of enhanced backscatter 

BB STptv m^2 / 
(Mm sr) 

-999 Total backscatter (area under the curve) of Gaussian equation with parameters Svmax, zpeak, 
and �ptv 

BC zpeak m -999 Height above the runway of STptv 
BD �ptv m -999 Std dev of distribution assuming Gaussian shape, based on the distance from zpeak (averaged 

for the two directions) where the vertical signal profile is < Svmax/10 
BE ε1ptv  -999 Normalized absolute difference between vertical profile data points and a Gaussian equation 

with parameters STptv, zpeak, and σptv 
BF ε2ptv  -999 Square root of normalized squared difference between vertical profile data points and a 

Gaussian equation with parameters STpv, zpeak, and σptv 
BG Svmax m / (Mm 

sr) 
-999 Peak backscatter in the vertical profile of enhanced backscatter 

BH STGh(ext) m^2 / 
(Mm sr) 

-999 Total backscatter (area under the curve) of Gaussian equation least-squares fitted to the 
horizontal profile, extended with zero values on both ends 

BI xGh(ext) m -999 Distance from the lidar to the spatial mean location of the Gaussian equation least-squares 
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fitted to the horizontal profile, extended with zero values on both ends 
BJ �Gh(ext) m -999 Spatial standard deviation of the Gaussian equation least-squares fitted to the horizontal 

profile, extended with zero values on both ends 
BK ε1Gh(ext)  -999 Normalized absolute difference between horizontal profile data points and a Gaussian equation 

with parameters STGh, xGh, and �Gh 
BL ε2Gh(ext)  -999 Square root of normalized squared difference between horizontal profile data points and a 

Gaussian equation with parameters STGh, xGh, and �Gh 
BM STGv(ext) m^2 / 

(Mm sr) 
-999 Total backscatter (area under the curve) of Gaussian equation least-squares fitted to the 

vertical, extended with zero values on both ends 
BN zGv(ext) m -999 Distance above the runway of the spatial mean location of the Gaussian equation least-

squares fitted to the vertical profile, extended with zero values on both ends 
BO �Gv(ext) m -999 Spatial standard deviation of the Gaussian equation least-squares fitted to the vertical profile, 

extended with zero values on both ends 
BP ε1Gv(ext)  -999 Normalized absolute difference between vertical profile data points and a Gaussian equation 

with parameters STGv, xGv, and �Gv 
BQ ε2Gv(ext)  -999 Square root of normalized squared difference between vertical profile data points and a 

Gaussian equation with parameters STGv, xGv, and �Gv 
BR STDGh m^2 / 

(Mm sr) 
-999 Total backscatter (area under the curve) of double Gaussian eqn with equal amplitude each 

mode least-squares fitted to the hor.profile, extended with zero values at ends 
BS xDGh1 m -999 Distance from the lidar to the center of the closer Gaussian in the double-Gaussian fit 
BT xDGh2 m -999 Distance from the lidar to the center of the father Gaussian in the double-Gaussian fit 
BU �DGh m -999 Standard deviation of both Gaussians in the double-Gaussian fit 
BV ε1DGh  -999 Normalized absolute difference between horizontal profile data points and the double Gaussian 

fit 
BW ε2DGh  -999 Square root of normalized squared difference between horizontal profile data points and the 

double Gaussian fit 
BX STGv m^2 / 

(Mm sr) 
-999 Same as for STGv(ext), but with the actual vertical profile (no extension) 

BY zGv m -999 Same as for zG(ext), but with the actual vertical profile (no extension) 
BZ �Gv m -999 Same as for �Gv(ext), but with the actual vertical profile (no extension) 
CA ε1Gv  -999 Same as for ε1Gv(ext), but with the actual vertical profile (no extension) 
CB ε2Gv  -999 Same as for ε2Gv(ext), but with the actual vertical profile (no extension) 
CC �e 1/(mM) -999 Ambient extinction coefficient used to process the lidar data 
CD <βh> 1/(mM sr) -999 Haze (aerosol) backscatter coefficient in the foreplume region calculated from lidar signal, 

calibration, extinction correction, and subtracting �m 
CE �h 1/(mM) -999 Ambient haze (aerosol) extinction coefficient = �e - �m 
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CF βm 1/(mM sr) -999 Molecular backscatter coefficient for air density calculated from surface temperature and 
pressure 

CG �m 1/(mM) -999 Molecular extinction coefficient for air density calculated from surface temperature and 
pressure 

CH Τp m -999 Vertical integral of plume optical depth assuming difference in ambient signal from post-plume 
and fore-plume regions is due only to plume attenuation 

CI Lp Mm sr / 
m 

-999 Plume's lidar extinction-to-backscatter ratio based on Tp and ST 

CJ Nabove  -999 Number of beams in the sweep above the plume as designated by the operator in sweep 
processing 

CK  Δτabove  -999 Optical depth between foreplume and postplume regions for the Tp beams if their average 
difference in ambient signal were caused by extinction 

CL Δ �h 
above 

1/(mM) -999 Average extinction coefficient corresponding to Δ�above 

CM r1 m -999 Distance between lidar and near boundary of foreplume region 
CN r2 m -999 Distance between lidar and boundary dividing the foreplume and plume regions 
CO r3 m -999 Distance between lidar and boundary dividing the plume and postplume regions 
CP r4 m -999 Distance between lidar and far boundary of postplume region 
CQ F2D m^2/(Mm 

sr)^2 
-999 Parameter for calculation soot emission based on statistics of plume density - usefulness not 

evaluated yet 
CR F�R m^2/(Mm 

sr)^2 
-999 Parameter for calculation soot emission based on statistics of plume density - usefulness not 

evaluated yet 
CS ST�R m^2/(Mm 

sr) 
-999 Parameter for calculation soot emission based on statistics of plume density - usefulness not 

evaluated yet 
CT F�1  -999 Parameter for calculation soot emission based on statistics of plume density - usefulness not 

evaluated yet 
CU ST�1  -999 Parameter for calculation soot emission based on statistics of plume density - usefulness not 

evaluated yet 
CV # Τp grids  -999 Number of Δz levels occupied by the Tp beams 
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APPENDIX D:  
Discussion of Errors and Improvement of LIDAR Accuracy 

 
There are many sources of error and uncertainty in this new method, some small and 
others substantial. They include photon counting statistics in the measurement, spatial 
variations in ambient scattering, uncertainties in aircraft engine specifications and throttle 
settings, limitations to LIDAR calibration accuracy, inaccuracy in determining plume size 
and shape, uncertainty in the value of η, and simplifications in the theoretical 
assumptions.  
 
A consideration of likely magnitude of these errors and uncertainties, and assuming they 
are independent of one another, led to a two-part uncertainty estimate for the EI values in 
Table 3 of  ± (0.05 n-1/2 g/kg)  ± factor of 2 times EI, where n is the number of cycles with 
the particular power setting (Table 3). The first part of the uncertainty arises mostly from 
random-like errors (photon statistics and nonuniform ambient), but also the uncertainties 
in theory and data from which EIvol and EIΔT were determined. The second part arises out 
of bias-like uncertainties in EIenh, including η, the theoretical assumptions, the horizontal 
plume size, the LIDAR calibration, and engine specifications. The overall uncertainty is 
indeed large, but can be very much reduced. 
 
The uncertainty in η actually has four main potential sources of error. First is the value of 
refractive index, for which we used the suggestion in Horvath (1993) of 2+2i and density 
2.25 g cm-3 for pure soot. A more recent review (Bond and Bergstrom 2006) considered 
the refractive index of light absorbing particles and arrived at a more definitive value at 
550 nm and corresponding material density than before. This paper may show the path 
for us to determine a more accurate value at 355 nm for engine soot. The second place for 
improvement is to use a scattering theory that accounts in a more rigorous and accurate 
way for the nonspherical shape of the particles. There are several methods (Sorenson 
2001, Mishchenko et al. 2000), and one or more could be selected based on ease of 
implementation and expected accuracy. As indicated in Fig. 9, η depends on the 
characteristic size of the soot particles. Updating the LIDAR calculations with size 
distribution measurements from modern engines will help reduce the uncertainty in η. It 
would be very helpful to learn from such measurements if the mean geometrical mass 
diameter of the size distribution tends to depend on EI, e.g., if the diameter tends to 
increase with EI. In that case, Eq. 31 would need to be modified to have a functional 
relationship between η and EI. Finally, the possibility also exists that the particles from 
the engine detected by the LIDAR are not entirely soot. Particle growth by organic gas 
deposition will occur as the plume ages. New particles will also be formed, but these will 
be very small and not add significantly to the LIDAR backscatter. The uncertainty in η is 
a principal part of the overall uncertainty and should be a topic of future research to 
improve accuracy of the LIDAR method. 
 
LIDAR calibrations from this project had an estimated error margin of ±30%. More 
careful and complete calibration procedures in the future can halve the calibration errors. 
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The horizontal size of the exhaust plume was estimated rather than measured in the 
stationary tests. The scan plane was close to the tail where the plume was still quite 
narrow, and the 5-m range resolution of the LIDAR could not resolve the plume’s 
horizontal size. Accuracy can be improved by changing to a faster analog-to-digital 
converter to make the range resolution considerable finer. Another approach would be to 
scan farther downstream where the plume is larger. 
 
The sensitivity of the LIDAR system can be improved to reduce random noise caused by 
photon statistics of the rather weak raw signals obtained by OPAL. A larger-diameter 
receiving telescope, higher optical transmission in the system, and transmitting more 
photons (larger pulse energy and/or higher pulse rate) will increase sensitivity. 
 
The stationary measurements suffered some complications and errors due to 
contamination by plumes of scattering particles from other sources. Although the airline 
hosting the stationary measurements was extremely helpful, the location was somewhat 
busy with ground vehicles, and sometimes other aircraft in the vicinity were taxiing and 
performing runups. The worst difficulty was self-contamination when light winds with a 
dominant tail-wind component to the test aircraft slowly blew its exhaust back into our 
sampling region. This seemed most significant in the B767 (B) case. This pooling or 
recirculation affected the LIDAR’s comparison of plume signal against ambient, and may 
have added soot to the air ingested into the engine. Screening during quality assurance 
and the use of fore- and post-plume regions during data processing eliminated the worst 
cases, but couldn’t remove all the effects. It would be good to design future tests to 
minimize such interferences. 
 
When it is necessary to operate both engines, operating them at identical throttle settings 
would simplify data analysis and improve accuracy by eliminating the need to bootstrap 
the contribution of the secondary engine. 
 
Engine operating parameters are a blend of ICAO data, Jane’s data, and calculations 
based on simple assumptions. The air mass flow data come from Jane’s, and the ultimate 
source of these values is unknown to this author. It would be worthwhile to investigate 
how these are determined and how accurate they are. Rather than using the simple 
assumptions described above, actual data on how thrust, air mass flow, exit nozzle 
velocity, and exhaust air temperature at the nozzle vary with throttle setting might 
improve determination of these parameters and accuracy of the result. 
 
Alteration of ambient aerosol in the air passing through the engine and during mixing 
with the ambient air downstream is now estimated with simple approximations, as is the 
dilution of the air density of the warm plume. One factor not yet included is the loss of 
water from ambient particles in the bypass air and also ambient air mixing into further 
downstream due to a warm plume with lower relative humidity. This may be the reason 
there were more negative B767 EI’s than positive ones. These changes in ambient aerosol 
and plume density are significant or even dominate in low-soot plumes, so improving the 
assumptions and theory for them will lead directly to better accuracy in those cases. 
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By applying these improvements, a goal of reducing the uncertainty to ±( 0.01 g/kg)  
±0.3EI is reasonable.  
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