GetDP
Copyright © 1997-2013 Patrick Dular, Christophe Geuzaine

University of Liège
Department of Electrical Engineering
Institut d’Électricité Montefiore
Sart Tilman Campus, Building B28
B-4000 Liège
BELGIUM

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.
Short Contents

Obtaining GetDP .. 1
Copying conditions .. 3
1 Overview .. 5
2 How to read this manual 9
3 Running GetDP .. 11
4 Expressions .. 15
5 Objects ... 27
6 Types for objects ... 41
7 Short examples .. 67
8 Complete examples .. 83
A File formats .. 103
B Gmsh examples ... 107
C Compiling the source code 111
D Frequently asked questions 113
E Tips and tricks ... 115
F Version history ... 117
G Copyright and credits 121
H License ... 123
Concept index .. 131
Metasyntactic variable index 135
Syntax index ... 137
Table of Contents

Obtaining GetDP .. 1

Copying conditions .. 3

1 Overview ... 5
 1.1 Numerical tools as objects 5
 1.2 Which problems can GetDP actually solve? 6
 1.3 Bug reports .. 7

2 How to read this manual 9
 2.1 Syntactic rules used in this document 9

3 Running GetDP .. 11

4 Expressions .. 15
 4.1 Comments ... 15
 4.2 Includes .. 15
 4.3 Expressions definition 15
 4.4 Constants .. 16
 4.5 Operators .. 19
 4.5.1 Operator types .. 19
 4.5.2 Evaluation order 20
 4.6 Functions .. 21
 4.7 Current values .. 21
 4.8 Arguments .. 22
 4.9 Registers .. 22
 4.10 Fields .. 23
 4.11 Loops and conditionals 25

5 Objects .. 27
 5.1 Group: defining topological entities 27
 5.2 Function: defining global and piecewise expressions 28
 5.3 Constraint: specifying constraints on function spaces and formulations 29
 5.4 FunctionSpace: building function spaces 30
 5.5 Jacobian: defining jacobian methods 32
 5.6 Integration: defining integration methods 33
 5.7 Formulation: building equations 34
 5.8 Resolution: solving systems of equations 35
 5.9 PostProcessing: exploiting computational results 37
 5.10 PostOperation: exporting results 38
6 Types for objects 41
 6.1 Types for Group 41
 6.2 Types for Function 42
 6.2.1 Math functions 42
 6.2.2 Extended math functions 44
 6.2.3 Green functions 45
 6.2.4 Type manipulation functions 45
 6.2.5 Coordinate functions 47
 6.2.6 Miscellaneous functions 48
 6.3 Types for Constraint 50
 6.4 Types for FunctionSpace 50
 6.5 Types for Jacobian 52
 6.6 Types for Integration 53
 6.7 Types for Formulation 54
 6.8 Types for Resolution 55
 6.9 Types for PostProcessing 60
 6.10 Types for PostOperation 61

7 Short examples 67
 7.1 Constant expression examples 67
 7.2 Group examples 67
 7.3 Function examples 67
 7.4 Constraint examples 69
 7.5 FunctionSpace examples 69
 7.5.1 Nodal finite element spaces 70
 7.5.2 High order nodal finite element space 70
 7.5.3 Nodal finite element space with floating potentials 70
 7.5.4 Edge finite element space 71
 7.5.5 Edge finite element space with gauge condition 72
 7.5.6 Coupled edge and nodal finite element spaces 72
 7.5.7 Coupled edge and nodal finite element spaces for multiply connected domains 73
 7.6 Jacobian examples 74
 7.7 Integration examples 74
 7.8 Formulation examples 75
 7.8.1 Electrostatic scalar potential formulation 75
 7.8.2 Electrostatic scalar potential formulation with floating potentials and electric charges 75
 7.8.3 Magnetostatic 3D vector potential formulation 76
 7.8.4 Magnetodynamic 3D or 2D magnetic field and magnetic scalar potential formulation 76
 7.8.5 Nonlinearities, Mixed formulations, 77
 7.9 Resolution examples 77
 7.9.1 Static resolution (electrostatic problem) 77
 7.9.2 Frequency domain resolution (magnetodynamic problem) 77
 7.9.3 Time domain resolution (magnetodynamic problem) 78
7.9.4 Nonlinear time domain resolution (magnetodynamic problem) ... 78
7.9.5 Coupled formulations ... 79
7.10 PostProcessing examples ... 79
7.11 PostOperation examples ... 80

8 Complete examples .. 83
8.1 Electrostatic problem ... 83
8.2 Magnetostatic problem .. 90
8.3 Magnetodynamic problem ... 95

Appendix A File formats 103
A.1 Input file format .. 103
A.2 Output file format .. 103
 A.2.1 File ’.pre’ .. 104
 A.2.2 File ’.res’ .. 104

Appendix B Gmsh examples 107

Appendix C Compiling the source code 111

Appendix D Frequently asked questions 113
 D.1 The basics .. 113
 D.2 Installation ... 113
 D.3 Usage ... 113

Appendix E Tips and tricks 115

Appendix F Version history 117

Appendix G Copyright and credits 121

Appendix H License 123

Concept index ... 131

Metasyntactic variable index 135

Syntax index ... 137
Obtaining GetDP

The source code and various pre-compiled versions of GetDP (for Windows, Linux and MacOS) can be downloaded from http://geuz.org/getdp.

If you use GetDP, we would appreciate that you mention it in your work. References and the latest news about GetDP are always available on http://geuz.org/getdp.
Copying conditions

GetDP is “free software”; this means that everyone is free to use it and to redistribute it on a free basis. GetDP is not in the public domain; it is copyrighted and there are restrictions on its distribution, but these restrictions are designed to permit everything that a good cooperating citizen would want to do. What is not allowed is to try to prevent others from further sharing any version of GetDP that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of GetDP, that you receive source code or else can get it if you want it, that you can change GetDP or use pieces of GetDP in new free programs, and that you know you can do these things. To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these rights. For example, if you distribute copies of GetDP, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no warranty for GetDP. If GetDP is modified by someone else and passed on, we want their recipients to know that what they have is not what we distributed, so that any problems introduced by others will not reflect on our reputation.

The precise conditions of the license for GetDP are found in the General Public License that accompanies the source code (see Appendix H [License], page 123). Further information about this license is available from the GNU Project webpage http://www.gnu.org/copyleft/gpl-faq.html. Detailed copyright information can be found in Appendix G [Copyright and credits], page 121.

If you want to integrate parts of GetDP into a closed-source software, or want to sell a modified closed-source version of GetDP, you will need to obtain a different license. Please contact us directly for more information.
1 Overview

GetDP (a “General environment for the treatment of Discrete Problems”) is a scientific software environment for the numerical solution of integro-differential equations, open to the coupling of physical problems (electromagnetic, thermal, etc.) as well as of numerical methods (finite element method, integral methods, etc.). It can deal with such problems of various dimensions (1D, 2D or 3D) and time states (static, transient or harmonic).

The main feature of GetDP is the closeness between its internal structure (written in C), the organization of data defining discrete problems (written by the user in ASCII data files) and the symbolic mathematical expressions of these problems. Its aim is to be welcoming and of easy use for both development and application levels: it consists of a working environment in which the definition of any problem makes use of a limited number of objects, which makes the environment structured and concise. It therefore gives researchers advanced developing tools and a large freedom in adding new functionalities.

The modeling tools provided by GetDP can be tackled at various levels of complexity: this opens the software to a wide range of activities, such as research, collaboration, education, training and industrial studies.

1.1 Numerical tools as objects

An assembly of computational tools (or objects) in GetDP leads to a problem definition structure, which is a transcription of the mathematical expression of the problem, and forms a text data file: the equations describing a phenomenon, written in a mathematical form adapted to a chosen numerical method, directly constitute data for GetDP.

The resolution of a discrete problem with GetDP requires the definition, in a text data file, of the GetDP objects listed (together with their dependencies) in the following figure and table.
The gathering of all these objects constitutes the problem definition structure, which is a copy of the formal mathematical formulation of the problem. Reading the first column of the table from top to bottom pictures the working philosophy and the linking of operations peculiar to GetDP, from group definition to results visualization. The decomposition highlighted in the figure points out the separation between the objects defining the method of resolution, which may be isolated in a “black box” (bottom) and those defining the data peculiar to a given problem (top).

The computational tools which are in the center of a problem definition structure are formulations (Formulation) and function spaces (FunctionSpace). Formulations define systems of equations that have to be built and solved, while function spaces contain all the quantities, i.e., functions, fields of vectors or covectors, known or not, involved in formulations.

Each object of a problem definition structure must be defined before being referred to by others. A linking which always respects this property is the following: it first contains the objects defining particular data of a problem, such as geometry, physical characteristics and boundary conditions (i.e., Group, Function and Constraint) followed by those defining a resolution method, such as unknowns, equations and related objects (i.e., Jacobian, Integration, FunctionSpace, Formulation, Resolution and PostProcessing). The processing cycle ends with the presentation of the results (i.e., lists of numbers in various formats), defined in PostOperation fields. This decomposition points out the possibility of building black boxes, containing objects of the second group, adapted to treatment of general classes of problems that share the same resolution methods.

1.2 Which problems can GetDP actually solve?

The preceding explanations may seem very (too) general. Which are the problems that GetDP can actually solve? To answer this question, here is a list of methods that we have considered and coupled until now:

Numerical methods
- finite element method
- boundary element method (experimental, undocumented)
- volume integral methods (experimental, undocumented)
Geometrical models
- one-dimensional models (1D)
- two-dimensional models (2D), plane and axisymmetric
- three-dimensional models (3D)

Time states
- static states
- sinusoidal and harmonic states
- transient states
- eigenvalue problems

These methods have been successfully applied to build coupled physical models involving electromagnetic phenomena (magnetostatics, magnetodynamics, electrostatics, electrodynamics, wave propagation, lumped electric circuits), acoustic phenomena, thermal phenomena and mechanical phenomena (elasticity, rigid body movement).

As can be guessed from the preceding list, GetDP has been initially developed in the field of computational electromagnetics, which fully uses all the offered coupling features. We believe that this does not interfere with the expected generality of the software because a particular modeling forms a problem definition structure which is totally external to the software: GetDP offers computational tools; the user freely applies them to define and solve his problem.

Nevertheless, specific numerical tools will always need to be implemented to solve specific problems in areas other than those mentioned above. If you think the general philosophy of GetDP is right for you and your problem, but you discover that GetDP lacks the tools necessary to handle it, let us know: we would love to discuss it with you. For example, at the time of this writing, many areas of GetDP would need to be improved to make GetDP as useful for computational mechanics or computational fluid dynamics as it is for computational electromagnetics... So if you have the skills and some free time, feel free to join the project: we gladly accept all code contributions!

1.3 Bug reports

If you think you have found a bug in GetDP, you can report it by electronic mail to the GetDP mailing list at getdp@geuz.org, or file it directly into our bug tracking system at https://geuz.org/trac/getdp/report (login: getdp, password: getdp). Please send as precise a description of the problem as you can, including sample input files that produce the bug (problem definition and mesh files). Don’t forget to mention both the version of GetDP and the version of your operation system (see Chapter 3 [Running GetDP], page 11 to see how to get this information).

See Appendix D [Frequently asked questions], page 113, and the bug tracking system to see which problems we already know about.
2 How to read this manual

After reading Chapter 1 [Overview], page 5, which depicts the general philosophy of GetDP, you might want to skip Chapter 4 [Expressions], page 15, Chapter 5 [Objects], page 27 and Chapter 6 [Types for objects], page 41 and directly run the demo files bundled in the distribution on your computer (see Chapter 3 [Running GetDP], page 11). You should then open these examples with a text editor and compare their structure with the examples given in Chapter 7 [Short examples], page 67 and Chapter 8 [Complete examples], page 83. For each new syntax element that you fall onto, you can then go back to Chapter 4 [Expressions], page 15, Chapter 5 [Objects], page 27, and Chapter 6 [Types for objects], page 41, and find in these chapters the detailed description of the syntactic rules as well as all the available options.

Indexes for many concepts (see [Concept index], page 131) and for all the syntax elements (see [Syntax index], page 137) are available at the end of this manual.

2.1 Syntactic rules used in this document

Here are the rules we tried to follow when writing this user’s guide. Note that metasyntactic variable definitions stay valid throughout all the manual (and not only in the sections where the definitions appear). See [Metasyntactic variable index], page 135, for an index of all metasyntactic variables.

1. Keywords and literal symbols are printed like this.
2. Metasyntactic variables (i.e., text bits that are not part of the syntax, but stand for other text bits) are printed like this.
3. A colon (:) after a metasyntactic variable separates the variable from its definition.
4. Optional rules are enclosed in < > pairs.
5. Multiple choices are separated by |.
6. Three dots (…) indicate a possible repetition of the preceding rule.
7. For conciseness, the notation \textit{rule }<, \textit{rule }> \ldots \textit{is replaced by rule }<,\ldots>.
8. The \textit{etc} symbol replaces nonlisted rules.
3 Running GetDP

GetDP has no graphical interface\(^1\). It is a command-line driven program that reads a problem definition file once at the beginning of the processing. This problem definition file is a regular ASCII text file (see Section 1.1 [Numerical tools as objects], page 5), hence created with whatever text editor you like.

If you just type the program name at your shell prompt (without any argument), you will get a short help on how to run GetDP. All GetDP calls look like

```
getdp filename options
```

where `filename` is the ASCII file containing the problem definition, i.e., the structures this user’s guide has taught you to create. This file can include other files (see Section 4.2 [Includes], page 15), so that only one problem definition file should always be given on the command line. The input files containing the problem definition structure are usually given the ‘.pro’ extension (if so, there is no need to specify the extension on the command line). The name of this file (without the extension) is used as a basis for the creation of intermediate files during the pre-processing and the processing stages.

The `options` are a combination of the following commands (in any order):

- **-pre** `resolution-id`

 Performs the pre-processing associated with the resolution `resolution-id`. In the pre-processing stage, GetDP creates the geometric database (from the mesh file), identifies the degrees of freedom (the unknowns) of the problem and sets up the constraints on these degrees of freedom. The pre-processing creates a file with a ‘.pre’ extension. If `resolution-id` is omitted, the list of available choices is displayed.

- **-cal**

 Performs the processing. This requires that a pre-processing has been performed previously, or that a `-pre` option is given on the same command line. The performed resolution is the one given as an argument to the `-pre` option. In the processing stage, GetDP executes all the commands given in the **Operation** field of the selected **Resolution** object (such as matrix assemblies, system resolutions, ...).

- **-pos** `post-operation-id` ...

 Performs the operations in the **PostOperation**(s) selected by the `post-operation-id`(s). This requires that a processing has been performed previously, or that a `-cal` option is given on the same command line. If `post-operation-id` is omitted, the list of available choices is displayed.

- **-msh** `filename`

\(^1\) If you are looking for a graphical front-end to GetDP, you may consider using Gmsh (available at http://geuz.org/gmsh). Gmsh permits to construct geometries, generate meshes, launch computations and visualize results directly from within a user-friendly graphical interface. The file formats used by Gmsh for mesh generation and post-processing are the default file formats accepted by GetDP (see Section A.1 [Input file format], page 103, and Section 6.10 [Types for PostOperation], page 61).
Reads the mesh (in `.msh` format) from `filename` (see Appendix A [File formats], page 103) rather than from the default problem file name (with the `.msh` extension appended).

`-gmshread filename ...`
Read gmsh data files (same as GmshRead in Resolution operations). Allows to use such datasets outside resolutions (e.g. in pre-processing).

`-split`
Saves processing results in separate files (one for each timestep).

`-res filename ...`
Loads processing results from file(s).

`-name string`
Uses `string` as the default generic file name for input or output of mesh, pre-processing and processing files.

`-restart`
Restarts processing of a time stepping resolution interrupted before being complete.

`-solve resolution-id`
Same as `-pre resolution-id -cal`.

`-solver filename`
Specifies a solver option file (whose format varies depending on the linear algebra toolkit used).

`-slepc`
Uses SLEPc instead of Arpack as eigensolver.

`-adapt file`
Reads adaptation constraints from file.

`-order real`
Specifies the maximum interpolation order.

`-cache`
Caches network computations to disk.

`-bin`
Selects binary format for output files.

`-v2`
Creates mesh-based Gmsh output files when possible.

`-check`
Lets you check the problem structure interactively.
Chapter 3: Running GetDP

-v
-verbose integer
 Sets the verbosity level. A value of 0 means that no information will be displayed during the processing.

-p
-progress integer
 Sets the progress update rate. This controls the refreshment rate of the counter indicating the progress of the current computation (in %).

-onelab name <address>
 Communicates with OneLab (file or server address)

-setnumber name value
 Sets constant number name to value

-setstring name value
 Sets constant string name to value

-info
 Displays the version information.

-version
 Displays the version number.

-help
 Displays a message listing basic usage and available options.
4 Expressions

This chapter and the next two describe in a rather formal way all the commands that can be used in the ASCII text input files. If you are just beginning to use GetDP, or just want to see what GetDP is all about, you should skip this chapter and the next two for now, have a quick look at Chapter 3 [Running GetDP], page 11, and run the demo problems bundled in the distribution on your computer. You should then open the ‘.pro’ files in a text editor and compare their structure with the examples given in Chapter 7 [Short examples], page 67 and Chapter 8 [Complete examples], page 83. Once you have a general idea of how the files are organized, you might want to come back here to learn more about the specific syntax of all the objects, and all the available options.

4.1 Comments

Both C and C++ style comments are supported and can be used in the input data files to comment selected text regions:

1. the text region comprised between /* and */ pairs is ignored;
2. the rest of a line after a double slash // is ignored.

Comments cannot be used inside double quotes or inside GetDP keywords.

4.2 Includes

An input data file can be included in another input data file by placing one of the following commands (expression-char represents a file name) on a separate line, outside the GetDP objects. Any text placed after an include command on the same line is ignored.

```
Include expression-char
#include expression-char
```

See Section 4.4 [Constants], page 16, for the definition of the character expression expression-char.

4.3 Expressions definition

Expressions are the basic tool of GetDP. They cover a wide range of functional expressions, from constants to formal expressions containing functions (built-in or user-defined, depending on space and time, etc.), arguments, discrete quantities and their associated differential operators, etc. Note that ‘white space’ (spaces, tabs, new line characters) is ignored inside expressions (as well as inside all GetDP objects).

Expressions are denoted by the metasyntactic variable expression (remember the definition of the syntactic rules in Section 2.1 [Syntactic rules], page 9):

```
expression:
    ( expression ) |
    integer |
    real |
    constant-id |
    quantity |
    argument |
```
current-value |
register-value-set |
register-value-get |
operator-unary expression |
expression operator-binary expression |
expression operator-ternary-left expression operator-ternary-right expression |
built-in-function-id [< expression-list >] < { expression-cst-list } > |
function-id [< expression-list >] |
< Real | Complex > [expression] |
Dt [expression] |
AtAnteriorTimeStep [expression, integer] |
Order [quantity] |
Trace [expression, group-id] |
expression ##integer

The following sections introduce the quantities that can appear in expressions, i.e., constant terminals (integer, real) and constant expression identifiers (constant-id, expression-cst-list), discretized fields (quantity), arguments (argument), current values (current-value), register values (register-value-set, register-value-get), operators (operator-unary, operator-binary, operator-ternary-left, operator-ternary-right) and built-in or user-defined functions (built-in-function-id, function-id). The last seven cases in this definition permit to cast an expression as real or complex, get the time derivative or evaluate an expression at an anterior time step, retrieve the interpolation order of a discretized quantity, evaluate the trace of an expression, and print the value of an expression for debugging purposes.

List of expressions are defined as:

```
expression-list:
  expression <,...>
```

4.4 Constants

The three constant types used in GetDP are integer, real and string. These types have the same meaning and syntax as in the C or C++ programming languages. Besides general expressions (expression), purely constant expressions, denoted by the metasyntactic variable expression-cst, are also used:

```
expression-cst:
  ( expression-cst ) | 
integer | 
real | 
constant-id | 
operator-unary expression-cst | 
expression-cst operator-binary expression-cst | 
expression-cst operator-ternary-left expression-cst operator-ternary-right | 
math-function-id [ < expression-cst-list > ] | 
#constant-id() |
constant-id(expression-cst)

List of constant expressions are defined as:

expression-cst-list:
  expression-cst-list-item <,...>

with

equation:

expression-cst-list-item:
  expression-cst |
  expression-cst : expression-cst |
  expression-cst : expression-cst : expression-cst |
  constant-id () |
  constant-id ( { expression-cst-list } ) |
  List[ constant-id ] |
  ListAlt[ constant-id, constant-id ] |
  LinSpace[ expression-cst, expression-cst, expression-cst ] |
  LogSpace[ expression-cst, expression-cst, expression-cst ] |
  - expression-cst-list-item |
  expression-cst * expression-cst-list-item |
  expression-cst-list-item * expression-cst |
  expression-cst / expression-cst-list-item |
  expression-cst-list-item / expression-cst |
  expression-cst-list-item ^ expression-cst |
  expression-cst-list-item + expression-cst-list-item |
  expression-cst-list-item - expression-cst-list-item |
  expression-cst-list-item * expression-cst-list-item |
  expression-cst-list-item / expression-cst-list-item |

The second case in this last definition permits to create a list containing the range of numbers comprised between the two expression-cst, with a unit incrementation step. The third case also permits to create a list containing the range of numbers comprised between the two expression-cst, but with a positive or negative incrementation step equal to the third expression-cst. The fourth and fifth cases permit to reference constant identifiers (constant-ids) of lists of constants and constant identifiers of sublists of constants (see below for the definition of constant identifiers). The sixth case is a synonym for the fourth. The seventh case permits to create alternate lists: the arguments of ListAlt must be constant-ids of lists of constants of the same dimension. The result is an alternate list of these constants: first constant of argument 1, first constant of argument 2, second constant of argument 1, etc. These kinds of lists of constants are for example often used for function parameters (see Section 4.6 [Functions], page 21). The next two cases permit to create linear and logarithmic lists of numbers, respectively. The remaining cases permit to apply arithmetic operators item-wise in lists.

Contrary to a general expression which is evaluated at runtime (thanks to an internal stack mechanism), an expression-cst is completely evaluated during the syntactic analysis of the problem (when GetDP reads the '.pro' file). The definition of such constants or lists of constants with identifiers can be made outside or inside any GetDP object. The syntax for the definition of constants is:

affectation:
DefineConstant [ constant-id < = expression-cst > <,...> ]; |
DefineConstant [ constant-id = { expression-cst \\
<, string string > } <,...> ]; |
DefineConstant [ string-id < = string-def > <,...> ]; |
DefineConstant [ string-id = { string-def \\
<, string string > } <,...> ]; |
constant-id = constant-def; |
string-id = string-def; |
Printf [ "string" ]; |
Printf [ "string", expression-cst-list ]; |
Read [ constant-id ]; |
Read [ constant-id , expression-cst ];

with

constant-id:
  string |
string ( expression-cst-list ) |
string ~ { expression-cst }

constant-def:
  expression-cst-list-item |
  { expression-cst-list } |
  ListFromFile [ expression-char ]

string-id:
  string |
string ~ { expression-cst }

string-def:
  "string" |
  Str[ expression-char ] |
  StrCat[ expression-char, expression-char ]

Notes:
1. Five constants are predefined in GetDP: Pi (3.1415926535897932), 0D (0), 1D (1), 2D (2) and 3D (3).
2. When ~{expression-cst} is appended to a string string, the result is a new string formed by the concatenation of string, _ (an underscore) and the value of the expression-cst. This is most useful in loops (see Section 4.11 [Loops and conditionals], page 25), where it permits to define unique strings automatically. For example,

   For i In {1:3}
   x~{i} = i;
   EndFor

is the same as

   x_1 = 1;
   x_2 = 2;
   x_3 = 3;
3. The assignment in `DefineConstant` (zero if no `expression-cst` is given) is performed only if `constant-id` has not yet been defined. This kind of explicit default definition mechanism is most useful in general problem definition structures making use of a large number of generic constants, functions or groups. When exploiting only a part of a complex problem definition structure, the default definition mechanism allows to define the quantities of interest only, the others being assigned a default value (that will not be used during the processing but that avoids the error messages produced when references to undefined quantities are made).

See Section 7.1 [Constant expression examples], page 67, as well as Section 7.3 [Function examples], page 67, for some examples.

Character expressions are defined as follows:

```
expression-char:
 "string" | string-id | StrCat[expression-char , expression-char] | Str[expression-char <, ...>]
 Sprintf [expression-char] | Sprintf[expression-char, expression-cst-list] | Date
```

`StrCat` and `Str` permit to concatenate character expressions (`Str` adds a newline character after each string except the last). `Sprintf` is equivalent to the `sprintf` C function (where `char-expression` is a format string that can contain floating point formatting characters: `%e`, `%g`, etc.). `Date` permits to access the current date.

### 4.5 Operators

#### 4.5.1 Operator types

The operators in GetDP are similar to the corresponding operators in the C or C++ programming languages.

---

**operator-unary:**

- Unary minus.
- Logical not.

**operator-binary:**

- Exponentiation. The evaluation of the both arguments must result in a scalar value.
- Multiplication or scalar product, depending on the type of the arguments.
- Cross product. The evaluation of both arguments must result in vectors.
- Division.
- Modulo. The evaluation of the second argument must result in a scalar value.
- Addition.
- Subtraction.
Equality.

Inequality.

Greater. The evaluation of both arguments must result in scalar values.

Greater or equality. The evaluation of both arguments must result in scalar values.

Less. The evaluation of both arguments must result in scalar values.

Less or equality. The evaluation of both arguments must result in scalar values.

Logical ‘and’. The evaluation of both arguments must result in scalar values.

Logical ‘or’. The evaluation of both arguments must result in floating point values. Warning: the logical ‘or’ always (unlike in C or C++) implies the evaluation of both arguments. That is, the second operand of || is evaluated even if the first one is true.

Binary ‘and’.

Binary ‘or’.

The only ternary operator, formed by operator-ternary-left and operator-ternary-right is defined as in the C or C++ programming languages. The ternary operator first evaluates its first argument (the expression-cst located before the ?), which must result in a scalar value. If it is true (non-zero) the second argument (located between ? and :) is evaluated and returned; otherwise the third argument (located after :) is evaluated and returned.

4.5.2 Evaluation order

The evaluation priorities are summarized below (from stronger to weaker, i.e., ^ has the highest evaluation priority). Parentheses () may be used anywhere to change the order of evaluation.

- (unary), !
| &
/
*, /, %
+, -
<, >, <=, >=
!=, ==
&&, ||
?:
4.6 Functions

Two types of functions coexist in GetDP: user-defined functions (function-id, see Section 5.2 [Function], page 28) and built-in functions (built-in-function-id, defined in this section).

Both types of functions are always followed by a pair of brackets [ ] that can possibly contain arguments (see Section 4.8 [Arguments], page 22). This makes it simple to distinguish a function-id or a built-in-function-id from a constant-id. As shown below, built-in functions might also have parameters, given between braces {}, and which are completely evaluated during the analysis of the syntax (since they are of expression-cst-list type):

\[
\text{built-in-function-id} \ [ \ < \ expression-list > \ ] \ < \ \{} \ expression-cst-list \ \} \ >
\]

with

\[
\text{built-in-function-id}: \\
\text{math-function-id} \ | \\
\text{extended-math-function-id} \ | \\
\text{green-function-id} \ | \\
\text{type-function-id} \ | \\
\text{coord-function-id} \ | \\
\text{misc-function-id}
\]

Notes:

1. All possible values for built-in-function-id are listed in Section 6.2 [Types for Function], page 42.
2. Classical mathematical functions (see Section 6.2.1 [Math functions], page 42) are the only functions allowed in a constant definition (see the definition of expression-cst in Section 4.4 [Constants], page 16).

4.7 Current values

Current values are a special kind of arguments (see Section 4.8 [Arguments], page 22) which return the current integer or floating point value of an internal GetDP variable:

$\text{Time}$ Value of the current time. This value is set to zero for non time dependent analyses.

$\text{DTime}$ Value of the current time increment used in a time stepping algorithm.

$\text{Theta}$ Current theta value in a theta time stepping algorithm.

$\text{TimeStep}$ Number of the current time step in a time stepping algorithm.

$\text{Breakpoint}$ In case of a breakpoint hit in TimeLoopAdaptive it is the number of the current breakpoint. In the other case when $\text{Time}$ corresponds not to a breakpoint the value is -1.

$\text{Iteration}$ Number of the current iteration in a nonlinear loop.

$\text{EigenvalueReal}$ Real part of the current eigenvalue.
$\text{EigenvalueImag}$

Imaginary part of the current eigenvalue.

$\text{X, XS}$

Value of the current (destination or source) X-coordinate.

$\text{Y, YS}$

Value of the current (destination or source) Y-coordinate.

$\text{Z, ZS}$

Value of the current (destination or source) Z-coordinate.

$\text{A, B, C}$

Value of the current parametric coordinates used in the parametric OnGrid PostOperation (see Section 6.10 [Types for PostOperation], page 61).

Note:

1. The current X, Y and Z coordinates refer to the ‘physical world’ coordinates, i.e., coordinates in which the mesh is expressed.

### 4.8 Arguments

Function arguments can be used in expressions and have the following syntax (integer indicates the position of the argument in the expression-list of the function, starting from 1):

```
argument:
integer
```

See Section 5.2 [Function], page 28, and Section 7.3 [Function examples], page 67, for more details.

### 4.9 Registers

In many situations, identical parts of expressions are used more than once. If this is not a problem with constant expressions (since expression-csts are evaluated only once during the analysis of the problem definition structure, cf. Section 4.4 [Constants], page 16), it may introduce some important overhead while evaluating complex expressions (which are evaluated at runtime, thanks to an internal stack mechanism). In order to circumvent this problem, the evaluation result of any part of an expression can be saved in a register: a memory location where this partial result will be accessible without any costly reevaluation of the partial expression.

Registers have the following syntax:

```
register-value-set:
expression#expression-cst
```

```
register-value-get:
#expression-cst
```

Thus, to store any part of an expression in the register 5, one should add #5 directly after the expression. To reuse the value stored in this register, one simply uses #5 instead of the expression it should replace.

See Section 7.3 [Function examples], page 67, for an example.
4.10 Fields

A discretized quantity (defined in a function space, cf. Section 5.4 [FunctionSpace], page 30) is represented between braces {}, and can only appear in well-defined expressions in Formulation (see Section 5.7 [Formulation], page 34) and PostProcessing (see Section 5.9 [PostProcessing], page 37) objects:

\[
\text{quantity:} \\
\text{\quad} < \text{quantity-dof} > \{ < \text{quantity-operator} > \text{quantity-id} \} \mid \\
\text{\quad} \{ < \text{quantity-operator} > \text{quantity-id} \} [ \text{expression-cst-list} ]
\]

with

\[
\text{quantity-id:} \\
\text{\quad} \text{string} \mid \\
\text{\quad} \text{string} \sim \{ \text{expression-cst} \}
\]

and

\[
\text{quantity-dof:}
\]

**Dof** Defines a vector of discrete quantities (vector of Degrees of freedom), to be used only in Equation terms of formulations to define (elementary) matrices. Roughly said, the Dof symbol in front of a discrete quantity indicates that this quantity is an unknown quantity, and should therefore not be considered as already computed.

An Equation term must be linear with respect to the Dof. Thus, for example, a nonlinear term like

\[
\text{Galerkin} \{ [ f[] * \text{Dof}\{T\}^4 \ , \{T\} ]; \ldots \}
\]

must first be linearized; and while

\[
\text{Galerkin} \{ [ f[] * \text{Dof}\{T\} \ , \{T\} ]; \ldots \}
\]

\[
\text{Galerkin} \{ [ -f[] * 12 \ , \{T\} ]; \ldots \}
\]

is valid, the following, which is affine but not linear, is not:

\[
\text{Galerkin} \{ [ f[] * (\text{Dof}\{T\} - 12) \ , \{T\} ]; \ldots \}
\]

GetDP supports two linearization techniques. The first is functional iteration (or Picard method), where one simply plugs the value obtained at the previous iteration into the nonlinear equation (the previous value is known, and is accessed e.g. with \{T\} instead Dof\{T\}). The second is the Newton-Raphson iteration, where the Jacobian is specified with a JacNL equation term (see https://geuz.org/trac/getdp for an example).

**BF** Indicates that only a basis function will be used (only valid with basis functions associated with regions).

**quantity-operator:**

\[
\text{d} \quad \text{Exterior derivative (d): applied to a } p\text{-form, gives a } (p+1)\text{-form.}
\]

**Grad** Gradient: applied to a scalar field, gives a vector.

**Curl** Curl: applied to a vector field, gives a vector.

**Div** Divergence (div): applied to a vector field, gives a scalar.
D1 Applies the operator specified in the first argument of dFunction \( \text{basis-function-type, basis-function-type} \) (see Section 5.4 [FunctionSpace], page 30). This is currently only used for nodal-interpolated vector fields (interpolated with BF_Node_X, BF_Node_Y, BF_Node_Z)

When the first \( \text{basis-function-type} \) in dFunction is set to BF_NodeX_D1 for component X, BF_NodeY_D1 for component Y and BF_NodeZ_D1 for component Z, then D1 applied to a vector \([u_x, u_y, u_z]\) gives:

\[
\begin{bmatrix}
\frac{\partial u_x}{\partial x}, \frac{\partial u_y}{\partial y}, \frac{\partial u_z}{\partial z}
\end{bmatrix}
\]

Note that in this case specifying explicitly dFunction is not necessary, as BF_NodeX_D1, BF_NodeY_D1 and BF_NodeZ_D1 are assigned by default as the “D1 derivatives” of BF_NodeX, BF_NodeY and BF_NodeZ. This also holds for BF_GroupOfNodes_X, BF_GroupOfNodes_Y and BF_GroupOfNodes_Z.

When the first \( \text{basis-function-type} \) in dFunction is set to BF_NodeX_D12 for component X and BF_NodeY_D12 for component Y, then D1 applied to a vector \([u_x, u_y]\) gives:

\[
\begin{bmatrix}
\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y}, \frac{\partial u_z}{\partial y} + \frac{\partial u_y}{\partial z}, \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x}
\end{bmatrix}
\]

D2 Applies the operator specified in the second argument of dFunction \( \text{basis-function-type, basis-function-type} \) (see Section 5.4 [FunctionSpace], page 30). This is currently only used for nodal-interpolated vector fields (interpolated with BF_Node_X, BF_Node_Y, BF_Node_Z)

More specifically, when the second \( \text{basis-function-type} \) is to BF_NodeX_D2 for component X, BF_NodeY_D2 for component Y and BF_NodeZ_D2 for component Z, then D2 applied to a vector \([u_x, u_y, u_z]\) gives:

\[
\begin{bmatrix}
\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y}, \frac{\partial u_z}{\partial y} + \frac{\partial u_y}{\partial z}, \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x}
\end{bmatrix}
\]

Note that in this case specifying explicitly dFunction is not necessary, as BF_NodeX_D2, BF_NodeY_D2 and BF_NodeZ_D2 are assigned by default as the “D2 derivatives” of BF_NodeX, BF_NodeY and BF_NodeZ. This also holds for BF_GroupOfNodes_X, BF_GroupOfNodes_Y and BF_GroupOfNodes_Z.

Notes:

1. While the operators Grad, Curl and Div can be applied to 0, 1 and 2-forms respectively, the exterior derivative operator \( d \) is usually preferred with such fields.

2. The second case permits to evaluate a discretized quantity at a certain position X, Y, Z (when expression-cst-list contains three items) or at a specific time, N time steps ago (when expression-cst-list contains a single item).
4.11 Loops and conditionals

Loops and conditionals are defined as follows, and can be imbricated:

loop:

For ( expression-cst : expression-cst )

Iterates from the value of the first expression-cst to the value of the second expression-cst, with a unit incrementation step. At each iteration, the commands comprised between ‘For ( expression-cst : expression-cst )’ and the matching EndFor are executed.

For ( expression-cst : expression-cst : expression-cst )

Iterates from the value of the first expression-cst to the value of the second expression-cst, with a positive or negative incrementation step equal to the third expression-cst. At each iteration, the commands comprised between ‘For ( expression-cst : expression-cst : expression-cst )’ and the matching EndFor are executed.

For string In { expression-cst : expression-cst }

Iterates from the value of the first expression-cst to the value of the second expression-cst, with a unit incrementation step. At each iteration, the value of the iterate is affected to an expression named string, and the commands comprised between ‘For string In { expression-cst : expression-cst }’ and the matching EndFor are executed.

For string In { expression-cst : expression-cst : expression-cst }

Iterates from the value of the first expression-cst to the value of the second expression-cst, with a positive or negative incrementation step equal to the third expression-cst. At each iteration, the value of the iterate is affected to an expression named string, and the commands comprised between ‘For string In { expression-cst : expression-cst : expression-cst }’ and the matching EndFor are executed.

EndFor

Ends a matching For command.

If ( expression-cst )

The body enclosed between ‘If ( expression-cst )’ and the matching Endif is evaluated if expression-cst is non-zero.

EndIf

Ends a matching If command.

Loops and conditionals can be used in any of the following objects: Group, Function, Constraint (as well as in a contraint-case), FunctionSpace, Formulation (as well as in the quantity and equation definitions), Resolution (as well as resolution-term, system definition and operations), PostProcessing (in the definition of the PostQuantities) and PostOperation (as well as in the operation list).
5 Objects

This chapter presents the formal definition of the ten GetDP objects mentioned in Chapter 1 [Overview], page 5. To be concise, all the possible parameters for these objects are not given here (cf. the etc syntactic rule defined in Section 2.1 [Syntactic rules], page 9). Please refer to Chapter 6 [Types for objects], page 41, for the list of all available options.

5.1 Group: defining topological entities

Meshes (grids) constitute the input data of GetDP. All that is needed by GetDP as a mesh is a file containing a list of nodes (with their coordinates) and a list of geometrical elements with, for each one, a number characterizing its geometrical type (i.e., line, triangle, quadrangle, tetrahedron, hexahedron, prism, etc.), a number characterizing the physical region to which it belongs and the list of its nodes. This minimal input set should be easy to extract from most of the classical mesh file formats (see Section A.1 [Input file format], page 103, for a complete description of the mesh file format read by GetDP).

Groups of geometrical entities of various types can be considered and are used in many objects. There are region groups, of which the entities are regions, and function groups, with nodes, edges, facets, volumes, groups of nodes, edges of tree, facets of tree, . . . of regions.

Amongst region groups, elementary and global groups can be distinguished: elementary groups are relative to single regions (e.g., physical regions in which piecewise defined functions or constraints can be defined) while global groups are relative to sets of regions for which given treatments have to be performed (e.g., domain of integration, support of a function space, etc.).

Groups of function type contain lists of entities built on some region groups (e.g., nodes for nodal elements, edges for edge elements, edges of tree for gauge conditions, groups of nodes for floating potentials, elements on one side of a surface for cuts, etc.).

A definition of initially empty groups can be obtained thanks to a DefineGroup command, so that their identifiers exist and can be referred to in other objects, even if these groups are not explicitly defined. This procedure is similar to the DefineConstant procedure introduced for constants in Section 4.4 [Constants], page 16.

The syntax for the definition of groups is:

```
Group {
 < DefineGroup [group-id <{integer}> <,...>]; > ...
 < group-id = group-def; > ...
 < group-id += group-def; > ...
 < affectation > ...
 < loop > ...
}
```

with

```
 group-id:
 string | string ~ { expression-cst }
```
group-def:
  group-type [ group-list <, group-sub-type group-list > ] |
  group-id {{<integer>}}> |
  #group-list

   group-type:
       Region | Global | NodesOf | EdgesOf | etc

   group-list:
       All | group-list-item | { group-list-item <,...> }

   group-list-item:
       integer |
       integer : integer |
       integer : integer : integer |
       group-id {{<integer>}}> |

   group-sub-type:
       Not | StartingOn | OnOneSideOf | etc

Notes:
1. integer as a group-list-item is the only interface with the mesh; with each element is
   associated a region number, being this integer, and a geometrical type (see Section A.1
   [Input file format], page 103). Ranges of integers can be specified in the same way as
   ranges of constant expressions in an expression-cst-list-item (see Section 4.4 [Constants],
   page 16). For example, i:j replaces the list of consecutive integers i, i+1, ..., j-1, j.
2. Array of groups: DefineGroup[group-id{n}] defines the empty groups group-id{i},
   i=1, ..., n. Such a definition is optional, i.e., each group-id{i} can be separately
   defined, in any order.
3. #group-list is an abbreviation of Region[group-list].

See Section 6.1 [Types for Group], page 41, for the complete list of options and Section 7.2
[Group examples], page 67, for some examples.

5.2 Function: defining global and piecewise expressions

A user-defined function can be global in space or piecewise defined in region groups. A
physical characteristic is an example of a piecewise defined function (e.g., magnetic perme-
ability, electric conductivity, etc.) and can be simply a constant, for linear materials, or a
function of one or several arguments for nonlinear materials. Such functions can of course
depend on space coordinates or time, which can be needed to express complex constraints.

A definition of initially empty functions can be made thanks to the DefineFunction com-
mand so that their identifiers exist and can be referred to (but cannot be used) in other
objects. The syntax for the definition of functions is:

Function {
    < DefineFunction [ function-id <,...> ]; > ... 
    < function-id [ < group-def > ] = expression; > ...
<affectation> ...  
<loop> ...  
}

with

function-id:  
string

Note:
1. The optional group-def in brackets must be of Region type, and indicates on which region the (piecewise) function is defined. Warning: it is incorrect to write \texttt{f[reg1]=1; g[reg2]=f[]+1;} since the domains of definition of \texttt{f[]} and \texttt{g[]} don’t match.
2. One can also define initially empty functions inline by replacing the expression with ****.

See Section 6.2 [Types for Function], page 42, for the complete list of built-in functions and Section 7.3 [Function examples], page 67, for some examples.

5.3 Constraint: specifying constraints on function spaces and formulations

Constraints can be referred to in FunctionSpace objects to be used for boundary conditions, to impose global quantities or to initialize quantities. These constraints can be expressed with functions or be imposed by the pre-resolution of another discrete problem. Other constraints can also be defined, e.g., constraints of network type for the definition of circuit connections, to be used in Formulation objects.

The syntax for the definition of constraints is:

Constraint {
    { Name constraint-id; Type constraint-type; 
    Case {
        { Region group-def; < Type constraint-type; >  
            < SubRegion group-def; > < TimeFunction expression; >  
            < RegionRef group-def; > < SubRegionRef group-def; >  
            < Coefficient expression; > < Function expression; >  
            < Filter expression; >  
            constraint-val; } ...  
            <loop> ...  
        }
    } ...  
} ...  
< affectation> ...  
<loop> ...  
}

with
constraint-id:
constraint-case-id:
    string | string ~ { expression-cst }

constraint-type:
    Assign | Init | Network | Link | etc

constraint-val:
    Value expression | NameOfResolution resolution-id | etc

constraint-case-val:
    Branch { integer, integer } | etc

Notes:
1. The constraint type constraint-type defined outside the Case fields is applied to all the cases of the constraint, unless other types are explicitly given in these cases. The default type is Assign.
2. The region type Region group-def will be the main group-list argument of the group-def to be built for the constraints of FunctionSpaces. The optional region type SubRegion group-def will be the argument of the associated group-sub-type.
3. expression in Value of constraint-val cannot be time dependent ($Time$) because it is evaluated only once during the pre-processing (for efficiency reasons). Time dependences must be defined in TimeFunction expression.

See Section 6.3 [Types for Constraint], page 50, for the complete list of options and Section 7.4 [Constraint examples], page 69, for some examples.

5.4 FunctionSpace: building function spaces

A FunctionSpace is characterized by the type of its interpolated fields, one or several basis functions and optional constraints (in space and time). Subspaces of a function space can be defined (e.g., for the use with hierarchical elements), as well as direct associations of global quantities (e.g., floating potential, electric charge, current, voltage, magnetomotive force, etc.).

A key point is that basis functions are defined by any number of subsets of functions, being added. Each subset is characterized by associated built-in functions for evaluation, a support of definition and a set of associated supporting geometrical entities (e.g., nodes, edges, facets, volumes, groups of nodes, edges incident to a node, etc.). The freedom in defining various kinds of basis functions associated with different geometrical entities to interpolate a field permits to build made-to-measure function spaces adapted to a wide variety of field approximations (see Section 7.5 [FunctionSpace examples], page 69).

The syntax for the definition of function spaces is:

FunctionSpace {
    { Name function-space-id;
        Type function-space-type;
        BasisFunction {

with

function-space-id:
formulation-id:
resolution-id:
  string |
  string ~ { expression-cst }

basis-function-id:
coef-id:
sub-space-id:
global-quantity-id:
  string

function-space-type:
  Scalar | Vector | Form0 | Form1 | etc

dbasis-function-type:
  BF_Node | BF_Edge | etc
basis-function-id | { basis-function-id <,...> }

global-quantity-type:
  AliasOf | AssociatedWith

Notes:
1. When the definition region of a function type group used as an Entity of a BasisFunction is the same as that of the associated Support, it is replaced by All for more efficient treatments during the computation process (this prevents the construction and the analysis of a list of geometrical entities).
2. The same Name for several BasisFunction fields permits to define piecewise basis functions; separate NameOfCoefs must be defined for those fields.
3. A constraint is associated with geometrical entities defined by an automatically created Group of type group-type, using the Region defined in a Constraint object as its main argument, and the optional SubRegion in the same object as a group-sub-type argument.
4. A global basis function (BF_Global or BF_dGlobal) needs parameters, i.e., it is given by the quantity (quantity-id) pre-computed from multiresolutions performed on multiformulations.
5. Explicit derivatives of the basis functions can be specified using dFunction { basis-function-type, basis-function-type }. These derivatives can be accessed using the special D1 and D2 operators (see Section 4.10 [Fields], page 23).

See Section 6.4 [Types for FunctionSpace], page 50, for the complete list of options and Section 7.5 [FunctionSpace examples], page 69, for some examples.

5.5 Jacobian: defining jacobian methods

Jacobian methods can be referred to in Formulation and PostProcessing objects to be used in the computation of integral terms and for changes of coordinates. They are based on Group objects and define the geometrical transformations applied to the reference elements (i.e., lines, triangles, quadrangles, tetrahedra, prisms, hexahedra, etc.). Besides the classical lineic, surfacic and volume Jacobians, the Jacobian object allows the construction of various transformation methods (e.g., infinite transformations for unbounded domains) thanks to dedicated jacobian methods.

The syntax for the definition of Jacobian methods is:

```plaintext
Jacobian {
 { Name jacobian-id;
 Case {
 { Region group-def | All;
 Jacobian jacobian-type < { expression-cst-list }>;
 }
 } ...
 }
...
```

with
5.6 Integration: defining integration methods

Various numerical or analytical integration methods can be referred to in Formulation and PostProcessing objects to be used in the computation of integral terms, each with a set of particular options (number of integration points for quadrature methods—which can be linked to an error criterion for adaptative methods, definition of transformations for singular integrations, etc.). Moreover, a choice can be made between several integration methods according to a criterion (e.g., on the proximity between the source and computation points in integral formulations).

The syntax for the definition of integration methods is:

```plaintext
Integration {
 { Name integration-id; < Criterion expression; >
 Case {
 < { Type integration-type;
 Case {
 { GeoElement element-type; NumberOfPoints expression-cst } ...
 }
 } ... >
 < { Type Analytic; } ... >
 }
 } ...
}
```

with

- `integration-id`: string
- `integration-type`: Gauss | etc
- `element-type`: Line | Triangle | Tetrahedron etc

See Section 6.6 [Types for Integration], page 53, for the complete list of options and Section 7.7 [Integration examples], page 74, for some examples.
5.7 Formulation: building equations

The Formulation tool permits to deal with volume, surface and line integrals with many kinds of densities to integrate, written in a form that is similar to their symbolic expressions (it uses the same expression syntax as elsewhere in GetDP), which therefore permits to directly take into account various kinds of elementary matrices (e.g., with scalar or cross products, anisotropies, nonlinearities, time derivatives, various test functions, etc.). In case nonlinear physical characteristics are considered, arguments are used for associated functions. In that way, many formulations can be directly written in the data file, as they are written symbolically. Fields involved in each formulation are declared as belonging to beforehand defined function spaces. The uncoupling between formulations and function spaces allows to maintain a generality in both their definitions.

A Formulation is characterized by its type, the involved quantities (of local, global or integral type) and a list of equation terms. Global equations can also be considered, e.g., for the coupling with network relations.

The syntax for the definition of formulations is:

```
Formulation {
 { Name formulation-id; Type formulation-type;
 Quantity {
 { Name quantity-id; Type quantity-type;
 NameOfSpace function-space-id <{}>
 < [sub-space-id | global-quantity-id] >;
 < Symmetry expression-cst; >
 < [expression]; In group-def;
 Jacobian jacobian-id; Integration integration-id; >
 < IndexOfSystem integer; > } ...
 }
 Equation {
 < local-term-type
 { < term-op-type > [expression, expression];
 In group-def; Jacobian jacobian-id;
 Integration integration-id; } > ...
 < GlobalTerm
 { < term-op-type > [expression, expression];
 In group-def; } > ...
 < GlobalEquation
 { Type Network; NameOfConstraint constraint-id;
 { Node expression; Loop expression; Equation expression;
 In group-def; } ...
 } > ...
 < affectation > ...
 < loop > ...
 }
 } ...
 < affectation > ...
 < loop > ...
}
```
with

\[\text{formulation-id:} \]
\[\text{string} \mid \text{string} \sim \{ \text{expression-cst} \}\]

\[\text{formulation-type:} \]
\[\text{FemEquation} \mid \text{etc} \]

\[\text{local-term-type:} \]
\[\text{Galerkin} \mid \text{deRham} \]

\[\text{quantity-type:} \]
\[\text{Local} \mid \text{Global} \mid \text{Integral} \]

\[\text{term-op-type:} \]
\[\text{DtDof} \mid \text{DtDtDof} \mid \text{JacNL} \mid \text{etc} \]

Note:

1. \text{IndexOfSystem} permits to resolve ambiguous cases when several quantities belong to the same function space, but to different systems of equations. The integer parameter then specifies the index in the list of an \text{OriginSystem} command (see Section 5.8 \text{[Resolution]}, page 35).

2. A \text{GlobalTerm} defines a term to be assembled in an equation associated with a global quantity. This equation is a finite element equation if that global quantity is linked with local quantities.

3. A \text{GlobalEquation} defines a global equation to be assembled in the matrix of the system.

See Section 6.7 \text{[Types for Formulation]}, page 54, for the complete list of options and Section 7.8 \text{[Formulation examples]}, page 75, for some examples.

### 5.8 Resolution: solving systems of equations

The operations available in a \text{Resolution} include: the generation of a linear system, its solving with various kinds of linear solvers, the saving of the solution or its transfer to another system, the definition of various time stepping methods, the construction of iterative loops for nonlinear problems (Newton-Raphson and fixed point methods), etc. Multi-harmonic resolutions, coupled problems (e.g., magneto-thermal) or linked problems (e.g., pre-computations of source fields) are thus easily defined in GetDP.

The \text{Resolution} object is characterized by a list of systems to build and their associated formulations, using time or frequency domain, and a list of elementary operations:

\[
\text{Resolution} \{
  \{ \text{Name resolution-id};
  \text{System} \{
    \{ \text{Name system-id}; \text{NameOfFormulation formulation-list};
    < \text{Type system-type}; >
    < \text{Frequency expression-cst-list-item} |}
\]
Frequency { expression-cst-list }; >
< DestinationSystem system-id; >
< OriginSystem system-id; | OriginSystem { system-id <,...> }; >
< NameOfMesh expression-char > < Solver expression-char >
< loop > } ...
< loop > ...
}
Operation {
< resolution-op; > ...
< loop > ...
}
} ...
< affectation > ...
< loop > ...
}
with
resolution-id:
system-id:
  string |
  string ~ { expression-cst }

formulation-list:
  formulation-id <{}> | { formulation-id <{}> <,...> }

system-type:
  Real | Complex

resolution-op:
  Generate[system-id] | Solve[system-id] | etc

Notes:
1. The default type for a system of equations is Real. A frequency domain analysis is
defined through the definition of one or several frequencies (Frequency expression-
cst-list-item | Frequency { expression-cst-list }). Complex systems of equations
with no predefined list of frequencies (e.g., in modal analyses) can be explicitly
defined with Type Complex.
2. NameOfMesh permits to explicitly specify the mesh to be used for the construction of
the system of equations.
3. Solver permits to explicitly specify the name of the solver parameter file to use for the
solving of the system of equations. This is only valid if GetDP was compiled against the
default solver library (it is the case if you downloaded a pre-compiled copy of GetDP
from the internet).
4. DestinationSystem permits to specify the destination system of a TransferSolution
operation (see Section 6.8 [Types for Resolution], page 55).
5. OriginSystem permits to specify the systems from which ambiguous quantity defini-
tions can be solved (see Section 5.7 [Formulation], page 34).
5.9 PostProcessing: exploiting computational results

The PostProcessing object is based on the quantities defined in a Formulation and permits the construction (thanks to the expression syntax) of any useful piecewise defined quantity of interest:

\[
\text{PostProcessing } \{
\begin{align*}
& \{ \text{Name post-processing-id}; \\
& \text{NameOfFormulation formulation-id }\{\}; < \text{NameOfSystem system-id}; > \\
& \text{Quantity } \{ \\
& \{ \text{Name post-quantity-id}; \text{Value } \{ \text{post-value } \ldots \} \} \ldots \\
& < \text{loop } \ldots \\
& \} \ldots \\
& < \text{affectation } \ldots \\
& < \text{loop } \ldots \\
& \}
\end{align*}
\]

with

- \text{post-processing-id}:
- \text{post-quantity-id}:
  - string |
  - string ~ \{ \text{expression-cst} \}
- \text{post-value}:
  - Local \{ \text{local-value} \} | \text{Integral } \{ \text{integral-value} \}
- \text{local-value}:
  - \{ \text{expression} \}; \text{In group-def}; \text{Jacobian jacobian-id};
- \text{integral-value}:
  - \{ \text{expression} \}; \text{In group-def};
  - \text{Integration integration-id}; \text{Jacobian jacobian-id};

Notes:
1. The quantity defined with \text{integral-value} is piecewise defined over the elements of the mesh of \text{group-def}, and takes, in each element, the value of the integration of \text{expression} over this element. The global integral of \text{expression} over a whole region (being either \text{group-def} or a subset of \text{group-def}) has to be defined in the PostOperation with the \text{post-quantity-id[group-def]} command (see Section 5.10 [PostOperation], page 38).
2. If \text{NameOfSystem system-id} is not given, the system is automatically selected as the one to which the first quantity listed in the \text{Quantity} field of \text{formulation-id} is associated.

See Section 6.9 [Types for PostProcessing], page 60, for the complete list of options and Section 7.10 [PostProcessing examples], page 79, for some examples.
5.10 PostOperation: exporting results

The PostOperation is the bridge between results obtained with GetDP and the external world. It defines several elementary operations on PostProcessing quantities (e.g., plot on a region, section on a user-defined plane, etc.), and outputs the results in several file formats.

PostOperation {
  { Name post-operation-id; NameOfPostProcessing post-processing-id;
    < Format post-operation-fmt; > < Append expression-char; >
    < ResampleTime[expression-cst, expression-cst, expression-cst]; >
    Operation {
      < post-operation-op; > ...
    }
  } ...
  < affectation > ...
  < loop > ...
} |
PostOperation post-operation-id UsingPost post-processing-id {
  < post-operation-op; > ...
} ...

with

post-operation-id:
  string | string ~ { expression-cst }

post-operation-op:
  Print[ post-quantity-term, print-support <,print-option> ... ] |
  Print[ "string", expression <,print-option> ... ] |
  Print[ "string", Str[ expression-char ] <,print-option> ... ] |
  Echo[ "string" <,print-option> ... ] |
  PrintGroup[ group-id, print-support <,print-option> ... ] |
  < loop > ...
  etc

post-quantity-term:
  post-quantity-id {[group-def]} |
  post-quantity-id post-quantity-op post-quantity-id{group-def} |
  post-quantity-id{group-def} post-quantity-op post-quantity-id

post-quantity-op:
  + | - | * | /

print-support:
  OnElementsOf group-def | OnRegion group-def | OnGlobal | etc

print-option:
  File expression-char | Format post-operation-fmt | etc
**post-operation-fmt:**

Table | TimeTable | etc

Notes:

1. Both PostOperation syntaxes are equivalent. The first one conforms to the overall interface, but the second one is more concise.

2. The format post-operation-fmt defined outside the Operation field is applied to all the post-processing operations, unless other formats are explicitly given in these operations with the Format option (see Section 6.10 [Types for PostOperation], page 61). The default format is Gmsh.

3. The ResampleTime option allows equidistant resampling of the time steps by a spline interpolation. The parameters are: start time, stop time, time step.

4. The optional argument [group-def] of the post-quantity-id can only be used when this quantity has been defined as an integral-value (see Section 5.9 [PostProcessing], page 37). In this case, the sum of all elementary integrals is performed over the region group-def.

5. The post-quantity-op allows the simple combination of space-dependent quantities (post-quantity-id) with global integral quantities (post-quantity-id[group-def]).

See Section 6.10 [Types for PostOperation], page 61, for the complete list of options and Section 7.11 [PostOperation examples], page 80, for some examples.
6 Types for objects

This chapter presents the complete list of choices associated with metasyntactic variables introduced for the ten GetDP objects.

6.1 Types for Group

Types in

\[ \text{group-type} \ [ R1 <, \text{group-sub-type} \ R2 > ] \]

\text{group-type} < \text{group-sub-type} >:

- **Region**
  - Regions in \( R1 \).
- **Global**
  - Regions in \( R1 \) (variant of \text{Region} used with global \text{BasisFunctions BF\_Global} and \text{BF\_dGlobal}).
- **NodesOf**
  - Nodes of elements of \( R1 \)
    - \text{< Not: but not those of R2 >}.
- **EdgesOf**
  - Edges of elements of \( R1 \)
    - \text{< Not: but not those of R2 >}.
- **FacetsOf**
  - Facets of elements of \( R1 \)
    - \text{< Not: but not those of R2 >}.
- **VolumesOf**
  - Volumes of elements of \( R1 \)
    - \text{< Not: but not those of R2 >}.
- **ElementsOf**
  - Elements of regions in \( R1 \)
    - \text{< OnOneSideOf: only elements on one side of R2 >}.
- **GroupsOfNodesOf**
  - Groups of nodes of elements of \( R1 \) (a group is associated with each region).
- **GroupsOfEdgesOf**
  - Groups of edges of elements of \( R1 \) (a group is associated with each region).
    - \text{< InSupport: in a support R2 being a group of type ElementOf, i.e., containing elements >}.
- **GroupsOfEdgesOnNodesOf**
  - Groups of edges incident to nodes of elements of \( R1 \) (a group is associated with each node).
    - \text{< Not: but not those of R2 >}.
- **GroupOfRegionsOf**
  - Single group of elements of regions in \( R1 \) (with basis function BF\_Region just one DOF is created for all elements of \( R1 \)).
- **EdgesOfTreeIn**
  - Edges of a tree of edges of \( R1 \)
    - \text{< StartingOn: a complete tree is first built on R2 >}.
FacetsOfTreeIn
  Facets of a tree of facets of \( R1 \)
  \(< \text{StartingOn}: \text{a complete tree is first built on } R2 \>\).

DualNodesOf
  Dual nodes of elements of \( R1 \).

DualEdgesOf
  Dual edges of elements of \( R1 \).

DualFacetsOf
  Dual facets of elements of \( R1 \).

DualVolumesOf
  Dual volumes of elements of \( R1 \).

6.2 Types for Function

6.2.1 Math functions

The following functions are the equivalent of the functions of the C math library, and always return real-valued expressions. These are the only functions allowed in constant expressions (expression-cst, see Section 4.4 [Constants], page 16).

\textit{math-function-id:}

\textbf{Exp} \hspace{1cm} [\textit{expression}]
Exponential function: \( e^{expression} \).

\textbf{Log} \hspace{1cm} [\textit{expression}]
Natural logarithm: \( \ln(expression) \), \( expression > 0 \).

\textbf{Log10} \hspace{1cm} [\textit{expression}]
Base 10 logarithm: \( \log_{10}(expression) \), \( expression > 0 \).

\textbf{Sqrt} \hspace{1cm} [\textit{expression}]
Square root, \( expression \geq 0 \).

\textbf{Sin} \hspace{1cm} [\textit{expression}]
Sine of \( expression \).

\textbf{Asin} \hspace{1cm} [\textit{expression}]
Arc sine (inverse sine) of \( expression \) in \([-\Pi/2,\Pi/2] \), \( expression \) in \([-1,1] \).

\textbf{Cos} \hspace{1cm} [\textit{expression}]
Cosine of \( expression \).

\textbf{Acos} \hspace{1cm} [\textit{expression}]
Arc cosine (inverse cosine) of \( expression \) in \([0,\Pi] \), \( expression \) in \([-1,1] \).

\textbf{Tan} \hspace{1cm} [\textit{expression}]
Tangent of \( expression \).
Atan \[expression\]
Arc tangent (inverse tangent) of \textit{expression} in \([-\pi/2,\pi/2]\).

Atan2 \[expression,expression\]
Arc tangent (inverse tangent) of the first \textit{expression} divided by the second, in \([-\pi,\pi]\).

Sinh \[expression\]
Hyperbolic sine of \textit{expression}.

Cosh \[expression\]
Hyperbolic cosine of \textit{expression}.

Tanh \[expression\]
Hyperbolic tangent of the real valued \textit{expression}.

TanhC2 \[expression\]
Hyperbolic tangent of a complex valued \textit{expression}.

Fabs \[expression\]
Absolute value of \textit{expression}.

Floor \[expression\]
Rounds downwards to the nearest integer that is not greater than \textit{expression}.

Ceil \[expression\]
Rounds upwards to the nearest integer that is not less than \textit{expression}.

Fmod \[expression,expression\]
Remainder of the division of the first \textit{expression} by the second, with the sign of the first.

Sign \[expression\]
-1 for \textit{expression} less than zero and 1 otherwise.

Jn \[expression\]
Returns the Bessel function of the first kind of order given by the first \textit{expression} for the value of the second \textit{expression}.

dJn \[expression\]
Returns the derivative of the Bessel function of the first kind of order given by the first \textit{expression} for the value of the second \textit{expression}.

Yn \[expression\]
Returns the Bessel function of the second kind of order given by the first \textit{expression} for the value of the second \textit{expression}.

dYn \[expression\]
Returns the derivative of the Bessel function of the second kind of order given by the first \textit{expression} for the value of the second \textit{expression}.
6.2.2 Extended math functions

extended-math-function-id:

Cross \[expression, expression\]  
Cross product of the two arguments; \textit{expression} must be a vector.

Hypot \[expression, expression\]  
Square root of the sum of the squares of its arguments.

Norm \[expression\]  
Absolute value if \textit{expression} is a scalar; euclidian norm if \textit{expression} is a vector.

SquNorm \[expression\]  
Square norm: \texttt{Norm[expression]}^2.

Unit \[expression\]  
Normalization: \textit{expression}/\texttt{Norm[expression]}. Returns 0 if the norm is smaller than 1.e-30.

Transpose \[expression\]  
Transposition; \textit{expression} must be a tensor.

Inv \[expression\]  
Inverse of the tensor \textit{expression}.

Det \[expression\]  
Determinant of the tensor \textit{expression}.

Rotate \[expression, expression, expression, expression\]  
Rotation of a vector or tensor given by the first \textit{expression} by the angles in radians given by the last three \textit{expression} values around the x-, y- and z-axis.

TTrace \[expression\]  
Trace; \textit{expression} must be a tensor.

\texttt{F\_Cos\_wt\_p[]} \{expression-cst, expression-cst\}  
The first parameter represents the angular frequency and the second represents the phase. If the type of the current system is \texttt{Real}, \texttt{F\_Cos\_wt\_p[]} \{w, p\} is identical to \texttt{Cos[w*\$Time+p]}. If the type of the current system is \texttt{Complex}, it is identical to \texttt{Complex[Cos[w],Sin[w]]}.

\texttt{F\_Sin\_wt\_p[]} \{expression-cst, expression-cst\}  
The first parameter represents the angular frequency and the second represents the phase. If the type of the current system is \texttt{Real}, \texttt{F\_Sin\_wt\_p[]} \{w, p\} is identical to \texttt{Sin[w*\$Time+p]}. If the type of the current system is \texttt{Complex}, it is identical to \texttt{Complex[Sin[w],-Cos[w]]}. 
F_Period  \[\text{expression}\{\text{expression-cst}\}\]
\[\text{Fmod[expression,expression-cst]} + (\text{expression}<0 \? \text{expression-cst} : 0)\]; the result is always in \([0,\text{expression-cst}]\).

Interval  \[\text{expression,expression,expression}\{\text{expression-cst, expression-cst,expression-cst}\}\]
Not documented yet.

6.2.3 Green functions
The Green functions are only used in integral quantities (see Section 5.7 [Formulation], page 34). The first parameter represents the dimension of the problem:
- 1D: \(r = \text{fabs}[X-XS]\)
- 2D: \(r = \sqrt{[(X-XS)^2+(Y-YS)^2]}\)
- 3D: \(r = \sqrt{[(X-XS)^2+(Y-YS)^2+(Z-ZS)^2]}\)

The triplets of values given in the definitions below correspond to the 1D, 2D and 3D cases.

\textbf{green-function-id}:

\textbf{Laplace}  \[\text{expression-cst}\]
\[r/2, 1/(2*Pi)*\ln(1/r), 1/(4*Pi*r)\].

\textbf{GradLaplace}  \[\text{expression-cst}\]
Gradient of Laplace relative to the destination point (\$X, \$Y, \$Z).

\textbf{Helmholtz}  \[\text{expression-cst, expression-cst}\]
\[\exp(j*k0*r)/(4*Pi*r)\], where \(k0\) is given by the second parameter.

\textbf{GradHelmholtz}  \[\text{expression-cst, expression-cst}\]
Gradient of Helmholtz relative to the destination point (\$X, \$Y, \$Z).

6.2.4 Type manipulation functions
\textbf{type-function-id}:

\textbf{Complex}  \[\text{expression-list}\]
Creates a (multi-harmonic) complex expression from an number of real-valued expressions. The number of expressions in \text{expression-list} must be even.

\textbf{Complex_MH}  \[\text{expression-list}\{\text{expression-cst-list}\}\]
Not documented yet.

\textbf{Re}  \[\text{expression}\]
Takes the real part of a complex-valued expression.

\textbf{Im}  \[\text{expression}\]
Takes the imaginary part of a complex-valued expression.
Conj \[[\text{expression}]\]
Computes the conjugate of a complex-valued expression.

Cart2Pol \[[\text{expression}]\]
Converts the cartesian form (real, imaginary) of a complex-valued expression into polar form (amplitude, phase [radians]).

Vector \[[\text{expression},\text{expression},\text{expression}]\]
Creates a vector from 3 scalars.

Tensor \[[\text{expression},\text{expression},\text{expression},\text{expression},\text{expression},\text{expression},\text{expression},\text{expression},\text{expression}]\]
Creates a second-rank tensor of order 3 from 9 scalars.

TensorV \[[\text{expression},\text{expression},\text{expression}]\]
Creates a second-rank tensor of order 3 from 3 vectors.

TensorSym \[[\text{expression},\text{expression},\text{expression},\text{expression},\text{expression},\text{expression},\text{expression},\text{expression},\text{expression}]\]
Creates a symmetrical second-rank tensor of order 3 from 6 scalars.

TensorDiag \[[\text{expression},\text{expression},\text{expression}]\]
Creates a diagonal second-rank tensor of order 3 from 3 scalars.

SquDyadicProduct \[[\text{expression}]\]
Dyadic product of the vector given by \text{expression} with itself.

CompX \[[\text{expression}]\]
Gets the X component of a vector.

CompY \[[\text{expression}]\]
Gets the Y component of a vector.

CompZ \[[\text{expression}]\]
Gets the Z component of a vector.

CompXX \[[\text{expression}]\]
Gets the XX component of a tensor.

CompXY \[[\text{expression}]\]
Gets the XY component of a tensor.

CompXZ \[[\text{expression}]\]
Gets the XZ component of a tensor.

CompYX \[[\text{expression}]\]
Gets the YX component of a tensor.

CompYY \[[\text{expression}]\]
Gets the YY component of a tensor.
CompYZ \[expression\]
Gets the YZ component of a tensor.

CompZX \[expression\]
Gets the ZX component of a tensor.

CompZY \[expression\]
Gets the ZY component of a tensor.

CompZZ \[expression\]
Gets the ZZ component of a tensor.

Cart2Sph \[expression\]
Gets the tensor for transformation of vector from cartesian to spherical coordinates.

Cart2Cyl \[expression\]
Gets the tensor for transformation of vector from cartesian to cylindric coordinates. E.g. to convert a vector with (x,y,z)-components to one with (radial, tangential, axial)-components: Cart2Cyl[XYZ[]] * vector

UnitVectorX
[]
Creates a unit vector in x-direction.

UnitVectorY
[]
Creates a unit vector in y-direction.

UnitVectorZ
[]
Creates a unit vector in z-direction.

### 6.2.5 Coordinate functions

*coord-function-id:*

X
[]
Gets the X coordinate.

Y
[]
 Gets the Y coordinate.

Z
[]
 Gets the Z coordinate.

XYZ
[]
Gets X, Y and Z in a vector.
6.2.6 Miscellaneous functions

`misc-function-id:`

**Printf** `[expression]`
Prints the value of `expression` when evaluated.

**Rand** `[expression]`
Returns a pseudo-random number in `[0, expression]`.

**Normal** `[]`
Computes the normal to the element.

**NormalSource** `[]`
Computes the normal to the source element (only valid in a quantity of Integral type).

**Tangent** `[]`
Computes the tangent to the element (only valid for line elements).

**TangentSource** `[]`
Computes the tangent to the source element (only valid in a quantity of Integral type and only for line elements).

**ElementVol** `[]`
Computes the element’s volume.

**SurfaceArea** `[]`
Computes the area of the actual surface.

**GetVolume** `[]`
Computes the volume of the actual physical group.

**F_CompElementNum** `[]`
Returns 0 if the current element and the current source element are identical.

**InterpolationLinear** `[expression]{expression-cst-list}`
Linear interpolation of points. The number of constant expressions in `expression-cst-list` must be even.

**dInterpolationLinear** `[expression]{expression-cst-list}`
Derivative of linear interpolation of points. The number of constant expressions in `expression-cst-list` must be even.
InterpolationBilinear

[expression,expression]{expression-cst-list}

Bilinear interpolation of a table based on two variables. See https://geuz.org/trac/getdp/wiki/UsageOfTables for an example.

dInterpolationBilinear

[expression,expression]{expression-cst-list}

Derivative of bilinear interpolation of a table based on two variables. The result is a vector. See https://geuz.org/trac/getdp/wiki/UsageOfTables for an example.

InterpolationAkima

[expression]{expression-cst-list}

Akima interpolation of points. The number of constant expressions in expression-cst-list must be even.

dInterpolationAkima

[expression]{expression-cst-list}

Derivative of Akima interpolation of points. The number of constant expressions in expression-cst-list must be even.

Order

[quantity]

Returns the interpolation order of the quantity.

Field

[expression]

Evaluate the last one of the fields (“views”) loaded with GmshRead (see Section 6.8 [Types for Resolution], page 55), at the point expression. Common usage is thus Field[XYZ[]].

Field

[expression]{expression-cst-list}

Idem, but evaluate all the fields corresponding to the tags in the list, and sum all the values. A field having no value at the given position does not produce an error: its contribution to the sum is simply zero.

ScalarField

[expression]{expression-cst-list}

Idem, but consider only real-valued scalar fields.

VectorField

[expression]{expression-cst-list}

Idem, but consider only real-valued vector fields.

TensorField

[expression]{expression-cst-list}

Idem, but consider only real-valued tensor fields.

ComplexScalarField

[expression]{expression-cst-list}

Idem, but consider only complex-valued scalar fields.
ComplexVectorField
    [expression]{expression-cst-list}
    Idem, but consider only complex-valued vector fields.

ComplexTensorField
    [expression]{expression-cst-list}
    Idem, but consider only complex-valued tensor fields.

6.3 Types for Constraint

constraint-type:

Assign       To assign a value (e.g., for boundary condition).

Init          To give an initial value (e.g., initial value in a time domain analysis). If two
              values are provided (with Value [ expression, expression ]), the first value
              can be used using the InitSolution1 operation. This is mainly useful for the
              Newmark time-stepping scheme.

AssignFromResolution
    To assign a value to be computed by a pre-resolution.

InitFromResolution
    To give an initial value to be computed by a pre-resolution.

Network       To describe the node connections of branches in a network.

Link          To define links between degrees of freedom in the constrained region with de-
              grees of freedom in a “reference” region, with some coefficient. For example,
              to link the degrees of freedom in the constrained region Left with the degrees
              of freedom in the reference region Right, located Pi units to the right of the
              region Left along the X-axis, with the coefficient -1, one could write:

              { Name periodic;
                Case {
                  { Region Left; Type Link ; RegionRef Right;
                    Coefficient -1; Function Vector[$X+Pi,$Y,$Z] ;
                  }
                }
              }

In this example, Function defines the mapping that translates the geometrical
elements in the region Left by Pi units along the X-axis, so that they correspond
with the elements in the region Right. For this mapping to work, the meshes
of Left and Right must be identical.

LinkCplx       To define complex-valued links between degrees of freedom. The syntax is the
               same as for constraints of type Link, but Coefficient can be complex.

6.4 Types for FunctionSpace

function-space-type:

Form0         0-form, i.e., scalar field of potential type.
Chapter 6: Types for objects

Form1  1-form, i.e., curl-conform field (associated with a curl).
Form2  2-form, i.e., div-conform field (associated with a divergence).
Form3  3-form, i.e., scalar field of density type.
Form1P 1-form perpendicular to the $z=0$ plane, i.e., perpendicular curl-conform field (associated with a curl).
Form2P 2-form in the $z=0$ plane, i.e., parallel div-conform field (associated with a divergence).
Scalar  Scalar field.
Vector  Vector field.

basis-function-type:
BF_Node  Nodal function (on NodesOf, value Form0).
BF_Edge  Edge function (on EdgesOf, value Form1).
BF_Facet  Facet function (on FacetsOf, value Form2).
BF_Volume  Volume function (on VolumesOf, value Form3).
BF_GradNode  Gradient of nodal function (on NodesOf, value Form1).
BF_CurlEdge  Curl of edge function (on EdgesOf, value Form2).
BF_DivFacet  Divergence of facet function (on FacetsOf, value Form3).
BF_GroupOfNodes  Sum of nodal functions (on GroupsOfNodesOf, value Form0).
BF_GradGroupOfNodes  Gradient of sum of nodal functions (on GroupsOfNodesOf, value Form1).
BF_GroupOfEdges  Sum of edge functions (on GroupsOfEdgesOf, value Form1).
BF_CurlGroupOfEdges  Curl of sum of edge functions (on GroupsOfEdgesOf, value Form2).
BF_PerpendicularEdge  1-form $(0, 0, BF\_Node)$ (on NodesOf, value Form1P).
BF_CurlPerpendicularEdge  Curl of 1-form $(0, 0, BF\_Node)$ (on NodesOf, value Form2P).
BF_GroupOfPerpendicularEdge  Sum of 1-forms $(0, 0, BF\_Node)$ (on NodesOf, value Form1P).
BF_CurlGroupOfPerpendicularEdge  Curl of sum of 1-forms $(0, 0, BF\_Node)$ (on NodesOf, value Form2P).
**BF_PerpendicularFacet**
- 2-form (90 degree rotation of BF_Edge) (on EdgesOf, value Form2P).

**BF_DivPerpendicularFacet**
- Div of 2-form (90 degree rotation of BF_Edge) (on EdgesOf, value Form3).

**BF.Region**
- Unit value 1 (on Region or GroupOfRegionsOf, value Scalar).

**BF.RegionX**
- Unit vector (1, 0, 0) (on Region, value Vector).

**BF.RegionY**
- Unit vector (0, 1, 0) (on Region, value Vector).

**BF.RegionZ**
- Unit vector (0, 0, 1) (on Region, value Vector).

**BF_Global**
- Global pre-computed quantity (on Global, value depends on parameters).

**BF_dGlobal**
- Exterior derivative of global pre-computed quantity (on Global, value depends on parameters).

**BF.NodeX**
- Vector (BF.Node, 0, 0) (on NodesOf, value Vector).

**BF.NodeY**
- Vector (0, BF.Node, 0) (on NodesOf, value Vector).

**BF.NodeZ**
- Vector (0, 0, BF.Node) (on NodesOf, value Vector).

**BF.Zero**
- Zero value 0 (on all regions, value Scalar).

**BF.One**
- Unit value 1 (on all regions, value Scalar).

**global-quantity-type:**

**AliasOf**
- Another name for a name of coefficient of basis function.

**AssociatedWith**
- A global quantity associated with a name of coefficient of basis function, and therefore with this basis function.

### 6.5 Types for Jacobian

**jacobian-type:**

**Vol**
- Volume Jacobian, for n-D regions in n-D geometries, \( n = 1, 2 \) or 3.

**Sur**
- Surface Jacobian, for \((n-1)\)-D regions in n-D geometries, \( n = 1, 2 \) or 3.

**Lin**
- Line Jacobian, for \((n-2)\)-D regions in n-D geometries, \( n = 2 \) or 3.

**VolAxi**
- Axisymmetrical volume Jacobian (1st type: \( r \)), for 2-D regions in axisymmetrical geometries.

**SurAxi**
- Axisymmetrical surface Jacobian (1st type: \( r \)), for 1-D regions in axisymmetrical geometries.
VolAxiSqu
Axisymmetrical volume Jacobian (2nd type: $r^2$), for 2-D regions in axisymmetrical geometries.

VolSphShell
Volume Jacobian with spherical shell transformation, for $n$-D regions in $n$-D geometries, $n = 2$ or 3.

VolAxiSphShell
Same as VolAxi, but with spherical shell transformation.

VolAxiSquSphShell
Same as VolAxiSqu, but with spherical shell transformation.

VolRectShell
Volume Jacobian with rectangular shell transformation, for $n$-D regions in $n$-D geometries, $n = 2$ or 3.

VolAxiRectShell
Same as VolAxi, but with rectangular shell transformation.

VolAxiSquRectShell
Same as VolAxiSqu, but with rectangular shell transformation.

6.6 Types for Integration

integration-type:
Gauss Numerical Gauss integration.
GaussLegendre Numerical Gauss integration obtained by application of a multiplicative rule on the one-dimensional Gauss integration.

element-type:
Line Line (2 nodes, 1 edge, 1 volume) (#1).
Triangle Triangle (3 nodes, 3 edges, 1 facet, 1 volume) (#2).
Quadrangle
Quadrangle (4 nodes, 4 edges, 1 facet, 1 volume) (#3).

Tetrahedron
Tetrahedron (4 nodes, 6 edges, 4 facets, 1 volume) (#4).

Hexahedron
Hexahedron (8 nodes, 12 edges, 6 facets, 1 volume) (#5).

Prism
Prism (6 nodes, 9 edges, 5 facets, 1 volume) (#6).

Pyramid
Pyramid (5 nodes, 8 edges, 5 facets, 1 volume) (#7).

Point
Point (1 node) (#15).

Note:
1. $n$ in (#$n$) is the type number of the element (see Section A.1 [Input file format], page 103).

6.7 Types for Formulation

formulation-type:

FemEquation
Finite element method formulation (all methods of moments, integral methods).

local-term-type:

Galerkin
Integral of Galerkin type.

derRham
derHram projection (collocation).

quantity-type:

Local
Local quantity defining a field in a function space. In case a subspace is considered, its identifier has to be given between the brackets following the NameOfSpace function-space-id.

Global
Global quantity defining a global quantity from a function space. The identifier of this quantity has to be given between the brackets following the NameOfSpace function-space-id.

Integral
Integral quantity obtained by the integration of a LocalQuantity before its use in an Equation term.

term-op-type:

Dt
Time derivative applied to the whole term of the equation. (Not implemented yet.)

DtDof
Time derivative applied only to the Dof{} term of the equation.

DtDt
Time derivative of 2nd order applied to the whole term of the equation. (Not implemented yet.)

DtDtDof
Time derivative of 2nd order applied only to the Dof{} term of the equation.

JacNL
Nonlinear part of the Jacobian matrix (tangent stiffness matrix) to be assembled for nonlinear analysis.
DtDofJacNL
Nonlinear part of the Jacobian matrix for the first order time derivative (tangent mass matrix) to be assembled for nonlinear analysis.

NeverDt
No time scheme applied to the term (e.g., Theta is always 1 even if a theta scheme is applied).

6.8 Types for Resolution

resolution-op:

Generate [system-id]
Generate the system of equations system-id.

Solve [system-id]
Solve the system of equations system-id.

SolveAgain [system-id]
Save as Solve, but reuses the preconditionner when called multiple times.

GenerateJac [system-id]
Generate the system of equations system-id using a jacobian matrix (of which the unknowns are corrections $dx$ of the current solution $x$).

SolveJac [system-id]
Solve the system of equations system-id using a jacobian matrix (of which the unknowns are corrections $dx$ of the current solution $x$). Then, Increment the solution ($x = x + dx$) and compute the relative error $dx/x$.

GenerateSeparate [system-id]
Generate matrices separately for DtDtDof, DtDof and NoDt terms in system-id. The separate matrices can be used with the Update operation (for efficient time domain analysis of linear PDEs with constant coefficients), or with the EigenSolve operation (for solving generalized eigenvalue problems).

GenerateOnly [system-id, expression-cst-list]
Not documented yet.

GenerateOnlyJac [system-id, expression-cst-list]
Not documented yet.

GenerateGroup
Not documented yet.

GenerateRHSGroup
Not documented yet.
Update [system-id]
Update the system of equations system-id (built from sub-matrices generated separately with GenerateSeparate) with the TimeFunction(s) provided in Assign constraints. This assumes that the problem is linear, that the matrix coefficients are independent of time, and that all sources are imposed using Assign constraints.

Update [system-id, expression]
Update the system of equations system-id (built from sub-matrices generated separately with GenerateSeparate) with expression. This assumes that the problem is linear, that the matrix coefficients are independent of time, and that the right-hand-side of the linear system can simply be multiplied by expression at each step.

UpdateConstraint [system-id, group-id, constraint-type]
Recompute the constraint of type constraint-type acting on group-id during processing.

InitSolution [system-id]
Initialize the solution of system-id to zero (default) or to the values given in a Constraint of Init type. If two values are given in Init, the second value is used.

InitSolution1 [system-id]
Initialize the first of two time steps for a Newmark Scheme. Only works if two values are specified in Init.

SaveSolution [system-id]
Save the solution of the system of equations system-id.

SaveSolutions [system-id]
Save all the solutions available for the system of equations system-id. This should be used with algorithms that generate more than one solution at once, e.g., EigenSolve or FourierTransform.

TransferSolution [system-id]
Transfer the solution of system system-id, as an Assign constraint, to the system of equations defined with a DestinationSystem command. This is used with the AssignFromResolution constraint type (see Section 6.3 [Types for Constraint], page 50).

TransferInitSolution [system-id]
Transfer the solution of system \textit{system-id}, as an \texttt{Init} constraint, to the system of equations defined with a \texttt{DestinationSystem} command. This is used with the \texttt{InitFromResolution} constraint type (see Section 6.3 [Types for Constraint], page 50).

\textbf{Evaluate} \[ \texttt{[expression]} \] 
Evaluate \texttt{expression}.

\textbf{SetTime} \[ \texttt{[expression]} \] 
Change the current time.

\textbf{SetFrequency} 
\[ \texttt{[system-id, expression]} \] 
Change the frequency of system \texttt{system-id}.

\textbf{SystemCommand} 
\[ \texttt{[expression-char]} \] 
Execute the system command given by \texttt{expression-char}.

\textbf{Test} \[ \texttt{[expression] \{ resolution-op \}} \] 
If \texttt{expression} is true (nonzero), perform the operations in \texttt{resolution-op}.

\textbf{Test} \[ \texttt{[expression] \{ resolution-op \} Else \{ resolution-op \}} \] 
If \texttt{expression} is true (nonzero), perform the operations in the first \texttt{resolution-op}, else perform the operations in the second \texttt{resolution-op}.

\textbf{Break} 
Aborts an iterative loop or a time loop.

\textbf{Print} \[ \texttt{[ \{ expression-list \}, < File expression-char > ]} \] 
Print the expressions listed in \texttt{expression-list}.

\textbf{Print} \[ \texttt{[ system-id <, File expression-char > <, \{ expression-cst-list \} > <, TimeStep \{ expression-cst-list \} >]} \] 
Print the system \texttt{system-id}. If the \texttt{expression-cst-list} is given, print only the values of the degrees of freedom given in that list. If the \texttt{TimeStep} option is present, limit the printing to the selected time steps.

\textbf{EigenSolve} 
\[ \texttt{[system-id, expression-cst, expression-cst, expression-cst]} \] 
Eigenvalue/eigenvector computation using Arpack or SLEPc (). The parameters are: the system (which has to be generated with \texttt{GenerateSeparate[]}), the number of eigenvalues/eigenvectors to compute and the real and imaginary spectral shift (around which to look for eigenvalues).

\textbf{Lanczos} \[ \texttt{[system-id, expression-cst, \{ expression-cst-list \}, expression-cst]} \] 
Eigenvalue/eigenvector computation using the Lanczos algorithm. The parameters are: the system (which has to be generated with \texttt{GenerateSeparate[]}), the size of the Lanczos space, the indices of the eigenvalues/eigenvectors to store, the spectral shift. This routine is deprecated: use \texttt{EigenSolve} instead.
FourierTransform

\([\text{system-id, system-id, \{expression-cst-list\}}]\)

On-the-fly computation of a discrete Fourier transform. The parameters are:
the (time domain) system, the destination system in which the result of the
Fourier transform is to be saved (it should be declared with \text{Type Complex}),
the list of frequencies to consider in the discrete Fourier transform.

TimeLoopTheta

\([\text{expression-cst,expression-cst,expression,expression-cst}]\quad \{resolution-op\}\)

Time loop of a theta scheme. The parameters are: the initial time, the end
time, the time step and the theta parameter (e.g., 1 for implicit Euler, 0.5 for
Crank-Nicholson).

Warning: GetDP automatically handles time-dependent constraints when
they are provided using the \text{TimeFunction} mechanism in an \text{Assign-type}
Constraint (see \text{Section 5.3 [Constraint], page 29}). However, GetDP
cannot automatically transform general time-dependent source terms in weak
formulations (time-dependent functions written in a \text{Galerkin} term). Such
source terms will be correctly treated only for implicit Euler, as the expression
in the \text{Galerkin} term is evaluated at the current time step. For other schemes,
the source term should be written explicitly, by splitting it in two (\text{theta}
f_{n+1} + (1-\text{theta}) f_n), making use of the \text{AtAnteriorTimeStep[]} for the
second part, and specifying \text{NeverDt} in the \text{Galerkin} term.

TimeLoopNewmark

\([\text{expression-cst,expression-cst,expression,expression-cst,expression-cst}]\quad \{resolution-op\}\)

Time loop of a Newmark scheme. The parameters are: the initial time, the end
time, the time step, the beta and the gamma parameter.

Warning: same restrictions apply for time-dependent functions in the weak
formulations as for \text{TimeLoopTheta}.

TimeLoopAdaptive

\([\text{expression-cst,expression-cst,expression-cst,expression-cst,expression-cst},
expression-cst,\text{integration-method},<\text{expression-cst-list}>],
\text{System} \{\{\text{system-id,expression-cst,expression-cst,norm-type}\} \ldots \}\}
|\text{PostOperation} \{\{\text{post-operation-id,expression-cst,expression-cst,norm-type}\} \ldots \}\}
\{resolution-op\}
\{resolution-op\}

Time loop with variable time steps. The step size is adjusted according the
local truncation error (LTE) of the specified Systems/PostOperations via a
predictor-corrector method.
The parameters are: start time, end time, initial time step, min. time step,
max. time step, integration method, list of breakpoints (time points to be
hit). The LTE calculation can be based on all DOFs of a system and/or on a PostOperation result. The parameters here are: System/PostOperation for LTE assessment, relative LTE tolerance, absolute LTE tolerance, norm-type for LTE calculation.

Possible choices for integration-method are: Euler, Trapezoidal, Gear_2, Gear_3, Gear_4, Gear_5, Gear_6. The Gear methods correspond to backward differentiation formulas of order 2..6.

Possible choices for norm-type: L1Norm, MeanL1Norm, L2Norm, MeanL2Norm, LinfNorm. MeanL1Norm and MeanL2Norm correspond to L1Norm and L2Norm divided by the number of degrees of freedom, respectively.

The first resolution-op is executed every time step. The second one is only executed if the actual time step is accepted (LTE is in the specified range). E.g. SaveSolution[] is usually placed in the 2nd resolution-op. See https://geuz.org/trac/getdp/wiki/TimeLoopAdaptive for more details and an example.

IterativeLoop

[expression-cst, expression, expression-cst[, expression-cst]] { resolution-op }

Iterative loop for nonlinear analysis. The parameters are: the maximum number of iterations (if no convergence), the relaxation factor (multiplies the iterative correction $dx$) and the relative error to achieve. The optional parameter is a flag for testing purposes.

IterativeLoopN

[expression-cst, expression, System { {system-id, expression-cst, expression-cst, assessed-object norm-type} ... } | PostOperation { {post-operation-id, expression-cst, expression-cst, norm-type} ... } ]

{ resolution-op }

Similar to IterativeLoop[] but allows to specify in detail the tolerances and the type of norm to be calculated for convergence assessment. The parameters are: the maximum number of iterations (if no convergence), the relaxation factor (multiplies the iterative correction $dx$). The convergence assessment can be based on all DOFs of a system and/or on a PostOperation result. The parameters here are: System/PostOperation for convergence assessment, relative tolerance, absolute tolerance, assessed object (only applicable for a specified system), norm-type for error calculation.

Possible choices for assessed-object: Solution, Residual, RecalcResidual. Residual assesses the residual from the last iteration whereas RecalcResidual calculates the residual once again after each iteration. This means that with Residual usually one extra iteration is performed, but RecalcResidual causes higher computational effort per iteration. Assessing the residual can only be used for Newton's method.

Possible choices for norm-type: L1Norm, MeanL1Norm, L2Norm, MeanL2Norm, LinfNorm.
MeanL1Norm and MeanL2Norm correspond to L1Norm and L2Norm divided by the number of degrees of freedom, respectively. See https://geuz.org/trac/getdp/wiki/IterativeLoopN for more details and an example.

PostOperation
[post-operation-id]
Perform the specified PostOperation.

GmshRead [expression-char]
When GetDP is linked with the Gmsh library, read a file using Gmsh. This file can be in any format recognized by Gmsh. If the file contains one or multiple post-processing fields, these fields will be evaluated using the built-in Field[], ScalarField[], VectorField[], etc., functions (see Section 6.2.6 [Miscellaneous functions], page 48).

(Note that GmshOpen and GmshMerge can be used instead of GmshRead to force Gmsh to do classical “open” and “merge” operations, instead of trying to “be intelligent” when reading post-processing datasets, i.e., creating new models on the fly if necessary.)

GmshRead [expression-char, expression-cst]
Same thing as the GmshRead command above, except that the field is forced to be stored with the given tag. The tag can be used to retrieve the given field with the built-in Field[], ScalarField[], VectorField[], etc., functions (see Section 6.2.6 [Miscellaneous functions], page 48).

GmshWrite [expression-char, expression-cst]
Writes the a Gmsh field to disk. (The format is guessed from the file extension.)

DeleteFile [expression-char]
Delete a file.

CreateDir | CreateDirectory [expression-char]
Create a directory.

6.9 Types for PostProcessing

post-value:

Local { local-value }
To compute a local quantity.

Integral { integral-value }
To integrate the expression over each element.
6.10 Types for PostOperation

print-support:

OnElementsOf

group-def
To compute a quantity on the elements belonging to the region group-def, where the solution was computed during the processing stage.

OnRegion

group-def
To compute a global quantity associated with the region group-def.

OnGlobal
To compute a global integral quantity, with no associated region.

OnSection

{ { expression-cst-list } { expression-cst-list } { expression-cst-list } }
To compute a quantity on a section of the mesh defined by three points (i.e., on the intersection of the mesh with a cutting a plane, specified by three points). Each expression-cst-list must contain exactly three elements (the coordinates of the points).

OnGrid

group-def
To compute a quantity in elements of a mesh which differs from the real support of the solution. OnGrid group-def differs from OnElementsOf group-def by the reinterpolation that must be performed.

OnGrid

{ expression, expression, expression }
{ expression-cst-list-item | { expression-cst-list } },
expression-cst-list-item | { expression-cst-list },
expression-cst-list-item | { expression-cst-list }
To compute a quantity on a parametric grid. The three expressions represent the three cartesian coordinates x, y and z, and can be functions of the current values $A$, $B$ and $C$. The values for $A$, $B$ and $C$ are specified by each expression-cst-list-item or expression-cst-list. For example, OnGrid \{Cos[$A$], Sin[$A$], 0\} \{ 0:2*Pi:Pi/180, 0, 0 \} will compute the quantity on 360 points equally distributed on a circle in the z=0 plane, and centered on the origin.

OnPoint

{ expression-cst-list }
To compute a quantity at a point. The expression-cst-list must contain exactly three elements (the coordinates of the point).

OnLine

{ { expression-cst-list } { expression-cst-list } } { expression-cst }
To compute a quantity along a line (given by its two end points), with an associated number of divisions equal to expression-cst. The interpolation points on the line are equidistant. Each expression-cst-list must contain exactly three elements (the coordinates of the points).

OnPlane

{ { expression-cst-list } { expression-cst-list } { expression-cst-list } }
{ expression-cst, expression-cst }


To compute a quantity on a plane (specified by three points), with an associated number of divisions equal to each expression-cst along both generating directions. Each expression-cst-list must contain exactly three elements (the coordinates of the points).

OnBox

\{  \{ expression-cst-list \}  \{ expression-cst-list \}  \{ expression-cst-list \}  \{ expression-cst-list \}\} \{ expression-cst, expression-cst, expression-cst \}

To compute a quantity in a box (specified by four points), with an associated number of divisions equal to each expression-cst along the three generating directions. Each expression-cst-list must contain exactly three elements (the coordinates of the points).

print-option:

File \ expression-char
Outputs the result in a file named expression-char.

File \ expression-char
Same as File expression-char, except that, if several File > expression-char options appear in the same PostOperation, the results are concatenated in the file expression-char.

File \ expression-char
Appends the result to a file named expression-char.

Name \ expression-char
For formats that support it, sets the label of the output field to expression-char.

Depth \ expression-cst
Recursive division of the elements if expression-cst is greater than zero, derefinement if expression-cst is smaller than zero. If expression-cst is equal to zero, evaluation at the barycenter of the elements.

Skin Computes the result on the boundary of the region.

Smoothing
Smooths the solution at the nodes.

HarmonicToTime \ expression-cst
Converts a harmonic solution into a time-dependent one (with expression-cst steps).

Dimension \ expression-cst
Forces the dimension of the elements to consider in an element search. Specifies the problem dimension during an adaptation (h- or p-refinement).

TimeStep \ expression-cst-list-item | \{ expression-cst-list \}
Outputs results for the specified time steps only.
Chapter 6: Types for objects

LastTimeStepOnly
- Outputs results for the last time step only (useful when calling a PostOperation directly in a Resolution, for example).

AppendTimeStepToFileName
- `<expression-cst>`
- Appends the time step to the output file; only makes sense with LastTimeStepOnly.

OverrideTimeStepValue
- `expression-cst`
- Overrides the value of the current time step with the given value.

NoMesh
- Prevents the mesh from being written in the output file (useful with new mesh-based solution formats).

SendToServer
- `expression-char`
- Send the value to the Onelab server, using `expression-char` as the parameter name.

Color
- `expression-char`
- Used with SendToServer, sets the color of the parameter in the Onelab server.

Frequency
- `expression-cst-list-item` | `{ expression-cst-list }`
- Outputs results for the specified frequencies only.

Format
- `post-operation-fmt`
- Outputs results in the specified format.

Adapt
- `P1 | H1 | H2`
- Performs p- or h-refinement on the post-processing result, considered as an error map.

Target
- `expression-cst`
- Specifies the target for the optimizer during adaptation (error for P1/H1, number of elements for H2).

Value
- `expression-cst-list-item` | `{ expression-cst-list }`
- Specifies acceptable output values for discrete optimization (e.g. the available interpolation orders with Adapt P1).

Sort
- `Position | Connection`
- Sorts the output by position (x, y, z) or by connection (for LINE elements only).

Iso
- `expression-cst`
- Outputs directly contour prints (with expression-cst values) instead of elementary values.
Iso { expression-cst-list }

Outputs directly contour prints for the values specified in the expression-cst-list instead of elementary values.

NoNewLine

Suppresses the new lines in the output when printing global quantities (i.e., with Print OnRegion or Print OnGlobal).

ChangeOfCoordinates

{ expression, expression, expression }

Changes the coordinates of the results according to the three expressions given in argument. The three expressions represent the three new cartesian coordinates $x$, $y$ and $z$, and can be functions of the current values of the cartesian coordinates $X$, $Y$ and $Z$.

ChangeOfValues

{ expression-list }

Changes the values of the results according to the expressions given in argument. The expressions represent the new values (x-component, y-component, etc.), and can be functions of the current values of the solution ($Val0$, $Val1$, etc.).

DecomposeInSimplex

Decomposes all output elements in simplices (points, lines, triangles or tetrahedra).

StoreInRegister

expression-cst

Stores the result of an OnRegion post-processing operation in the register expression-cst.

StoreMinInRegister

StoreMaxInRegister

expression-cst

Stores the minimum or maximum value of an OnElementsOf post-processing operation in the register expression-cst.

StoreMinXinRegister

StoreMinYinRegister

StoreMinZinRegister

StoreMaxXinRegister

StoreMaxYinRegister

StoreMaxZinRegister

expression-cst

Stores the X, Y or Z coordinate of the location, where the minimum or maximum of an OnElementsOf post-processing operation occurs, in the register expression-cst.

StoreInField

expression-cst

Stores the result of a post-processing operation in the field (Gmsh list-based post-processing view) with tag expression-cst.
StoreInMeshBasedField
expression-cst
Stores the result of a post-processing operation in the mesh-based field (Gmsh mesh-based post-processing view) with tag expression-cst.

TimeLegend
< { expression, expression, expression } >
Includes a time legend in Gmsh plots. If the three optional expressions giving the position of the legend are not specified, the legend is centered on top of the plot.

FrequencyLegend
< { expression, expression, expression } >
Includes a frequency legend in Gmsh plots. If the three optional expressions giving the position of the legend are not specified, the legend is centered on top of the plot.

EigenvalueLegend
< { expression, expression, expression } >
Includes an eigenvalue legend in Gmsh plots. If the three optional expressions giving the position of the legend are not specified, the legend is centered on top of the plot.

post-operation-fmt:

Gmsh
GmshParsed
Gmsh output. See Section A.1 [Input file format], page 103 and the documentation of Gmsh (http://geuz.org/gmsh) for a description of the file formats.

Table
Space oriented column output, e.g., suitable for Gnuplot, Excel, Caleida Graph, etc. The columns are: element-type element-index x-coord y-coord z-coord <x-coord y-coord z-coord> ... real real real values. The three real numbers preceding the values contain context-dependent information, depending on the type of plot: curvilinear abscissa for OnLine plots, normal to the plane for OnPlane plots, parametric coordinates for parametric OnGrid plots, etc.

SimpleTable
Like Table, but with only the x-coord y-coord z-coord and values columns.

TimeTable
Time oriented column output, e.g., suitable for Gnuplot, Excel, Caleida Graph, etc. The columns are: time-step time x-coord y-coord z-coord <x-coord y-coord z-coord> ... value.

NodeTable
Table of node values. The first value corresponds to the number of listed nodes. The columns of the following lines are: node-number node-value(s)

Gnuplot
Space oriented column output similar to the Table format, except that a new line is created for each node of each element, with a repetition of the first node if the number of nodes in the element is greater than 2. This permits to draw
unstructured meshes and nice three-dimensional elevation plots in Gnuplot. The columns are: *element-type* *element-index* *x-coord* *y-coord* *z-coord* *real real real values*. The three *real* numbers preceding the values contain context-dependent information, depending on the type of plot: curvilinear abscissa for *OnLine* plots, normal to the plane for *OnPlane* plots, parametric coordinates for parametric *OnGrid* plots, etc.

**Adaptation**

Adaptation map, suitable for the GetDP `-adapt` command line option.
7 Short examples

7.1 Constant expression examples

The simplest constant expression consists of an integer or a real number as in

\[
\begin{align*}
21 \\
-3
\end{align*}
\]

or

\[
\begin{align*}
-3.1415 \\
27e3 \\
-290.53e-12
\end{align*}
\]

Using operators and the classic math functions, constant-ids can be defined:

\[
c1 = \sin\left(\frac{2}{3} \times 3.1415\right) \times 5000^2;
\]

\[
c2 = -1/c1;
\]

7.2 Group examples

Let us assume that some elements in the input mesh have the region numbers 1000, 2000 and 3000. In the definitions

\[
\text{Group} \{ \\
\quad \text{Air} = \text{Region}[1000]; \quad \text{Core} = \text{Region}[2000]; \quad \text{Inductor} = \text{Region}[3000]; \\
\quad \text{NonConductingDomain} = \text{Region}\{\text{Air, Core}\}; \\
\quad \text{ConductingDomain} = \text{Region}\{\text{Inductor}\}; \\
\}
\]

Air, Core, Inductor are identifiers of elementary region groups while NonConductingDomain and ConductingDomain are global region groups.

Groups of function type contain lists of entities built on the region groups appearing in their arguments. For example,

\[
\text{NodesOf[NonConductingDomain]}
\]

represents the group of nodes of geometrical elements belonging to the regions in NonConductingDomain and

\[
\text{EdgesOf[DomainC, Not SkinDomainC]}
\]

represents the group of edges of geometrical elements belonging to the regions in DomainC but not to those of SkinDomainC.

7.3 Function examples

A physical characteristic is a piecewise defined function. The magnetic permeability mu[] can for example be defined in the considered regions by

\[
\text{Function} \{ \\
\quad \text{mu[Air]} = 4.e-7*\pi; \\
\quad \text{mu[Core]} = 1000.*4.e-7*\pi; \\
\}
\]

A nonlinear characteristic can be defined through an expression with arguments, e.g.,
Function {
  mu0 = 4.e-7*Pi;
  a1 = 1000.; b1 = 100.; // Constants
  mu[NonlinearCore] = mu0 + 1./(a1+b1*Norm[$1]^6);
}

where function mu[] in region NonLinearCore has one argument $1$ which has to be the magnetic flux density. This function is actually called when writing the equations of a formulation, which permits to directly extend it to a nonlinear form by adding only the necessary arguments. For example, in a magnetic vector potential formulation, one may write mu[{Curl a}] instead of mu[] in Equation terms (see Section 7.8 [Formulation examples], page 75). Multiple arguments can be specified in a similar way: writing mu[{Curl a},{T}] in an Equation term will provide the function mu[] with two usable arguments, $1$ (the magnetic flux density) and $2$ (the temperature).

It is also possible to directly interpolate one-dimensional functions from tabulated data. In the following example, the function $f(x)$ as well as its derivative $f'(x)$ are interpolated from the $(x,f(x))$ couples $(0,0.65), (1,0.72), (2,0.98)$ and $(3,1.12)$:

Function {
  couples = {0, 0.65 , 1, 0.72 , 2, 0.98 , 3, 1.12};
  f[] = InterpolationLinear[$1$]{List[couples]};
  dfdx[] = dInterpolationLinear[$1$]{List[couples]};
}

The function $f[]$ may then be called in an Equation term of a Formulation with one argument, x. Notice how the list of constants List[couples] is supplied as a list of parameters to the built-in function InterpolationLinear (see Section 4.4 [Constants], page 16, as well as Section 4.6 [Functions], page 21). In order to facilitate the construction of such interpolations, the couples can also be specified in two separate lists, merged with the alternate list ListAlt command (see Section 4.4 [Constants], page 16):

Function {
  data_x = {0, 1, 2, 3};
  data_f = {0.65, 0.72, 0.98, 1.12};
  f[] = InterpolationLinear[$1$]{ListAlt[data_x, data_f]};
  dfdx[] = dInterpolationLinear[$1$]{ListAlt[data_x, data_f]};
}

In order to optimize the evaluation time of complex expressions, registers may be used (see Section 4.9 [Registers], page 22). For example, the evaluation of $g[] = f[1]*Sin[f[1]^2]$ would require two (costly) linear interpolations. But the result of the evaluation of $f[]$ may be stored in a register (for example the register 0) with

$g[] = f[1]#0 * Sin[#0^2]$;

thus reducing the number of evaluations of $f[]$ (and of the argument $1$) to one.

A function can also be time dependent, e.g.,

Function {
  Freq = 50.; Phase = 30./180.*Pi; // Constants
  TimeFct_Sin[] = Sin [ 2.*Pi*Freq * $Time + Phase ];
  TimeFct_Exp[] = Exp [ - $Time / 0.0119 ];
  TimeFct_ExtSin[] = F_Sin_wt_p [] {2.*Pi*Freq, Phase};
}
Note that $\text{TimeFct\_ExtSin[]}$ is identical to $\text{TimeFct\_Sin[]}$ in a time domain analysis, but also permits to define phasors implicitly in the case of harmonic analyses.

## 7.4 Constraint examples

Constraints are referred to in FunctionSpaces and are usually used for boundary conditions (Assign type). For example, essential conditions on two surface regions, Surf0 and Surf1, will be first defined by

```plaintext
Constraint {
 { Name DirichletBoundaryCondition1; Type Assign;
 Case {
 { Region Surf0; Value 0.; }
 { Region Surf1; Value 1.; }
 }
}
```

The way the Values are associated with Regions (with their nodes, their edges, their global regions, ...) is defined in the FunctionSpaces which use the Constraint. In other words, a Constraint defines data but does not define the method to process them. A time dependent essential boundary condition on Surf1 would be introduced as (cf. Section 7.3 [Function examples], page 67 for the definition of $\text{TimeFct\_Exp[]}$):

```plaintext
{ Region Surf1; Value 1.; TimeFunction 3*TimeFct_Exp[] }
```

It is important to notice that the time dependence cannot be introduced in the Value field, since the Value is only evaluated once during the pre-processing.

Other constraints can be referred to in Formulations. It is the case of those defining electrical circuit connections (Network type), e.g.,

```plaintext
Constraint {
 { Name ElectricalCircuit; Type Network;
 Case Circuit1 {
 { Region VoltageSource; Branch \{1,2\}; }
 { Region PrimaryCoil; Branch \{1,2\}; }
 }
 Case Circuit2 {
 { Region SecondaryCoil; Branch \{1,2\}; }
 { Region Charge; Branch \{1,2\}; }
 }
}
```

which defines two non-connected circuits (Circuit1 and Circuit2), with an independent numbering of nodes: region VoltageSource is connected in parallel with region PrimaryCoil, and region SecondaryCoil is connected in parallel with region Charge.

## 7.5 FunctionSpace examples

Various discrete function spaces can be defined in the frame of the finite element method.
### 7.5.1 Nodal finite element spaces

The most elementary function space is the nodal finite element space, defined on a mesh of a domain $W$ and denoted $S^0(W)$ (associated finite elements can be of various geometries), and associated with essential boundary conditions (Dirichlet conditions). It contains 0-forms, i.e., scalar fields of potential type:

\[ v = \sum_{n \in N} v_n s_n \quad v \in S^0(W) \]

where $N$ is the set of nodes of $W$, $s_n$ is the nodal basis function associated with node $n$ and $v_n$ is the value of $v$ at node $n$. It is defined by

```plaintext
FunctionSpace {
 { Name Hgrad_v; Type Form0;
 BasisFunction {
 { Name sn; NameOfCoef vn; Function BF_Node;
 Support Domain; Entity NodesOf[All]; }
 }
 Constraint {
 { NameOfCoef vn; EntityType NodesOf;
 NameOfConstraint DirichletBoundaryCondition1; }
 }
 }
}
```

Function $s_n$ is the built-in basis function BF_Node associated with all nodes (NodesOf) in the mesh of $W$ (Domain). Previously defined Constraint DirichletBoundaryCondition1 (see Section 7.4 [Constraint examples], page 69) is used as boundary condition.

In the example above, Entity NodesOf[All] is preferred to Entity NodesOf[Domain]. In this way, the list of all the nodes of Domain will not have to be generated. All the nodes of each geometrical element in Support Domain will be directly taken into account.

### 7.5.2 High order nodal finite element space

Higher order finite elements for 0-forms can be directly taken into account by BF_Node. Hierarchical finite elements for 0-forms can be used by simply adding other basis functions (associated with other geometrical entities, e.g., edges and facets) to BasisFunction, e.g.,

```plaintext
...
BasisFunction {
 { Name sn; NameOfCoef vn; Function BF_Node;
 Support Domain; Entity NodesOf[All]; }
 { Name s2; NameOfCoef v2; Function BF_Node_2E;
 Support Domain; Entity EdgesOf[All]; }
}
...
```

### 7.5.3 Nodal finite element space with floating potentials

A scalar potential with floating values $v_f$ on certain boundaries $G_f$, $f$ in $C_f$, e.g., for electrostatic problems, can be expressed as
where $N_v$ is the set of inner nodes of $W$ and each function $s_f$ is associated with the group of nodes of boundary $G_f$, $f$ in $C_f$ ($\text{SkinDomainC}$); $s_f$ is the sum of the nodal basis functions of all the nodes of $C_f$. Its function space is defined by

\[ \begin{align*}
    \text{FunctionSpace} & \{ \\
        & \{ \text{Name } H_{\text{grad}}v\_\text{floating}; \text{Type Form0}; \} \\
        & \{ \text{BasisFunction } \} \\
        & \{ \text{Name } sn; \text{NameOfCoef } vn; \text{Function } BF\_\text{Node}; \} \\
        & \{ \text{Support Domain; Entity NodesOf[All, Not SkinDomainC]; } \} \\
        & \{ \text{Name } sf; \text{NameOfCoef } vf; \text{Function } BF\_\text{GroupOfNodes}; \} \\
        & \{ \text{Support Domain; Entity GroupsOfNodesOf[SkinDomainC]; } \} \\
    \} \\
    \text{GlobalQuantity } \{ \\
        & \{ \text{Name } \text{GlobalElectricPotential}; \text{Type AliasOf } \text{NameOfCoef } vf; \} \\
        & \{ \text{Name } \text{GlobalElectricCharge}; \text{Type AssociatedWith }; \text{NameOfCoef } vf; \} \\
    \} \\
    \text{Constraint } \{ \ldots \} \\
\end{align*} \]

Two global quantities have been associated with this space: the electric potential $\text{GlobalElectricPotential}$, being an alias of coefficient $vf$, and the electric charge $\text{GlobalElectricCharge}$, being associated with coefficient $vf$.

### 7.5.4 Edge finite element space

Another space is the edge finite element space, denoted $S^1(W)$, containing 1-forms, i.e., curl-conform fields:

\[ h = \sum_{e \in E} h_e s_e \quad h \in S^1(W) \]

where $E$ is the set of edges of $W$, $s_e$ is the edge basis function for edge $e$ and $h_e$ is the circulation of $h$ along edge $e$. It is defined by

\[ \begin{align*}
    \text{FunctionSpace} & \{ \\
        & \{ \text{Name } H_{\text{curl}}h; \text{Type Form1}; \} \\
        & \{ \text{BasisFunction } \} \\
        & \{ \text{Name } se; \text{NameOfCoef } he; \text{Function } BF\_\text{Edge}; \} \\
        & \{ \text{Support Domain; Entity EdgesOf[All]; } \} \\
    \} \\
    \text{Constraint } \{ \ldots \} \\
\end{align*} \]
7.5.5 Edge finite element space with gauge condition

A 1-form function space containing vector potentials can be associated with a gauge condition, which can be defined as a constraint, e.g., a zero value is fixed for all circulations along edges of a tree (EdgesOfTreeIn) built in the mesh (Domain), having to be complete on certain boundaries (StartingOn Surf):

\[
\text{Constraint} \{ \\
\text{ } \{ \text{Name GaugeCondition_a_Mag_3D; Type Assign;} \\
\text{ } \text{Case} \{ \\
\text{ } \text{ } \{ \text{Region Domain; SubRegion Surf; Value 0.; } \} \\
\text{ } \} \\
\} \\
\text{FunctionSpace} \{ \\
\text{ } \{ \text{Name Hcurl_a_Gauge; Type Form1;} \\
\text{ } \text{BasisFunction} \{ \\
\text{ } \text{ } \{ \text{Name se; NameOfCoef ae; Function BF_Edge; } \\
\text{ } \text{ } \text{Support Domain; Entity EdgesOf[All]; } \} \\
\text{ } \} \\
\text{Constraint} \{ \\
\text{ } \text{ } \{ \text{NameOfCoef ae; } \\
\text{ } \text{ } \text{EntityType EdgesOfTreeIn; EntitySubType StartingOn; } \\
\text{ } \text{ } \text{NameOfConstraint GaugeCondition_a_Mag_3D; } \} \\
\text{ } \} \\
\} \\
\}
\]

7.5.6 Coupled edge and nodal finite element spaces

A 1-form function space, containing curl free fields in certain regions WcC (DomainCC) of W, which are the complementary part of Wc (DomainC) in W, can be explicitly characterized by

\[
h = \sum_{k \in Ec} h_k s_k + \sum_{n \in NcC} \phi_n v_n \\
\text{h} \in S^1(W)
\]

where Ec is the set of inner edges of W, NcC is the set of nodes inside WcC and on its boundary dWcC, sk is an edge basis function and vn is a vector nodal function. Such a space, coupling a vector field with a scalar potential, can be defined by

\[
\text{FunctionSpace} \{ \\
\text{ } \{ \text{Name Hcurl_hphi; Type Form1;} \\
\text{ } \text{BasisFunction} \{ \\
\text{ } \text{ } \{ \text{Name sk; NameOfCoef hk; Function BF_Edge; } \\
\text{ } \text{ } \text{Support DomainC; Entity EdgesOf[All, Not SkinDomainC]; } \} \\
\text{ } \text{ } \{ \text{Name vn; NameOfCoef phin; Function BF_GradNode; } \\
\text{ } \text{ } \text{Support DomainCC; Entity NodesOf[All]; } \}
\} \\
\}
\]
Chapter 7: Short examples

{ Name vn; NameOfCoef phic; Function BF_GroupOfEdges;
  Support DomainC; Entity GroupsOfEdgesOnNodesOf[SkinDomainC];}

Constraint {
  { NameOfCoef hk;
    EntityType EdgesOf; NameOfConstraint MagneticField; }
  { NameOfCoef phin;
    EntityType NodesOf; NameOfConstraint MagneticScalarPotential; }
  { NameOfCoef phic;
    EntityType NodesOf; NameOfConstraint MagneticScalarPotential; }
}

This example points out the definition of a piecewise defined basis function, e.g., function vn being defined with BF_GradNode in DomainCC and BF_GroupOfEdges in DomainC. This leads to an easy coupling between these regions.

7.5.7 Coupled edge and nodal finite element spaces for multiply connected domains

In case a multiply connected domain WcC is considered, basis functions associated with cuts (SurfaceCut) have to be added to the previous basis functions, which gives the function space below:

Group {
  _TransitionLayer_SkinDomainC_ =
  ElementsOf[SkinDomainC, OnOneSideOf SurfaceCut];
}

FunctionSpace {
  { Name Hcurl_hphi; Type Form1;
    BasisFunction {
      ... same as above ...
    }
  }
  { Name sc; NameOfCoef Ic; Function BF_GradGroupOfNodes;
    Support ElementsOf[DomainCC, OnOneSideOf SurfaceCut];
    Entity GroupsOfNodesOf[SurfaceCut]; }
  { Name sc; NameOfCoef Icc; Function BF_GroupOfEdges;
    Support DomainC;
    Entity GroupsOfEdgesOf
    [SurfaceCut,
     InSupport _TransitionLayer_SkinDomainC_; ]
  }
}

GlobalQuantity {
  { Name I; Type AliasOf ; NameOfCoef Ic; }
  { Name U; Type AssociatedWith; NameOfCoef Ic; }
}
Global quantities associated with the cuts, i.e., currents and voltages if $h$ is the magnetic field, have also been defined.

### 7.6 Jacobian examples

A simple Jacobian method is for volume transformations (of $n$-D regions in $n$-D geometries; $n = 1, 2$ or $3$), e.g., in region Domain,

```
Jacobian {
 { Name Vol;
 Case {
 { Region Domain; Jacobian Vol; }
 }
 }
}
```

_Jacobian VolAxi_ would define a volume Jacobian for axisymmetrical problems.

A Jacobian method can also be piecewise defined, in _DomainInf_, where an infinite geometrical transformation has to be made using two constant parameters (inner and outer radius of a spherical shell), and in all the other regions (_All_, being the default); in each case, a volume Jacobian is used. This method is defined by:

```
Jacobian {
 { Name Vol;
 Case {
 { Region DomainInf; Jacobian VolSphShell {Val_Rint, Val_Rext}; }
 { Region All; Jacobian Vol; }
 }
 }
}
```

### 7.7 Integration examples

A commonly used numerical integration method is the _Gauss_ integration, with a number of integration points (_NumberOfPoints_) depending on geometrical element types (_GeoElement_), i.e.
Integration {
    { Name Int_1; 
        Case { {Type Gauss; 
            Case { { GeoElement Triangle ; NumberOfPoints 4; } 
            { GeoElement Quadrangle ; NumberOfPoints 4; } 
            { GeoElement Tetrahedron; NumberOfPoints 4; } 
            { GeoElement Hexahedron ; NumberOfPoints 6; } 
            { GeoElement Prism ; NumberOfPoints 9; } } } 
    } 
} 

The method above is valid for both 2D and 3D problems, for different kinds of elements.

7.8 Formulation examples

7.8.1 Electrostatic scalar potential formulation
An electrostatic formulation using an electric scalar potential \( v \), i.e.

\[
(\epsilon \nabla v, \nabla v')_W = 0 \quad \forall v' \in S^0(W)
\]

is expressed by

Formulation {
    { Name Electrostatics_v; Type FemEquation; 
        Quantity {
            { Name v; Type Local; NameOfSpace Hgrad_v; } 
        } 
        Equation {
            Galerkin { [ epsr[] * Dof{Grad v} , {Grad v} ]; 
                In Domain; Jacobian Vol; Integration Int_1; } 
        } 
    } 
}

The density of the Galerkin term is a copy of the symbolic form of the formulation, i.e.,
the product of a relative permittivity function \( \text{epsr[]} \) by a vector of degrees of freedom (Dof{}); the scalar product of this with the gradient of test function \( v \) results in a symmetrical matrix.

Note that another Quantity could be defined for test functions, e.g., \( v_p \) defined by { Name vp; Type Local; NameOfSpace Hgrad_v_floating; }. However, its use would result in the computation of a full matrix and consequently in a loss of efficiency.

7.8.2 Electrostatic scalar potential formulation with floating potentials and electric charges
An extension of the formulation above can be made to take floating potentials and electrical charges into account (the latter being defined in FunctionSpace Hgrad_v_floating), i.e.
7.8.3 Magnetostatic 3D vector potential formulation

A magnetostatic 3D vector potential formulation

$$(\nu \nabla \times a, \nabla \times a')_W = (j_s, a')_W, \quad \forall a' \in S^1(W),$$

with gauge condition

with a source current density $j_s$ in inductors $W_s$, is expressed by

Formulation {

  { Name Magnetostatics_a_3D; Type FemEquation;
    Quantity {
      { Name a; Type Local; NameOfSpace Hcurl_a_Gauge; }
    }
  }

  Equation {
    Galerkin { [ \nu \cdot Dof{Curl a}, \{Curl a\} ];
      In Domain; Jacobian Vol; Integration Int_1; }
    Galerkin { [ - SourceCurrentDensity[], \{a\} ];
      In DomainWithSourceCurrentDensity;
      Jacobian Vol; Integration Int_1; }
  }
}

Note that $j_s$ is here given by a function SourceCurrentDensity[], but could also be given by data computed from another problem, e.g., from an electrokinetic problem (coupling of formulations) or from a fully fixed function space (constraints fixing the density, which is usually more efficient in time domain analyses).

7.8.4 Magnetodynamic 3D or 2D magnetic field and magnetic scalar potential formulation

A magnetodynamic 3D or 2D $h$-$\phi$ formulation, i.e., coupling the magnetic field $h$ with a magnetic scalar potential $\phi$, 
\[ \partial_t (\mu \mathbf{h}, \mathbf{h}')_W + (\rho \text{curl} \mathbf{h}, \text{curl} \mathbf{h}')_W = 0 \quad \forall \mathbf{h}' \in S^1(W) \]

can be expressed by

Formulation {
  { Name Magnetodynamics_hphi; Type FemEquation;
    Quantity {
      { Name h; Type Local; NameOfSpace Hcurl_hphi; }
    }
    Equation {
      Galerkin { Dt [ \mu[] * Dof{h} , {h} ];
        In Domain; Jacobian Vol; Integration Int_1; }
      Galerkin { [ \rho[] * Dof{Curl h} , {Curl h} ];
        In DomainC; Jacobian Vol; Integration Int_1; }
    }
  }
}

7.8.5 Nonlinearities, Mixed formulations, ...

In case nonlinear physical characteristics are considered, arguments are used for associated functions, e.g., \( \mu[\{h\}] \). Several test functions can be considered in an Equation field. Consequently, mixed formulations can be defined.

7.9 Resolution examples

7.9.1 Static resolution (electrostatic problem)

A static resolution, e.g., for the electrostatic formulation (see Section 7.8 [Formulation examples], page 75), can be defined by

Resolution {
  { Name Electrostatics_v;
    System {
      { Name Sys_Ele; NameOfFormulation Electrostatics_v; }
    }
    Operation {
      Generate[Sys_Ele]; Solve[Sys_Ele]; SaveSolution[Sys_Ele];
    }
  }
}

The generation (Generate) of the matrix of the system Sys_Ele will be made with the formulation Electrostatics_v, followed by its solving (Solve) and the saving of the solution (SaveSolution).

7.9.2 Frequency domain resolution (magnetodynamic problem)

A frequency domain resolution, e.g., for the magnetodynamic \( h-phi \) formulation (see Section 7.8 [Formulation examples], page 75), is given by
Resolution {
    { Name Magnetodynamics_hphi;
        System {
            { Name Sys_Mag; NameOfFormulation Magnetodynamics_hphi;
                Frequency Freq; }
        }
        Operation {
            Generate[Sys_Mag]; Solve[Sys_Mag]; SaveSolution[Sys_Mag];
        }
    }
}

preceded by the definition of constant Freq, e.g.,

Function {
    Freq = 50.;
}

7.9.3 Time domain resolution (magnetodynamic problem)
A time domain resolution, e.g., for the same magnetodynamic $h$-$phi$ formulation (see Section 7.8 [Formulation examples], page 75), is given by

Resolution {
    { Name Magnetodynamics_hphi_Time;
        System {
            { Name Sys_Mag; NameOfFormulation Magnetodynamics_hphi; }
        }
        Operation {
            InitSolution[Sys_Mag]; SaveSolution[Sys_Mag];
            TimeLoopTheta[Mag_Time0, Mag_TimeMax, Mag_DTime[], Mag_Theta[]] {
                Generate[Sys_Mag]; Solve[Sys_Mag]; SaveSolution[Sys_Mag];
            }
        }
    }
}

If, e.g., the Resolution above is preceded by the constant and function definitions below

Function {
    Tc = 10.e-3;
    Mag_Time0 = 0.; Mag_TimeMax = 2.*Tc; Mag_DTime[] = Tc/20.;
    Mag_Theta[] = 1./2.;
}

the performed time domain analysis will be a Crank-Nicolson scheme (theta-scheme with Theta = 0.5) with initial time 0 ms, end time 20 ms and time step 1 ms.

7.9.4 Nonlinear time domain resolution (magnetodynamic problem)
In case a nonlinear problem is solved, an iterative loop has to be defined in an appropriate level of the recursive resolution operations, e.g., for the magnetodynamic problem above,
... Operation {
  InitSolution[Sys_Mag]; SaveSolution[Sys_Mag];
  TimeLoopTheta[Mag_Time0, Mag_TimeMax, Mag_DTime[], Mag_Theta[]] {
    IterativeLoop[NL_NbrMax, NL_Eps, NL_Relax] {
      GenerateJac[Sys_Mag]; SolveJac[Sys_Mag];
    }
    SaveSolution[Sys_Mag];
  }
}
...

preceded by constant definitions, e.g.,

Function {
  NL_Eps = 1.e-4; NL_Relax = 1.; NL_NbrMax = 80;
}

7.9.5 Coupled formulations

A coupled problem, e.g., magnetodynamic (in frequency domain; Frequency Freq) - thermal (in time domain) coupling, with temperature dependent characteristics (e.g., \( \rho(T) \), ...) can be defined by:

Resolution {
  { Name MagnetoThermalCoupling_hphi_T; 
    System { 
      { Name Sys_Mag; NameOfFormulation Magnetodynamics_hphi;  
        Frequency Freq; } 
      { Name Sys_The; NameOfFormulation Thermal_T; } 
    }
  Operation {
    InitSolution[Sys_Mag]; InitSolution[Sys_The];
    IterativeLoop[NL_NbrMax, NL_Eps, NL_Relax] {
      GenerateJac[Sys_Mag]; SolveJac[Sys_Mag];
      GenerateJac[Sys_The]; SolveJac[Sys_The];
    }
    SaveSolution[Sys_Mag]; SaveSolution[Sys_The];
  }
}

Two systems of equations, Sys_Mag and Sys_The, will be solved iteratively until convergence (Criterion), using a relaxation factor (RelaxationFactor).

It can be seen through these examples that many resolutions can be linked or nested directly by the user, which gives a great freedom for coupled problems.

7.10 PostProcessing examples

The quantities to be post-computed based on a solution of a resolution are defined, e.g., for the electrostatic problem (see Section 7.8 [Formulation examples], page 75;
see Section 7.9 [Resolution examples], page 77), for the solution associated with the formulation Electrostatics_v, by

PostProcessing {
  { Name EleSta_v; NameOfFormulation Electrostatics_v;
    Quantity {
      { Name v; Value { Local { [ {v} ]; In Domain; } } }
      { Name e; Value { Local { [ -{Grad v} ]; In Domain; } } }
      { Name d; Value { Local { [ -eps0*epsr[] *{Grad v} ];
          In Domain; } } }
    }
  }
}

The electric scalar potential \( v \) (\( v \)), the electric field \( e \) (\( e \)) and the electric flux density \( d \) (\( d \)) can all be computed from the solution. They are all defined in the region Domain.

The quantities for the solution associated with the formulation Electrostatics_v_floating are defined by

PostProcessing {
  { Name EleSta_vf; NameOfFormulation Electrostatics_v_floating;
    Quantity {
      \( \ldots \) same as above \( \ldots \)

      { Name Q; Value { Local { [ {Q} ]; In SkinDomainC; } } }
      { Name V; Value { Local { [ {V} ]; In SkinDomainC; } } }
    }
  }
}

which points out the way to define post-quantities based on global quantities.

7.11 PostOperation examples

The simplest post-processing operation is the generation of maps of local quantities, i.e., the display of the computed fields on the mesh. For example, using the PostProcessing defined in Section 7.10 [PostProcessing examples], page 79, the maps of the electric scalar potential and of the electric field on the elements of the region Domain are defined as:

PostOperation {
  { Name Map_v_e; NameOfPostProcessing EleSta_v ;
    Operation {
      Print [ v, OnElementsOf Domain, File "map_v.pos" ];
      Print [ e, OnElementsOf Domain, File "map_e.pos" ];
    }
  }
}

It is also possible to display local quantities on sections of the mesh, here for example on the plane containing the points (0,0,1), (1,0,1) and (0,1,1):
Finally, local quantities can also be interpolated on another mesh than the one on which they have been computed. Six types of grids can be specified for this interpolation: a single point, a set of points evenly distributed on a line, a set of points evenly distributed on a plane, a set of points evenly distributed in a box, a set of points defined by a parametric equation, and a set of elements belonging to a different mesh than the original one:

\[
\text{Print } \left[ e, \text{OnPoint} \{0,0,1\}\right]; \\
\text{Print } \left[ e, \text{OnLine} \{ \{0,0,1\} \{1,0,1\}\} \{125\}\right]; \\
\text{Print } \left[ e, \text{OnPlane} \{ \{0,0,1\} \{1,0,1\} \{0,1,1\}\} \{125,75\}\right]; \\
\text{Print } \left[ e, \text{OnBox} \{ \{0,0,1\} \{1,0,1\} \{0,1,1\} \{0,0,2\}\} \{125,75,85\}\right]; \\
\text{Print } \left[ e, \text{OnGrid} \{$A, $B, 1\} \{0:1:1/125, 0:1:1/75, 0\}\right]; \\
\text{Print } \left[ e, \text{OnGrid} \text{Domain2}\right];
\]

Many options can be used to modify the aspect of all these maps, as well as the default behaviour of the \texttt{Print} commands. See Section 6.10 [Types for PostOperation], page 61, to get the list of all these options. For example, to obtain a map of the scalar potential at the barycenters of the elements on the boundary of the region \texttt{Domain}, in a table oriented format appended to an already existing file \texttt{out.txt}, the operation would be:

\[
\text{Print } \left[ v, \text{OnElementsOf Domain, Depth 0, Skin, Format Table, File }>>\text{"out.txt"}\right];
\]

Global quantities, which are associated with regions (and not with the elements of the mesh of these regions), are displayed thanks to the \texttt{OnRegion} operation. For example, the global potential and charge on the region \texttt{SkinDomainC} can be displayed with:

\[
\text{PostOperation}\{
\text{Name Val_V_Q; NameOfPostProcessing EleSta_vf;}
\text{Operation}\{
\text{Print } \left[ V, \text{OnRegion SkinDomainC}\right];
\text{Print } \left[ Q, \text{OnRegion SkinDomainC}\right];
\}
\}
\]
8 Complete examples

This chapter presents complete examples that can be run “as is” with GetDP (see Chapter 3 [Running GetDP], page 11).

Many other ready-to-use examples are available in the GetDP wiki at the following address: https://geuz.org/trac/getdp (username=getdp; password=getdp).

8.1 Electrostatic problem

Let us first consider a simple electrostatic problem. The formulation used is an electric scalar potential formulation (file ‘EleSta_v.pro’, including files ‘Jacobian_Lib.pro’ and ‘Integration_Lib.pro’). It is applied to a microstrip line (file ‘mStrip.pro’), whose geometry is defined in the file ‘mStrip.geo’ (see Appendix B [Gmsh examples], page 107). The geometry is two-dimensional and by symmetry only one half of the structure is modeled.

Note that the structure of the following files points out the separation of the data describing the particular problem and the method used to solve it (see Section 1.1 [Numerical tools as objects], page 5), and therefore how it is possible to build black boxes adapted to well defined categories of problems. The files are commented (see Section 4.1 [Comments], page 15) and can be run without any modification.

/* -------------------------------------------------------------------
File "mStrip.pro"
This file defines the problem dependent data structures for the microstrip problem.

To compute the solution:
getdp mStrip -solve EleSta_v

To compute post-results:
getdp mStrip -pos Map
or getdp mStrip -pos Cut

------------- */

Group {

    /* Let's start by defining the interface (i.e. elementary groups) between the mesh file and GetDP (no mesh object is defined, so the default mesh will be assumed to be in GMSH format and located in "mStrip.msh") */

    Air = Region[101]; Diel1 = Region[111];
    Ground = Region[120]; Line = Region[121];
    SurfInf = Region[130];

    /* We can then define a global group (used in "EleSta_v.pro", the file containing the function spaces and formulations) */

    DomainCC_Ele = Region[{Air, Diel1}];

}

Function {

    /* The relative permittivity (needed in the formulation) is piecewise defined in elementary groups */

    epsr[Air] = 1.;
    epsr[Diel1] = 9.8;

}

Constraint {

    /* Now, some Dirichlet conditions are defined. The name 'ElectricScalarPotential' refers to the constraint name given in the function space */

    { Name ElectricScalarPotential; Type Assign;
      Case {
{ Region Region\[\{\text{Ground, SurfInf}\}]; Value 0.; } 
{ Region Line; Value 1.e-3; }

/* The formulation used and its tools, considered as being 
in a black box, can now be included */

Include "Jacobian_Lib.pro"
Include "Integration_Lib.pro"
Include "EleSta_v.pro"

/* Finally, we can define some operations to output results */

e = 1.e-7;

PostOperation {
  { Name Map; NameOfPostProcessing EleSta_v; 
    Operation {
      Print [ v, OnElementsOf DomainCC_Ele, File "mStrip_v.pos" ];
      Print [ e, OnElementsOf DomainCC_Ele, File "mStrip_e.pos" ];
    }
  }
  { Name Cut; NameOfPostProcessing EleSta_v; 
    Operation {
      Print [ e, OnLine \{\{e,e,0\}\{10.e-3,e,0\}\} \{500\}, File "Cut_e" ];
    }
  }
}

/* -------------------------------------------------------------------
File "EleSta_v.pro"

Electrostatics - Electric scalar potential v formulation
-------------------------------------------------------------------

I N P U T
---------

Global Groups : (Extension '_Ele' is for Electric problem)

-------------
Domain_Ele Whole electric domain (not used)
DomainCC_Ele Nonconducting regions
DomainC_Ele Conducting regions (not used)
Function :
--------
epsr[] Relative permittivity

Constraint :
----------
ElectricScalarPotential Fixed electric scalar potential
(classical boundary condition)

Physical constants :
-------------------
eps0 = 8.854187818e-12;

Group {
  DefineGroup[ Domain_Ele, DomainCC_Ele, DomainC_Ele ];
}

Function {
  DefineFunction[ epsr ];
}

FunctionSpace {
  { Name Hgrad_v_Ele; Type Form0;
    BasisFunction {
      // v = v s , for all nodes
      // n n
      { Name sn; NameOfCoef vn; Function BF_Node;
        Support DomainCC_Ele; Entity NodesOf[ All ]; } }
    Constraint {
      { NameOfCoef vn; EntityType NodesOf;
        NameOfConstraint ElectricScalarPotential; }
    }
  }
}

Formulation {
{ Name Electrostatics_v; Type FemEquation;
  Quantity {
    { Name v; Type Local; NameOfSpace Hgrad_v_Ele; }
  }
  Equation {
    Galerkin { [ epsr[] * Dof{d v} , {d v} ]; In DomainCC_Ele;
      Jacobian Vol; Integration GradGrad; }
  }
}
Resolution {
    { Name EleSta_v;
        System {
            { Name Sys_Ele; NameOfFormulation Electrostatics_v; }
        }
        Operation {
            Generate[Sys_Ele]; Solve[Sys_Ele]; SaveSolution[Sys_Ele];
        }
    }
}

PostProcessing {
    { Name EleSta_v; NameOfFormulation Electrostatics_v;
        Quantity {
            { Name v;
                Value {
                    Local { [ {v} ]; In DomainCC_Ele; Jacobian Vol; }
                }
            }
            { Name e;
                Value {
                    Local { [ -{d v} ]; In DomainCC_Ele; Jacobian Vol; }
                }
            }
            { Name d;
                Value {
                    Local { [ -eps0*epsr[] * {d v} ]; In DomainCC_Ele;
                        Jacobian Vol; }
                }
            }
        }
    }
}

/*@ -------------------------------------------------------------------
File "Jacobian_Lib.pro"
Definition of a jacobian method
-------------------------------------------------------------------
INPUT */
GlobalGroup:

DomainInf Regions with Spherical Shell Transformation

Parameters:

Val_Rint, Val_Rext Inner and outer radius of the Spherical Shell of DomainInf

Group {
  DefineGroup[ DomainInf ] ;
  DefineVariable[ Val_Rint, Val_Rext ] ;
}

Jacobian {
  { Name Vol ;
    Case { { Region DomainInf ;
      Jacobian VolSphShell {Val_Rint, Val_Rext} ;
      { Region All ; Jacobian Vol ;
      }
    }
  }
}

Integration {
  { Name GradGrad ;
    Case { {Type Gauss ;
      Case { { GeoElement Triangle ; NumberOfPoints 4 ;
      GeoElement Quadrangle ; NumberOfPoints 4 ;
      GeoElement Tetrahedron ; NumberOfPoints 4 ;
      GeoElement Hexahedron ; NumberOfPoints 6 ;
      GeoElement Prism ; NumberOfPoints 9 ;
      }
    }
  }
  { Name CurlCurl ;
    Case { {Type Gauss ;
      Case { { GeoElement Triangle ; NumberOfPoints 4 ;
      GeoElement Quadrangle ; NumberOfPoints 4 ;
      }
    }
  }
{ GeoElement Tetrahedron ; NumberOfPoints 4 ; }
{ GeoElement Hexahedron ; NumberOfPoints 6 ; }
{ GeoElement Prism ; NumberOfPoints 9 ; }
8.2 Magnetostatic problem

We now consider a magnetostatic problem. The formulation used is a 2D magnetic vector potential formulation (see file ‘MagSta_a_2D.pro’). It is applied to a core-inductor system (file ‘CoreSta.pro’), whose geometry is defined in the file ‘Core.geo’ (see Appendix B [Gmsh examples], page 107). The geometry is two-dimensional and, by symmetry, one fourth of the structure is modeled.

The jacobian and integration methods used are the same as for the electrostatic problem presented in Section 8.1 [Electrostatic problem], page 83.

/* -------------------------------------------------------------------
File "CoreSta.pro"

This file defines the problem dependent data structures for the static core-inductor problem.

To compute the solution:
    getdp CoreSta -msh Core.msh -solve MagSta_a_2D

To compute post-results:
    getdp CoreSta -msh Core.msh -pos Map_a

------------------------------------------------------------------- */

Group {

Air = Region[ 101 ]; Core = Region[ 102 ];
Ind = Region[ 103 ]; AirInf = Region[ 111 ];

SurfaceGh0 = Region[ 1100 ]; SurfaceGe0 = Region[ 1101 ];
SurfaceGInf = Region[ 1102 ];

Val_Rint = 200.e-3;
Val_Rext = 250.e-3;

DomainCC_Mag = Region[ {Air, AirInf, Core, Ind} ];
DomainC_Mag = Region[ {} ];
DomainS_Mag = Region[ {Ind} ]; // Stranded inductor
DomainInf = Region[ {AirInf} ];
Domain_Mag = Region[ {DomainCC_Mag, DomainC_Mag} ];

}

Function {

mu0 = 4.e-7 * Pi;
murCore = 100.;

nu [ Region[{Air, Ind, AirInf}] ] = 1. / mu0;
nu [ Core ] = 1. / (murCore * mu0);

Sc[ Ind ] = 2.5e-2 * 5.e-2;
}

Constraint {

{ Name MagneticVectorPotential_2D;
  Case {
    { Region SurfaceGe0 ; Value 0.; }
    { Region SurfaceGInf; Value 0.; }
  }
}

Val_I_1_ = 0.01 * 1000.;

{ Name SourceCurrentDensityZ;
  Case {
    { Region Ind; Value Val_I_1_/Sc[]; }
  }
}
Include "Jacobian_Lib.pro"
Include "Integration_Lib.pro"
Include "MagSta_a_2D.pro"

e = 1.e-5;
p1 = {e,e,0};
p2 = {0.12,e,0};

PostOperation {

{ Name Map_a; NameOfPostProcessing MagSta_a_2D;
  Operation {
    Print[ az, OnElementsOf Domain_Mag, File "CoreSta_a.pos" ];
    Print[ b, OnLine{{List[p1]},{List[p2]}}{1000}, File "k_a" ];
  }
}

} /* -------------------------------------------------------------------
File "MagSta_a_2D.pro"

Magnetostatics — Magnetic vector potential a formulation (2D)
-------------------------------------------------------------------

INPUT
-------

GlobalGroup : (Extension ’_Mag’ is for Magnetic problem)

Domain_Mag Whole magnetic domain
Domains_Mag Inductor regions (Source)

Function :

nu[] Magnetic reluctivity

Constraint :

MagneticVectorPotential_2D
  Fixed magnetic vector potential (2D)
  (classical boundary condition)
SourceCurrentDensityZ Fixed source current density (in Z direction)
*/
Group {
    DefineGroup[ Domain_Mag, DomainS_Mag ];
}

Function {
    DefineFunction[ nu ];
}

FunctionSpace {

    // Magnetic vector potential a (b = curl a)
    { Name Hcurl_a_Mag_2D; Type Form1P; 
        BasisFunction {
            // a = a \ s
            // e e
            { Name se; NameOfCoef ae; Function BF_PerpendicularEdge; 
                Support Domain_Mag; Entity NodesOf[ All ]; } 
        } 
        Constraint {
            { NameOfCoef ae; EntityType NodesOf; 
                NameOfConstraint MagneticVectorPotential_2D; } 
        } 
    } 

    // Source current density js (fully fixed space)
    { Name Hregion_j_Mag_2D; Type Vector; 
        BasisFunction {
            { Name sr; NameOfCoef jsr; Function BF_RegionZ; 
                Support DomainS_Mag; Entity DomainS_Mag; } 
        } 
        Constraint {
            { NameOfCoef jsr; EntityType Region; 
                NameOfConstraint SourceCurrentDensityZ; } 
        } 
    } 
}

Formulation {
    { Name Magnetostatics_a_2D; Type FemEquation; 
        Quantity {
            { Name a ; Type Local; NameOfSpace Hcurl_a_Mag_2D; } 
            { Name js; Type Local; NameOfSpace Hregion_j_Mag_2D; } 
        } 
        Equation {
            Galerkin { [ nu[] * Dof{d a} , {d a} ]; In Domain_Mag; 
                Jacobian Vol; Integration CurlCurl; } 
        } 
    }
Galerkin { [ - Dof{js} , {a} ]; In DomainS_Mag; 
    Jacobian Vol; Integration CurlCurl; }

Resolution {
    { Name MagSta_a_2D;
        System {
            { Name Sys_Mag; NameOfFormulation Magnetostatics_a_2D; }
        }
        Operation {
            Generate[Sys_Mag]; Solve[Sys_Mag]; SaveSolution[Sys_Mag];
        }
    }
}

PostProcessing {
    { Name MagSta_a_2D; NameOfFormulation Magnetostatics_a_2D;
        Quantity {
            { Name a;
                Value {
                    Local { [ {a} ]; In Domain_Mag; Jacobian Vol; }
                }
            }
            { Name az;
                Value {
                    Local { [ CompZ[{a}]] ]; In Domain_Mag; Jacobian Vol; }
                }
            }
            { Name b;
                Value {
                    Local { [ {d a} ]; In Domain_Mag; Jacobian Vol; }
                }
            }
            { Name h;
                Value {
                    Local { [ nu[] * {d a} ]; In Domain_Mag; Jacobian Vol; }
                }
            }
        }
    }
}
8.3 Magnetodynamic problem

As a third example we consider a magnetodynamic problem. The formulation is a two-dimensional \( a-v \) formulation (see file ‘MagDyn_av_2D.pro’, which includes the same jacobian and integration library files as in Section 8.1 [Electrostatic problem], page 83). It is applied to a core-inductor system (defined in file ‘CoreMassive.pro’), whose geometry has already been defined in file ‘Core.geo’.

/* -----------------------------------------------
 File "CoreMassive.pro"

 This file defines the problem dependent data structures for the
dynamic core-inductor problem.

 To compute the solution:
  getdp CoreMassive -msh Core.msh -solve MagDyn_av_2D

 To compute post-results:
  getdp CoreMassive -msh Core.msh -pos Map_a
  getdp CoreMassive -msh Core.msh -pos U_av
 ----------------------------------------------- */

Group {
  Air = Region[ 101 ]; Core = Region[ 102 ];
  Ind = Region[ 103 ]; AirInf = Region[ 111 ];
  SurfaceGh0 = Region[ 1100 ]; SurfaceGe0 = Region[ 1101 ];
  SurfaceGInf = Region[ 1102 ];

  Val_Rint = 200.e-3;
  Val_Rext = 250.e-3;

  DomainCC_Mag = Region[ {Air, AirInf} ];
  DomainC_Mag = Region[ {Ind, Core} ]; // Massive inductor + conducting core
  DomainB_Mag = Region[ {} ];
  DomainS_Mag = Region[ {} ];
  DomainInf = Region[ {AirInf} ];
  Domain_Mag = Region[ {DomainCC_Mag, DomainC_Mag} ];
}

Function {

  mu0 = 4.e-7 * Pi;

  murCore = 100.;
nu [ #{Air, Ind, AirInf} ] = 1. / mu0;
nu [ Core ] = 1. / (murCore * mu0);
sigma [ Ind ] = 5.9e7;
sigma [ Core ] = 2.5e7;

Freq = 1.;

}

Constraint {

{ Name MagneticVectorPotential_2D;
  Case {
    { Region SurfaceGe0 ; Value 0.; }
    { Region SurfaceGInf; Value 0.; }
  }
}

{ Name SourceCurrentDensityZ;
  Case {
  }
}

Val_I_ = 0.01 * 1000.;

{ Name Current_2D;
  Case {
    { Region Ind; Value Val_I_; }
  }
}

{ Name Voltage_2D;
  Case {
    { Region Core; Value 0.; }
  }
}

Include "Jacobian_Lib.pro"
Include "Integration_Lib.pro"
Include "MagDyn_av_2D.pro"

PostOperation {
  { Name Map_a; NameOfPostProcessing MagDyn_av_2D;
    Operation {

Print[ az, OnElementsOf Domain_Mag, File "Core_m_a.pos" ];
Print[ j, OnElementsOf Domain_Mag, File "Core_m_j.pos" ];
}
}
{ Name U_av; NameOfPostProcessing MagDyn_av_2D;
Operation {
    Print[ U, OnRegion Ind ];
    Print[ I, OnRegion Ind ];
}
}

/* -------------------------------------------------------------------
File "MagDyn_av_2D.pro"

Magnetodynamics - Magnetic vector potential and electric scalar potential a-v formulation (2D)
-------------------------------------------------------------------

I N P U T
-------

GlobalGroup : (Extension 'Mag' is for Magnetic problem)
-------------
Domain_Mag Whole magnetic domain
DomainCC_Mag Nonconducting regions (not used)
DomainC_Mag Conducting regions
DomainS_Mag Inductor regions (Source)
DomainV_Mag All regions in movement (for speed term)

Function :
--------
nu[] Magnetic reluctivity
sigma[] Electric conductivity
Velocity[] Velocity of regions

Constraint :
--------
MagneticVectorPotential_2D Fixed magnetic vector potential (2D)
(SourceCurrentDensityZ Fixed source current density (in Z direction)
Voltage_2D Fixed voltage
Current_2D Fixed Current
Parameters:
----------

Freq Frequency (Hz)

Parameters for time loop with theta scheme:
Mag_Time0, Mag_TimeMax, Mag_DTime
   Initial time, Maximum time, Time step (s)
Mag_Theta Theta (e.g. 1. : Implicit Euler,
               0.5 : Cranck Nicholson)
*/

Group {
  DefineGroup[ Domain_Mag, DomainCC_Mag, DomainC_Mag,
               DomainS_Mag, DomainV_Mag ];
}

Function {
  DefineFunction[ nu, sigma ];
  DefineFunction[ Velocity ];
  DefineVariable[ Freq ];
  DefineVariable[ Mag_Time0, Mag_TimeMax, Mag_DTime, Mag_Theta ];
}

FunctionSpace {

  // Magnetic vector potential a (b = curl a)
  { Name Hcurl_a_Mag_2D; Type Form1P;
    BasisFunction {
      // a = a s
      // e e
      { Name se; NameOfCoef ae; Function BF_PerpendicularEdge;
       Support Domain_Mag; Entity NodesOf[ All ]; }
    }
    Constraint {
      { NameOfCoef ae; EntityType NodesOf;
        NameOfConstraint MagneticVectorPotential_2D; }
    }
  }

  // Gradient of Electric scalar potential (2D)
  { Name Hregion_u_Mag_2D; Type Form1P;
    BasisFunction {
      { Name sr; NameOfCoef ur; Function BF_RegionZ;
       Support DomainC_Mag; Entity DomainC_Mag; }
    }
    GlobalQuantity {


\[
\begin{align*}
\{ \text{Name U; Type AliasOf; NameOfCoeff ur; } \\
\{ \text{Name I; Type AssociatedWith; NameOfCoeff ur; } \\
\}
\end{align*}
\]

\text{Constraint \{ }
\begin{align*}
\{ \text{NameOfCoeff U; EntityType Region; NameOfConstraint Voltage_2D; } \\
\{ \text{NameOfCoeff I; EntityType Region; NameOfConstraint Current_2D; } \\
\end{align*}
\}

\text{// Source current density js (fully fixed space)}
\{ \text{Name Hregion_j_Mag_2D; Type Vector; } \\
\text{BasisFunction \{ }
\begin{align*}
\{ \text{Name sr; NameOfCoeff jsr; Function BF_RegionZ; } \\
\text{Support DomainS_Mag; Entity DomainS_Mag; } \\
\end{align*}
\}

\text{Constraint \{ }
\begin{align*}
\{ \text{NameOfCoeff jsr; EntityType Region; NameOfConstraint SourceCurrentDensityZ; } \\
\}
\end{align*}
\}

\text{Formulation \{ }
\begin{align*}
\{ \text{Name Magnetodynamics_av_2D; Type FemEquation; } \\
\text{Quantity \{ }
\begin{align*}
\{ \text{Name a; Type Local; NameOfSpace Hcurl_a_Mag_2D; } \\
\{ \text{Name ur; Type Local; NameOfSpace Hregion_u_Mag_2D; } \\
\{ \text{Name I; Type Global; NameOfSpace Hregion_u_Mag_2D [I]; } \\
\{ \text{Name U; Type Global; NameOfSpace Hregion_u_Mag_2D [U]; } \\
\{ \text{Name js; Type Local; NameOfSpace Hregion_j_Mag_2D; } \\
\}
\end{align*}
\end{align*}
\}

\text{Equation \{ }
\begin{align*}
\text{Galerkin \{ } & \nu[] \times \text{Dof} \{a \}, \{d \} \}; \text{In Domain\_Mag; } \\
& \text{Jacobian Vol; Integration CurlCurl; } \\
\text{Galerkin \{ } & \text{DtDof [ } \sigma[] \times \text{Dof} \{a \}, \{a \} ] \}; \text{In DomainC\_Mag; } \\
& \text{Jacobian Vol; Integration CurlCurl; } \\
\text{Galerkin \{ } & \text{[ } \sigma[] \times \text{Dof} \{ur \}, \{a \} ] \}; \text{In DomainC\_Mag; } \\
& \text{Jacobian Vol; Integration CurlCurl; } \\
\text{Galerkin \{ } & \text{[ } - \sigma[] \times (\text{Velocity}[\cdot]^\times \text{Dof} \{d \}) \}, \{a \} ] \}; \text{In DomainV\_Mag; } \\
& \text{Jacobian Vol; Integration CurlCurl; } \\
\text{Galerkin \{ } & \text{[ } \text{Velocity}[\cdot]^\times \text{Dof} \{d \} \}, \{a \} ] \}; \text{In DomainV\_Mag; } \\
& \text{Jacobian Vol; Integration CurlCurl; } \\
\end{align*}
\}
\]
Galerkin { [- Dof{js} , {a} ]; In DomainS_Mag; 
    Jacobian Vol; 
    Integration CurlCurl; } 
    
Galerkin { DtDof [ sigma[] * Dof{a} , {ur} ]; In DomainC_Mag; 
    Jacobian Vol; Integration CurlCurl; } 
Galerkin { [ sigma[] * Dof{ur} , {ur} ]; In DomainC_Mag; 
    Jacobian Vol; Integration CurlCurl; } 
GlobalTerm { [ Dof{l} , {U} ]; In DomainC_Mag; } 

Resolution {
    { Name MagDyn_av_2D; 
        System { 
            { Name Sys_Mag; NameOfFormulation Magnetodynamics_av_2D; 
                Type ComplexValue; Frequency Freq; } 
        } 
        Operation { 
            Generate[Sys_Mag]; Solve[Sys_Mag]; SaveSolution[Sys_Mag]; 
        } 
    } 
    
    { Name MagDyn_t_av_2D; 
        System { 
            { Name Sys_Mag; NameOfFormulation Magnetodynamics_av_2D; } 
        } 
        Operation { 
            InitSolution[Sys_Mag]; SaveSolution[Sys_Mag]; 
            TimeLoopTheta[Mag_Time0, Mag_TimeMax, Mag_DTime, Mag_Theta] { 
                Generate[Sys_Mag]; Solve[Sys_Mag]; SaveSolution[Sys_Mag]; 
            } 
        } 
    } 
    
PostProcessing { 
    { Name MagDyn_av_2D; NameOfFormulation Magnetodynamics_av_2D; 
        Quantity { 
            { Name a; 
                Value { 
                    Local { [ {a} ]; In Domain_Mag; Jacobian Vol; } 
                } 
            } 
        } 
    } 
}
{ Name az; 
Value { 
    Local { [ CompZ[{a}] ]; In Domain_Mag; Jacobian Vol; } 
} }

{ Name b; 
Value { 
    Local { [ {d a} ]; In Domain_Mag; Jacobian Vol; } 
} }

{ Name h; 
Value { 
    Local { [ nu[] * {d a} ]; In Domain_Mag; Jacobian Vol; } 
} }

{ Name j; 
Value { 
    Local { [ - sigma[]*(Dt[{a}]+{ur}) ]; In DomainC_Mag; Jacobian Vol; } 
} }

{ Name jz; 
Value { 
    Local { [ - sigma[]*CompZ[Dt[{a}]+{ur}] ]; In DomainC_Mag; Jacobian Vol; } 
} }

{ Name roj2; 
Value { 
    Local { [ sigma[]*SquNorm[Dt[{a}]+{ur}] ]; In DomainC_Mag; Jacobian Vol; } 
} }

{ Name U; Value { Local { [ {U} ]; In DomainC_Mag; } } 
{ Name I; Value { Local { [ {I} ]; In DomainC_Mag; } } }
Appendix A File formats

This chapter describes the file formats that cannot be modified by the user. The format of the problem definition structure is explained in Chapter 5 [Objects], page 27, and Chapter 6 [Types for objects], page 41. The format of the post-processing files is explained in Section 6.10 [Types for PostOperation], page 61.

A.1 Input file format

The native mesh format read by GetDP is the mesh file format produced by Gmsh (http://geuz.org/gmsh). In its “version 1” incarnation, an ‘msh’ file is divided into two sections, defining the nodes and the elements in the mesh.

\$NOD
number-of-nodes
node-number x-coord y-coord z-coord
...
$ENDNOD

$ELM
number-of-elements
elm-number elm-type elm-region unused number-of-nodes node-numbers
...
$ENDELM

All the syntactic variables stand for integers except x-coord, y-coord and z-coord which stand for floating point values. The elm-type value defines the geometrical type for the element:

elm-type:

1 Line (2 nodes, 1 edge).
2 Triangle (3 nodes, 3 edges).
3 Quadrangle (4 nodes, 4 edges).
4 Tetrahedron (4 nodes, 6 edges, 4 facets).
5 Hexahedron (8 nodes, 12 edges, 6 facets).
6 Prism (6 nodes, 9 edges, 5 facets).
7 Pyramid (5 nodes, 8 edges, 5 facets).
15 Point (1 node).

GetDP can also read more recent versions of the ‘msh’ format (2.0 and above). See the Gmsh documentation for more information about these formats.

A.2 Output file format
A.2.1 File ‘.pre’

The ‘.pre’ file is generated by the pre-processing stage. It contains all the information about the degrees of freedom to be considered during the processing stage for a given resolution (i.e., unknowns, fixed values, initial values, etc.).

$$\textit{Resolution} /* \textit{resolution-id} */
\text{main-resolution-number number-of-dofdata}
$$\textit{EndResolution}
$$\textit{DofData} /* \textit{dofdata-number} */
\text{resolution-number system-number}
\text{number-of-function-spaces function-space-number ...}
\text{number-of-time-functions time-function-number ...}
\text{number-of-partitions partition-index ...}
\text{number-of-any-dof number-of-dof}
\text{dof-basis-function-number dof-entity dof-harmonic dof-type dof-data ...}
$$\textit{EndDofData}$

with

\text{dof-data:}
\begin{align*}
\text{equation-number nnz} \\
\text{(dof-type: 1; unknown)} | \\
\text{dof-value dof-time-function-number} \\
\text{(dof-type: 2; fixed value)} | \\
\text{dof-associate-dof-number dof-value dof-time-function-number} \\
\text{(dof-type: 3; associated degree of freedom)} | \\
\text{equation-number dof-value} \\
\text{(dof-type: 5; initial value for an unknown)}
\end{align*}

Notes:

1. There is one $\textit{DofData}$ field for each system of equations considered in the resolution (including those considered in pre-resolutions).
2. The $\textit{dofdata-number}$ of a $\textit{DofData}$ field is determined by the order of this field in the ‘.pre’ file.
3. $\textit{number-of-dof}$ is the dimension of the considered system of equations, while $\textit{number-of-any-dof}$ is the total number of degrees of freedom before the application of constraints.
4. Each degree of freedom is coded with three integer values, which are the associated basis function, entity and harmonic numbers, i.e., $\textit{dof-basis-function-number}$, $\textit{dof-entity}$ and $\textit{dof-harmonic}$.
5. $\textit{nnz}$ is not used at the moment.

A.2.2 File ‘.res’

The ‘.res’ file is generated by the processing stage. It contains the solution of the problem (or a part of it in case of program interruption).

$$\textit{ResFormat} /* \textit{GetDP xgetdp-version-number, string-for-format} */$
1.1 file-res-format
$EndResFormat
$Solution /* DofData #dofdata-number */
dofdata-number time-value time-imag-value time-step-number
  solution-value
...
$EndSolution
...

Notes:
1. A $Solution field contains the solution associated with a $DofData field.
2. There is one $Solution field for each time step, of which the time is time-value (0 for non time dependent or non modal analyses) and the imaginary time is time-imag-value (0 for non time dependent or non modal analyses).
3. The order of the solution-values in a $Solution field follows the numbering of the equations given in the '.pre' file (one floating point value for each degree of freedom).
Appendix B Gmsh examples

Gmsh is a three-dimensional finite element mesh generator with simple CAD and post-processing capabilities that can be used as a graphical front-end for GetDP. Gmsh can be downloaded from http://geuz.org/gmsh.

This appendix reproduces verbatim the input files needed by Gmsh to produce the mesh files 'mStrip.msh' and 'Core.msh' used in the examples of Chapter 8 [Complete examples], page 83.

```plaintext
/* ---
File "mStrip.geo"

This file is the geometrical description used by GMSH to produce
the file "mStrip.msh".
--- */

/* Definition of some parameters for geometrical dimensions, i.e.
 h (height of 'Diel1'), w (width of 'Line'), t (thickness of 'Line')
 xBox (width of the air box) and yBox (height of the air box) */

h = 1.e-3 ; w = 4.72e-3 ; t = 0.035e-3 ;
xBox = w/2. * 6. ; yBox = h * 12. ;

/* Definition of parameters for local mesh dimensions */

s = 1. ;
p0 = h / 10. * s ;
pLine0 = w/2. / 10. * s ; pLine1 = w/2. / 50. * s ;
pxBox = xBox / 10. * s ; pyBox = yBox / 8. * s ;

/* Definition of geometrical points */

Point(1) = { 0 , 0, 0, p0} ;
Point(2) = { xBox, 0, 0, pxBox} ;
Point(3) = { xBox, h, 0, pxBox} ;
Point(4) = { 0 , h, 0, pLine0} ;
Point(5) = { w/2., h, 0, pLine1} ;
Point(6) = { 0 , h+t, 0, pLine0} ;
Point(7) = { w/2., h+t, 0, pLine1} ;
Point(8) = { 0 , yBox, 0, pyBox} ;
Point(9) = { xBox, yBox, 0, pyBox} ;

/* Definition of geometrical lines */

Line(1) = {1,2}; Line(2) = {2,3}; Line(3) = {3,9};
Line(4) = {9,8}; Line(5) = {8,6}; Line(7) = {4,1};
Line(8) = {5,3}; Line(9) = {4,5}; Line(10) = {6,7};
```
Line(11) = {5,7};

/* Definition of geometrical surfaces */

Line Loop(12) = {8,-2,-1,-7,9}; Plane Surface(13) = {12};
Line Loop(14) = {10,-11,8,3,4,5}; Plane Surface(15) = {14};

/* Definition of Physical entities (surfaces, lines). The Physical entities tell GMSH the elements and their associated region numbers to save in the file 'mStrip.msh'. For example, the Region 111 is made of elements of surface 13, while the Region 121 is made of elements of lines 9, 10 and 11 */

Physical Surface (101) = {15} ; /* Air */
Physical Surface (111) = {13} ; /* Diel1 */
Physical Line (120) = {1} ; /* Ground */
Physical Line (121) = {9,10,11} ; /* Line */
Physical Line (130) = {2,3,4} ; /* SurfInf */

/* -------------------------------------------------------------------
File "Core.geo"
This file is the geometrical description used by GMSH to produce the file "Core.msh".
------------------------------------------------------------------- */

dxCore = 50.e-3; dyCore = 100.e-3;
xInd = 75.e-3; dxInd = 25.e-3; dyInd = 50.e-3;
rInt = 200.e-3; rExt = 250.e-3;
s = 1.0;
p0 = 12.e-3 *s;
pCorex = 4.e-3 *s; pCorey0 = 8.e-3 *s; pCorey = 4.e-3 *s;
pIndx = 5.e-3 *s; pIndy = 5.e-3 *s;
pInt = 12.5e-3*s; pExt = 12.5e-3*s;

Point(1) = {0,0,0,p0};
Point(2) = {dxCore,0,0,pCorex};
Point(3) = {dxCore,dyCore,0,pCorey};
Point(4) = {0,dyCore,0,pCorey0};
Point(5) = {xInd,0,0,pIndx};
Point(6) = {xInd+dxInd,0,0,pIndx};
Point(7) = {xInd+dxInd,dyInd,0,pIndy};
Point(8) = {xInd,dyInd,0,pIndy};
Point(9) = {rInt,0,0,pInt};
Point(10) = {rExt,0,0,pExt};
Point(11) = {0,rInt,0,pInt};
Point(12) = {0,rExt,0,pExt};

Line(1) = {1,2};  Line(2) = {2,5};  Line(3) = {5,6};
Line(4) = {6,9};  Line(5) = {9,10}; Line(6) = {1,4};
Line(7) = {4,11}; Line(8) = {11,12}; Line(9) = {2,3};
Line(10) = {3,4}; Line(11) = {6,7};  Line(12) = {7,8};
Line(13) = {8,5};

Circle(14) = {9,1,11}; Circle(15) = {10,1,12};

Line Loop(16) = {-6,1,9,10}; Plane Surface(17) = {16};
Line Loop(18) = {11,12,13,3}; Plane Surface(19) = {18};
Line Loop(20) = {7,-14,-4,11,12,13,-2,9,10}; Plane Surface(21) = {20};
Line Loop(22) = {8,-15,-5,14}; Plane Surface(23) = {22};

Physical Surface(101) = {21};  /* Air */
Physical Surface(102) = {17};  /* Core */
Physical Surface(103) = {19};  /* Ind */
Physical Surface(111) = {23};  /* AirInf */

Physical Line(1000) = {1,2};  /* Cut */
Physical Line(1001) = {2};  /* CutAir */
Physical Line(202) = {9,10};  /* SkinCore */
Physical Line(203) = {11,12,13};  /* SkinInd */
Physical Line(1100) = {1,2,3,4,5};  /* SurfaceGh0 */
Physical Line(1101) = {6,7,8};  /* SurfaceGe0 */
Physical Line(1102) = {15};  /* SurfaceGInf */
Appendix C Compiling the source code

Stable releases and nightly source snapshots are available from http://geuz.org/getdp/src/.
You can also access the subversion repository directly:

1. The first time you want to download the latest full source, type:
   
   \texttt{svn co https://geuz.org/svn/getdp/trunk getdp}
   
   You will be asked to accept the security certificate and to provide your username and password. (Use getdp/getdp for read-only access.)

2. To update your local version to the latest and greatest, go in the getdp directory and type:
   
   \texttt{svn update}

3. If you have write access, to commit your changes to the central repository, go in the getdp directory and type:
   
   \texttt{svn commit}

Once you have the source code, you need to run CMake to configure your build (see the ‘README.txt’ file in the top-level source directory for detailed information on how to run CMake).

Each build can be configured using a series of options, to selectively enable optional modules or features. Here is the list of CMake options:

\textbf{ENABLE_ARPACK} 
Enable Arpack eigensolver (requires Fortran) (default: ON)

\textbf{ENABLE_CONTRIB_ARPACK} 
Enable Arpack eigensolver from GetDP’s contrib folder instead of system’s Arpack (requires Fortran) (default: OFF)

\textbf{ENABLE_BLAS_LAPACK} 
Enable BLAS/Lapack for linear algebra (e.g. for Arpack) (default: ON)

\textbf{ENABLE_BUILD_LIB} 
Enable ‘lib’ target for building static GetDP library (default: OFF)

\textbf{ENABLE_BUILD_SHARED} 
Enable ‘shared’ target for building shared GetDP library (default: OFF)

\textbf{ENABLE_BUILD_ANDROID} 
Enable Android NDK library target (experimental) (default: OFF)

\textbf{ENABLE_FORTRAN} 
Enable Fortran (needed for Arpack/Sparskit/Zitsol & Bessel) (default: ON)

\textbf{ENABLE_GMSH} 
Enable Gmsh functions (for field interpolation) (default: ON)

\textbf{ENABLE_GSL} 
Enable GSL functions (for some built-in functions) (default: ON)

\textbf{ENABLE_LEGACY} 
Use legacy assembler (required for actual computations) (default: ON)
ENABLE_MPI
  Enable MPI parallelization (with PETSc/SLEPc) (default: OFF)

ENABLE_NR
  Enable NR functions (if GSL is unavailable) (default: ON)

ENABLE_NX
  Enable proprietary NX extension (default: OFF)

ENABLE_OPENMP
  Enable OpenMP parallelization of some functions (experimental) (default: OFF)

ENABLE_PETSC
  Enable PETSc linear solver (default: ON)

ENABLE_SLEPC
  Enable SLEPc eigensolver (default: ON)

ENABLE_SPARSKIT
  Enable Sparskit solver instead of PETSc (requires Fortran) (default: ON)

ENABLE_ZITSOL
  Enable Zitsol solvers (requires PETSc and Fortran) (default: OFF)
Appendix D Frequently asked questions

D.1 The basics

1. What is GetDP?
   GetDP is a scientific software environment for the numerical solution of integro-differential equations, open to the coupling of physical problems (electromagnetic, thermal, mechanical, etc) as well as of numerical methods (finite element method, integral methods, etc). It can deal with such problems of various dimensions (1D, 2D, 2D axisymmetric or 3D) and time states (static, transient or harmonic). The main feature of GetDP is the closeness between the organization of data defining discrete problems (written by the user in ASCII data files) and the symbolic mathematical expressions of these problems.

2. What are the terms and conditions of use?
   GetDP is distributed under the terms of the GNU General Public License. See Appendix H [License], page 123 for more information.

3. What does ‘GetDP’ mean?
   It’s an acronym for a “General environment for the treatment of Discrete Problems”.

4. Where can I find more information?
   http://geuz.org/getdp is the primary site to obtain information about GetDP. You will find a short presentation, a complete reference guide as well as a searchable archive of the GetDP mailing list (getdp@geuz.org) on this site.

D.2 Installation

1. Which OSes does GetDP run on?
   Gmsh runs on Windows, MacOS X, Linux and most Unix variants.

2. What do I need to compile GetDP from the sources?
   You need a C++ and a Fortran compiler as well as the GSL (version 1.2 or higher; freely available from http://sources.redhat.com/gsl).

3. How do I compile GetDP?
   You need cmake (http://www.cmake.org) and a C++ compiler (and a Fortran compiler depending on the modules/solvers you want to compile). See Appendix C [Compiling the source code], page 111 and the ‘README.txt’ file in the top-level source directory for more information.

   Try ldd getdp (or otool -L getdp on MacOS X) to check if all the required shared libraries are installed on your system. If not, install them. If it still doesn’t work, recompile GetDP from the sources.

D.3 Usage

1. How can I provide a mesh to GetDP?
   The only meshing format accepted by this version of GetDP is the ‘msh’ format created by Gmsh http://geuz.org/gmsh. This format being very simple (see the Gmsh
reference manual for more details), it should be straightforward to write a converter from your mesh format to the ‘msh’ format.

2. How can I visualize the results produced by GetDP?

You can specify a format in all post-processing operations. Available formats include Table, SimpleTable, TimeTable and Gmsh. Table, SimpleTable and TimeTable output lists of numbers easily readable by Excel/gnuplot/Caleida Graph/etc. Gmsh outputs post-processing views directly loadable by Gmsh.

3. How do I change the linear solver used by GetDP?

It depends on which linear solver toolkit was enabled when GetDP was compiled (PETSc or Sparskit).

With PETSc-based linear solvers you can either specify options directly on the command line (e.g. with `-ksp_type gmres -pc_type ilu`), through a specific option file (with `-solver file`), or through the `.petscrc` file located in your home directly.

With Sparskit-based linear solvers can either specify options directly on command line (e.g. with `-Nb_Fill 200`), specify an option file explicitly (with `-solver file`), or edit the `solver.par` file in the current working directory. If no `solver.par` file exists in the current directory, GetDP will give create it the next time you perform a linear system solution.
Appendix E Tips and tricks

• Install the 'info' version of this user's guide! On your (Unix) system, this can be achieved by 1) copying all getdp.info* files to the place where your info files live (usually /usr/info), and 2) issuing the command 'install-info /usr/info/getdp.info /usr/info/dir'. You will then be able to access the documentation with the command 'info getdp'. Note that particular sections ("nodes") can be accessed directly. For example, 'info getdp functionspace' will take you directly to the definition of the FunctionSpace object.

• Use emacs to edit your files, and load the C++ mode! This permits automatic syntax highlighting and easy indentation. Automatic loading of the C++ mode for ‘.pro’ files can be achieved by adding the following command in your .emacs file: (setq auto-mode-alist (append '(("\.pro" . c++-mode)) auto-mode-alist)).

• Define integration and Jacobian method in separate files, reusable in all your problem definition structures (see Section 4.2 [Includes], page 15). Define meshes, groups, functions and constraints in one file dependent of the geometrical model, and function spaces, formulations, resolutions and post-processings in files independent of the geometrical model.

• Use All as soon as possible in the definition of topological entities used as Entity of BasisFunctions. This will prevent GetDP from constructing unnecessary lists of entities.

• Intentionally misspelling an object type in the problem definition structure will produce an error message listing all available types in the particular context.

• If you don't specify the mandatory arguments on the command line, GetDP will give you the available choices. For example, 'getdp test -pos' (the name of the PostOperation is missing) will produce an error message listing all available PostOperations.
Appendix F  Version history

2.4.3: new mandatory 'Name' attribute to define onelab variables in DefineConstant[] & co; minor bug fixes.

2.4.2: fixed function arguments in nested expressions; minor improvements.

2.4.1: minor improvements and bug fixes.

2.4.0: new two-step Init constraints; faster network computation (with new -cache); improved Update operation; better cpu/memory reporting; new -setnumber, -setstring and -gmshread command line options; accept unicode file paths on Windows; small bug fixes.

2.3.1: updated onelab; small bug fixes.

2.3.0: moved build system from autoconf to cmake; new family of Field functions to use data imported from Gmsh; improved list handling; general code cleanup.

2.2.1: cleaned up nonlinear convergence tests and integrated experimental adaptive time loop code; small bug fixes.

2.2.0: new solver interface based on ONELAB; parallel SLEPC eigensolvers; cleaned up syntax for groups, moving band and global basis functions; new Field[] functions to interpolate post-processing datasets from Gmsh; fixed bug in Sur/Lin transformation of 2 forms; fixed bug for periodic constraints on high-order edge elements.

2.1.0: parallel resolution using PETSc solvers; new Gmsh2 output format; new experimental SLEPc-based eigensolvers; various bug and performance fixes (missing face basis functions, slow PETSc assembly with global quantities, ...)

2.0.0: general code cleanup (separated interface from legacy code; removed various undocumented, unstable and otherwise experimental features; moved to C++); updated input file formats; default solvers are now based on PETSc; small bug fixes (binary .res read, Newmark -restart).

1.2: Windows versions do not depend on Cygwin anymore; major parser cleanup (loops & co).

1.1: New eigensolver based on Arpack (EigenSolve); generalized old Lanczos solver to work with GSL+lapack; reworked PETSc interface, which now requires PETSc 2.3; documented many previously undocumented features (loops, conditionals, strings, link constraints, etc.); various improvements and bug fixes.

1.0: New license (GNU GPL); added support for latest Gmsh mesh file format; more
code cleanups.

0.91: Merged moving band and multi-harmonic code; new loops and conditionals in the parser; removed old readline code (just use GNU readline if available); upgraded to latest Gmsh post-processing format; various small enhancements and bug fixes.

0.89: Code cleanup.

0.88: Integrated FMM code.

0.87: Fixed major performance problem on Windows (matrix assembly and post-processing can be up to 3-4 times faster with 0.87 compared to 0.86, bringing performance much closer to Unix versions); fixed stack overflow on Mac OS X; Re-introduced face basis functions mistakenly removed in 0.86; fixed post-processing bug with pyramidal basis functions; new build system based on autoconf.

0.86: Updated Gmsh output format; many small bug fixes.

0.85: Upgraded communication interface with Gmsh; new ChangeOfValues option in PostOperation; many internal changes.

0.84: New ChangeOfCoordinate option in PostOperation; fixed crash in InterpolationAkima; improved interactive postprocessing (-ipos); changed syntax of parametric OnGrid ($S, $T -> $A, $B, $C); corrected Skin for non simplicial meshes; fixed floating point exception in diagonal matrix scaling; many other small fixes and cleanups.

0.83: Fixed bugs in SaveSolutions[] and InitSolution[]; fixed corrupted binary post-processing files in the harmonic case for the Gmsh format; output files are now created relatively to the input file directory; made solver options available on the command line; added optional matrix scaling and changed default parameter file name to 'solver.par' (Warning: please check the scaling definition in your old SOLVER.PAR files); generalized syntax for lists (start:[incr]end -> start:end:incr); updated reference guide; added a new short presentation on the web site; OnCut -> OnSection; new functional syntax for resolution operations (e.g. Generate X -> Generate[X]); many other small fixes and cleanups.

0.82: Added communication socket for interactive use with Gmsh; corrected (again) memory problem (leak + seg. fault) in time stepping schemes; corrected bug in Update[].

0.81: Generalization of transformation jacobians (spherical and rectangular, with optional parameters); changed handling of missing command line arguments; enhanced Print OnCut; fixed memory leak for time domain analysis of coupled
problems; -name option; fixed seg. fault in ILUK.

0.80: Fixed computation of time derivatives on first time step (in post-processing); added tolerance in transformation jacobians; fixed parsing of DOS files (carriage return problems); automatic memory reallocation in ILUD/ILUK.

0.79: Various bug fixes (mainly for the post-processing of integral quantities); automatic treatment of degenerated cases in axisymmetrical problems.

0.78: Various bug fixes.

0.77: Changed syntax for PostOperations (Plot suppressed in favour of Print; Plot OnRegion becomes Print OnElementsOf); changed table oriented post-processing formats; new binary formats; new error diagnostics.

0.76: Reorganized high order shape functions; optimization of the post-processing (faster and less bloated); lots of internal cleansups.

0.74: High order shape functions; lots of small bug fixes.

0.73: Eigen value problems (Lanczos); minor corrections.

0.7: constraint syntax; fourier transform; unary minus correction; complex integral quantity correction; separate iteration matrix generation.

0.6: Second order time derivatives; Newton nonlinear scheme; Newmark time stepping scheme; global quantity syntax; interactive post-processing; tensors; integral quantities; post-processing facilities.

0.3: First distributed version.
Appendix G  Copyright and credits

GetDP is copyright (C) 1997-2014

Patrick Dular
<patrick.dular at ulg.ac.be>

and

Christophe Geuzaine
<cgeuzaine at ulg.ac.be>

Major code contributions to GetDP have been provided by Johan Gyselinck, Ruth Sabariego, Michael Asam and Bertrand Thiery. Other code contributors include: David Colignon, Tuan Ledinh, Patrick Lefevre, Andre Nicolet, Jean-Francois Remacle, Timo Tarhasaari, Christophe Trophime and Marc Ume. See the source code for more details.

The AVL tree code (Common/avl.*) is copyright (C) 1988-1993, 1995 The Regents of the University of California. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of the University of California not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. The University of California makes no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

This version of GetDP may contain code (in the contrib/Arpack subdirectory) written by Danny Sorensen, Richard Lehoucq, Chao Yang and Kristi Maschhoff from the Dept. of Computational & Applied Mathematics at Rice University, Houston, Texas, USA. See http://www.caam.rice.edu/software/ARPACK/ for more info.

This version of GetDP may contain code (in the contrib/Sparskit subdirectory) copyright (C) 1990 Yousef Saad: check the configuration options.

Thanks to the following folks who have contributed by providing fresh ideas on theoretical or programming topics, who have sent patches, requests for changes or improvements, or who gave us access to exotic machines for testing GetDP: Olivier Adam, Alejandro Angulo, Geoffrey Deliege, Mark Evans, Philippe Geuzaine, Eric Godard, Sebastien Guenneau, Francois Henrotte, Daniel Kedzierski, Samuel Kvasnica, Benoit Meys, Uwe Pahner, Georgia Psoni, Robert Struijs, Ahmed Rassili, Thierry Scordilis, Herve Tortel, Jose Geraldo A. Brito Neto, Matthias Fenner, Daryl Van Vorst, Guillaume Demesy.
Appendix H License

GetDP is provided under the terms of the GNU General Public License (GPL), Version 2 or later.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

   a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

   b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

   c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type 'show w'.
This is free software, and you are welcome to redistribute it under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than 'show w' and 'show c'; they could even be mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program 'Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License.
## Concept index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>.msh</code> file</td>
<td>103</td>
</tr>
<tr>
<td><code>.pre</code> file</td>
<td>104</td>
</tr>
<tr>
<td><code>.res</code> file</td>
<td>104</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>121</td>
</tr>
<tr>
<td>Analytical integration</td>
<td>33</td>
</tr>
<tr>
<td>Approximation spaces</td>
<td>30</td>
</tr>
<tr>
<td>Arguments</td>
<td>21</td>
</tr>
<tr>
<td>Arguments, definition</td>
<td>22</td>
</tr>
<tr>
<td>Authors, e-mail</td>
<td>7</td>
</tr>
<tr>
<td>Axisymmetric, transformation</td>
<td>32</td>
</tr>
<tr>
<td>Basis Functions</td>
<td>30</td>
</tr>
<tr>
<td>Binary operators</td>
<td>19</td>
</tr>
<tr>
<td>Boundary conditions</td>
<td>29</td>
</tr>
<tr>
<td>Boundary Element Method</td>
<td>6</td>
</tr>
<tr>
<td>Bugs, reporting</td>
<td>7</td>
</tr>
<tr>
<td>Built-in functions</td>
<td>21</td>
</tr>
<tr>
<td>Change of coordinates</td>
<td>32</td>
</tr>
<tr>
<td>Changelog</td>
<td>117</td>
</tr>
<tr>
<td>Circuit equations</td>
<td>17</td>
</tr>
<tr>
<td>Command line options</td>
<td>11</td>
</tr>
<tr>
<td>Comments</td>
<td>15</td>
</tr>
<tr>
<td>Complete examples</td>
<td>83</td>
</tr>
<tr>
<td>Complex-valued, system</td>
<td>35</td>
</tr>
<tr>
<td>Concepts, index</td>
<td>131</td>
</tr>
<tr>
<td>Conditionals</td>
<td>25</td>
</tr>
<tr>
<td>Constant, definition</td>
<td>16</td>
</tr>
<tr>
<td>Constant, evaluation</td>
<td>16</td>
</tr>
<tr>
<td>Constraint, definition</td>
<td>29</td>
</tr>
<tr>
<td>Constraint, evaluation</td>
<td>69</td>
</tr>
<tr>
<td>Constraint, types</td>
<td>50</td>
</tr>
<tr>
<td>Contact information</td>
<td>7</td>
</tr>
<tr>
<td>Contributors, list</td>
<td>121</td>
</tr>
<tr>
<td>Coordinate change</td>
<td>32</td>
</tr>
<tr>
<td>Copyright</td>
<td>3, 121</td>
</tr>
<tr>
<td>Credits</td>
<td>121</td>
</tr>
<tr>
<td>Curl</td>
<td>23</td>
</tr>
<tr>
<td>Current values</td>
<td>21</td>
</tr>
<tr>
<td>Differential operators</td>
<td>23</td>
</tr>
<tr>
<td>Discrete function spaces</td>
<td>30</td>
</tr>
<tr>
<td>Discrete quantities</td>
<td>23</td>
</tr>
<tr>
<td>Discretized Geometry</td>
<td>27</td>
</tr>
<tr>
<td>Divergence</td>
<td>23</td>
</tr>
<tr>
<td>Document syntax</td>
<td>9</td>
</tr>
<tr>
<td>Download</td>
<td>1, 3</td>
</tr>
<tr>
<td>E-mail, authors</td>
<td>7</td>
</tr>
<tr>
<td>Edge element space, example</td>
<td>76</td>
</tr>
<tr>
<td>Efficiency, tips</td>
<td>115</td>
</tr>
<tr>
<td>Electromagnetism</td>
<td>6</td>
</tr>
<tr>
<td>Electrostatic formulation</td>
<td>75</td>
</tr>
<tr>
<td>Elementary matrices</td>
<td>34</td>
</tr>
<tr>
<td>Entities, topological</td>
<td>27</td>
</tr>
<tr>
<td>Equations</td>
<td>34</td>
</tr>
<tr>
<td>Evaluation mechanism</td>
<td>16</td>
</tr>
<tr>
<td>Evaluation, order</td>
<td>20</td>
</tr>
<tr>
<td>Examples, complete</td>
<td>83</td>
</tr>
<tr>
<td>Examples, short</td>
<td>67</td>
</tr>
<tr>
<td>Exporting results</td>
<td>38</td>
</tr>
<tr>
<td>Expression, definition</td>
<td>15</td>
</tr>
<tr>
<td>Exterior derivative</td>
<td>23</td>
</tr>
<tr>
<td>FAQ</td>
<td>113</td>
</tr>
<tr>
<td>Fields</td>
<td>23</td>
</tr>
<tr>
<td>File, <code>.msh</code></td>
<td>103</td>
</tr>
<tr>
<td>File, <code>.pre</code></td>
<td>104</td>
</tr>
<tr>
<td>File, <code>.res</code></td>
<td>104</td>
</tr>
<tr>
<td>File, comment</td>
<td>15</td>
</tr>
<tr>
<td>File, include</td>
<td>15</td>
</tr>
<tr>
<td>File, mesh</td>
<td>103</td>
</tr>
<tr>
<td>File, pre-processing</td>
<td>104</td>
</tr>
<tr>
<td>File, result</td>
<td>104</td>
</tr>
<tr>
<td>Finite Difference Method</td>
<td>6</td>
</tr>
<tr>
<td>Finite Element Method</td>
<td>6</td>
</tr>
<tr>
<td>Finite Volume Method</td>
<td>6</td>
</tr>
<tr>
<td>Floating point numbers</td>
<td>16</td>
</tr>
<tr>
<td>Floating potential, example</td>
<td>75</td>
</tr>
<tr>
<td>Format, output</td>
<td>38</td>
</tr>
<tr>
<td>Formulation, definition</td>
<td>34</td>
</tr>
<tr>
<td>Formulation, electrostatics</td>
<td>75</td>
</tr>
<tr>
<td>Formulation, examples</td>
<td>75</td>
</tr>
<tr>
<td>Formulation, types</td>
<td>54</td>
</tr>
<tr>
<td>Frequency</td>
<td>35</td>
</tr>
<tr>
<td>Frequently asked questions</td>
<td>113</td>
</tr>
<tr>
<td>Function groups</td>
<td>27</td>
</tr>
<tr>
<td>Function space, definition</td>
<td>30</td>
</tr>
<tr>
<td>Function space, examples</td>
<td>69</td>
</tr>
<tr>
<td>Function space, types</td>
<td>50</td>
</tr>
</tbody>
</table>


Function, definition ........................................ 21, 28
Function, examples ........................................ 67
Future developments ........................................ 6

G
Gauss, integration ........................................... 33
Geometric transformations ................................. 32
Global quantity ............................................. 34
Global quantity, example .................................. 75
Gmsh, examples .......................................... 107
Gmsh, file format ........................................ 103
Gradient ..................................................... 23
Grid ......................................................... 27
Group, definition ......................................... 27
Group, examples .......................................... 67
Group, types .............................................. 41

H
Hierarchical basis functions ............................... 30
History, versions ......................................... 117

I
Includes ...................................................... 15
Index, concepts ........................................... 131
Index, metasyntactic variables ............................. 135
Index, syntax .............................................. 137
Input file format .......................................... 103
Integer numbers .......................................... 16
Integral Equation Method ................................ 6
Integral quantity .......................................... 34
Integration, definition ................................... 33
Integration, examples ................................... 74
Integration, types ........................................ 53
Internet address .......................................... 1, 3
Interpolation .............................................. 23, 30
Introduction ............................................... 5
Iterative loop ............................................... 35

J
Jacobian, definition ....................................... 32
Jacobian, examples ....................................... 74
Jacobian, types ........................................... 52

K
Keywords, index ........................................... 137

L
License ....................................................... 3, 123
Linear system solving .................................... 35
Linking, objects .......................................... 5
Local quantity ............................................ 34

Loops ......................................................... 25

M
Mailing list .................................................. 3, 7
Maps ......................................................... 38
Matrices, elementary ..................................... 34
Mechanics ................................................. 6
Mesh ......................................................... 27
Mesh, examples ........................................... 107
Mesh, file format ........................................ 103
Metasyntactic variables, index ......................... 135
Method of Moments ...................................... 6

N
Networks ...................................................... 29
Newmark, time scheme ................................... 35
Newton, nonlinear scheme ................................ 35
Nodal function space, example ......................... 75
Nonlinear system solving ................................ 35
Numbers, integer ......................................... 16
Numbers, real ............................................. 16
Numerical integration ................................... 33

O
Objects, definition ......................................... 27
Objects, dependences .................................... 5
Objects, types ............................................ 41
Operating system ......................................... 11
Operation, priorities .................................... 20
Operators, definition .................................... 19
Operators, differential ................................... 23
Options, command line ................................... 11
Order of evaluation ..................................... 20
Output file format ........................................ 103
Overview ................................................... 5

P
Parameters ................................................... 21
Philosophy, general ...................................... 5
Physical problems ....................................... 6
Picard, nonlinear scheme ................................ 35
Piecewise functions .................................... 21, 28
Platforms ................................................... 11
Post-operation, definition ............................... 38
Post-operation, examples ................................ 80
Post-operation, types .................................... 61
Post-processing, definition ............................. 37
Post-processing, examples ............................... 79
Post-processing, types ................................... 60
Priorities, operations ................................... 20
Processing cycle ......................................... 5
## Metasyntactic variable index

<table>
<thead>
<tr>
<th>Metasyntactic Variable</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>9</td>
</tr>
<tr>
<td>:</td>
<td>9</td>
</tr>
<tr>
<td>&lt;</td>
<td>9</td>
</tr>
<tr>
<td>&lt;, &gt;</td>
<td>9</td>
</tr>
<tr>
<td>A</td>
<td>16</td>
</tr>
<tr>
<td>affectation</td>
<td>22</td>
</tr>
<tr>
<td>argument</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>30</td>
</tr>
<tr>
<td>basis-function-id</td>
<td></td>
</tr>
<tr>
<td>basis-function-list</td>
<td></td>
</tr>
<tr>
<td>basis-function-type</td>
<td></td>
</tr>
<tr>
<td>built-in-function-id</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>30</td>
</tr>
<tr>
<td>coef-id</td>
<td></td>
</tr>
<tr>
<td>constant-def</td>
<td></td>
</tr>
<tr>
<td>constant-id</td>
<td></td>
</tr>
<tr>
<td>constraint-case-id</td>
<td></td>
</tr>
<tr>
<td>constraint-case-val</td>
<td></td>
</tr>
<tr>
<td>constraint-id</td>
<td></td>
</tr>
<tr>
<td>constraint-type</td>
<td></td>
</tr>
<tr>
<td>constraint-val</td>
<td></td>
</tr>
<tr>
<td>coord-function-id</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>33</td>
</tr>
<tr>
<td>element-type</td>
<td></td>
</tr>
<tr>
<td>etc</td>
<td></td>
</tr>
<tr>
<td>expression</td>
<td></td>
</tr>
<tr>
<td>expression-char</td>
<td></td>
</tr>
<tr>
<td>expression-cst</td>
<td></td>
</tr>
<tr>
<td>expression-cst-list</td>
<td></td>
</tr>
<tr>
<td>expression-cst-list-item</td>
<td></td>
</tr>
<tr>
<td>expression-list</td>
<td></td>
</tr>
<tr>
<td>extended-math-function-id</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>34</td>
</tr>
<tr>
<td>formulation-id</td>
<td></td>
</tr>
<tr>
<td>formulation-list</td>
<td>35</td>
</tr>
<tr>
<td>formulation-type</td>
<td>34</td>
</tr>
<tr>
<td>function-id</td>
<td>28</td>
</tr>
<tr>
<td>function-space-id</td>
<td>30</td>
</tr>
<tr>
<td>function-space-type</td>
<td>30</td>
</tr>
<tr>
<td>G</td>
<td>30</td>
</tr>
<tr>
<td>global-quantity-id</td>
<td></td>
</tr>
<tr>
<td>global-quantity-type</td>
<td></td>
</tr>
<tr>
<td>green-function-id</td>
<td>45</td>
</tr>
<tr>
<td>group-def</td>
<td>27</td>
</tr>
<tr>
<td>group-id</td>
<td>27</td>
</tr>
<tr>
<td>group-list</td>
<td>27</td>
</tr>
<tr>
<td>group-list-item</td>
<td>27</td>
</tr>
<tr>
<td>group-sub-type</td>
<td>27</td>
</tr>
<tr>
<td>group-type</td>
<td>27</td>
</tr>
<tr>
<td>J</td>
<td>32</td>
</tr>
<tr>
<td>jacobian-id</td>
<td></td>
</tr>
<tr>
<td>jacobian-type</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>34</td>
</tr>
<tr>
<td>local-term-type</td>
<td></td>
</tr>
<tr>
<td>local-value</td>
<td>37</td>
</tr>
<tr>
<td>loop</td>
<td>25</td>
</tr>
<tr>
<td>M</td>
<td>42</td>
</tr>
<tr>
<td>math-function-id</td>
<td></td>
</tr>
<tr>
<td>misc-function-id</td>
<td>48</td>
</tr>
<tr>
<td>O</td>
<td>19</td>
</tr>
<tr>
<td>operator-binary</td>
<td></td>
</tr>
<tr>
<td>operator-ternary-left</td>
<td></td>
</tr>
<tr>
<td>operator-ternary-right</td>
<td></td>
</tr>
<tr>
<td>operator-unary</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>38</td>
</tr>
<tr>
<td>post-operation-fmt</td>
<td>65</td>
</tr>
<tr>
<td>post-operation-id</td>
<td>38</td>
</tr>
<tr>
<td>post-operation-op</td>
<td>38</td>
</tr>
</tbody>
</table>
post-processing-id ...................... 37
post-quantity-id ...................... 37
post-quantity-type ................... 37
post-value ................................ 37, 60
print-option .......................... 38, 62
print-support ......................... 38, 61

Q
quantity ............................. 23
quantity-dof .......................... 23
quantity-id ........................... 23
quantity-operator ..................... 23
quantity-type ......................... 34, 54

R
real .................................. 16

register-value-get ................... 22
register-value-set ................... 22
resolution-id ......................... 35
resolution-op ......................... 35, 55

S
string .................................. 16
string-id ............................. 16
sub-space-id .......................... 30
system-id ............................ 35
system-type .......................... 35

T
term-op-type ......................... 34, 54
type-function-id ..................... 45
Syntax index

! .................................................. 19
!=.................................................. 19
#
#expression-cst................................. 22
#include........................................... 15
$
$A ................................................... 21
$B ................................................... 21
$Breakpoint ...................................... 21
$C ................................................... 21
$DTime ............................................. 21
$EigenvalueImag .................................. 21
$EigenvalueReal .................................. 21
$integer .......................................... 22
$Iteration ........................................ 21
$Theta ............................................. 21
$Time .............................................. 21
$TimeStep ......................................... 21
$X .................................................. 21
$XS ...................................................................... 21
$Y .................................................... 21
$YS .................................................................. 21
$Z ...................................................... 21
$ZS .................................................................. 21

%0/%
% .................................................... 19
&
&...................................................... 19
&.&.................................................... 19

( 
() ..................................................... 20
*
*..................................................... 19
+
+..................................................... 19

- ..................................................... 19
-adapt ................................................ 12
-bin .................................................... 12
-cache .............................................. 12
cal .................................................... 11
c-check ............................................... 12
gmshread ........................................... 12
-help .................................................. 13
-info .................................................. 13
-msh ................................................... 11
-name ............................................... 12
-onelab ............................................. 13
-order .............................................. 12
-p ..................................................... 13
-pos .................................................. 11
-pre ................................................... 11
-progress ......................................... 13
-res .................................................. 12
-restart ............................................ 12
-setnumber ........................................ 13
-setstring ......................................... 13
-slepc ............................................. 12
-solver ............................................. 12
-split .............................................. 12
-v ..................................................... 13
-v2 ................................................... 12
-verbose ........................................... 13
-version .......................................... 13

/ 
/ .................................................... 19
/*, */ ............................................... 15
// .................................................. 15
/\ ................................................... 19
< 
<.................................................... 19
<= .................................................. 19
= ..................................................... 16, 27, 28
== ................................................... 19
>
>.................................................... 19
>= ................................................... 19
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BF_DivFacet</td>
</tr>
<tr>
<td>1</td>
<td>BF_Edge</td>
</tr>
<tr>
<td>1</td>
<td>BF_Facet</td>
</tr>
<tr>
<td>1</td>
<td>BF_Global</td>
</tr>
<tr>
<td>1</td>
<td>BF_GradGroupOfNodes</td>
</tr>
<tr>
<td>1</td>
<td>BF_GradNode</td>
</tr>
<tr>
<td>1</td>
<td>BF_GradGroupOfEdges</td>
</tr>
<tr>
<td>1</td>
<td>BF_GroupOfNodes</td>
</tr>
<tr>
<td>1</td>
<td>BF_GroupOfPerpendicularEdge</td>
</tr>
<tr>
<td>1</td>
<td>BF_Node</td>
</tr>
<tr>
<td>1</td>
<td>BF_NodeX</td>
</tr>
<tr>
<td>1</td>
<td>BF_NodeY</td>
</tr>
<tr>
<td>1</td>
<td>BF_NodeZ</td>
</tr>
<tr>
<td>1</td>
<td>BF_One</td>
</tr>
<tr>
<td>1</td>
<td>BF_PerpendicularEdge</td>
</tr>
<tr>
<td>1</td>
<td>BF_PerpendicularFacet</td>
</tr>
<tr>
<td>1</td>
<td>BF_Region</td>
</tr>
<tr>
<td>1</td>
<td>BF_RegionX</td>
</tr>
<tr>
<td>1</td>
<td>BF_RegionY</td>
</tr>
<tr>
<td>1</td>
<td>BF_RegionZ</td>
</tr>
<tr>
<td>1</td>
<td>BF_Volume</td>
</tr>
<tr>
<td>1</td>
<td>BF_Zero</td>
</tr>
<tr>
<td>1</td>
<td>Break</td>
</tr>
<tr>
<td>2</td>
<td>2D</td>
</tr>
<tr>
<td>3</td>
<td>3D</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>Acos</td>
</tr>
<tr>
<td>A</td>
<td>Adapt</td>
</tr>
<tr>
<td>A</td>
<td>Adaptation</td>
</tr>
<tr>
<td>A</td>
<td>AliasOf</td>
</tr>
<tr>
<td>A</td>
<td>All</td>
</tr>
<tr>
<td>A</td>
<td>Analytic</td>
</tr>
<tr>
<td>A</td>
<td>AppendTimeStepToFileName</td>
</tr>
<tr>
<td>A</td>
<td>Asin</td>
</tr>
<tr>
<td>A</td>
<td>Assign</td>
</tr>
<tr>
<td>A</td>
<td>AssignFromResolution</td>
</tr>
<tr>
<td>A</td>
<td>AssociatedWith</td>
</tr>
<tr>
<td>A</td>
<td>Atan</td>
</tr>
<tr>
<td>A</td>
<td>Atan2</td>
</tr>
<tr>
<td>B</td>
<td>BasisFunction</td>
</tr>
<tr>
<td>B</td>
<td>BF</td>
</tr>
<tr>
<td>B</td>
<td>BF_CurlEdge</td>
</tr>
<tr>
<td>B</td>
<td>BF_CurlGroupOfEdges</td>
</tr>
<tr>
<td>B</td>
<td>BF_CurlGroupOfPerpendicularEdge</td>
</tr>
<tr>
<td>B</td>
<td>BF_CurlPerpendicularEdge</td>
</tr>
<tr>
<td>B</td>
<td>BF_dGlobal</td>
</tr>
<tr>
<td>B</td>
<td>BF_DivFacet</td>
</tr>
</tbody>
</table>

C

Cart2Cyl | 47 |
Cart2Pol | 46 |
Cart2Sph | 47 |
Case | 29, 32, 33 |
Ceil | 43 |
ChangeOfCoordinates | 64 |
ChangeOfValues | 64 |
Color | 63 |
Complex | 45 |
Complex_MH | 45 |
ComplexScalarField | 49 |
ComplexTensorField | 50 |
ComplexVectorField | 50 |
CompX | 46 |
CompXX | 46 |
CompXY | 46 |
CompXZ | 46 |
CompY | 46 |
CompYX | 46 |
CompYY | 46 |
CompYZ | 47 |
CompZ | 46 |
CompZX | 47 |
CompZY | 47 |
CompZZ | 47 |
Conj | 46 |
Constraint | 29, 30 |
Cos | 42 |
Cosh | 43 |
CreateDir | CreateDirectory | 60 |
Criterion | 33 |
Cross | 44 |
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GenerateSeparate</td>
<td>55</td>
</tr>
<tr>
<td>GeoElement</td>
<td>33</td>
</tr>
<tr>
<td>GetVolume</td>
<td>48</td>
</tr>
<tr>
<td>Global</td>
<td>41, 54</td>
</tr>
<tr>
<td>GlobalEquation</td>
<td>34</td>
</tr>
<tr>
<td>GlobalQuantity</td>
<td>30</td>
</tr>
<tr>
<td>GlobalTerm</td>
<td>34</td>
</tr>
<tr>
<td>Gmsh</td>
<td>65</td>
</tr>
<tr>
<td>GmshParsed</td>
<td>65</td>
</tr>
<tr>
<td>GmshRead</td>
<td>60</td>
</tr>
<tr>
<td>GmshWrite</td>
<td>60</td>
</tr>
<tr>
<td>Gnuplot</td>
<td>23</td>
</tr>
<tr>
<td>GradHelmholtz</td>
<td>45</td>
</tr>
<tr>
<td>GradLaplace</td>
<td>45</td>
</tr>
<tr>
<td>Group</td>
<td>27, 30</td>
</tr>
<tr>
<td>GroupsOfRegionsOf</td>
<td>41</td>
</tr>
<tr>
<td>GroupsOfEdgesOf</td>
<td>41</td>
</tr>
<tr>
<td>GroupsOfEdgesOnNodesOf</td>
<td>41</td>
</tr>
<tr>
<td>GroupsOfNodesOf</td>
<td>41</td>
</tr>
<tr>
<td>HarmonicToTime</td>
<td>62</td>
</tr>
<tr>
<td>Helmholtz</td>
<td>45</td>
</tr>
<tr>
<td>Hexahedron</td>
<td>54</td>
</tr>
<tr>
<td>Hypot</td>
<td>44</td>
</tr>
<tr>
<td>If ( expression-cst )</td>
<td>25</td>
</tr>
<tr>
<td>Im</td>
<td>45</td>
</tr>
<tr>
<td>In</td>
<td>34, 37</td>
</tr>
<tr>
<td>Include</td>
<td>15</td>
</tr>
<tr>
<td>IndexOfSystem</td>
<td>34</td>
</tr>
<tr>
<td>Init</td>
<td>50</td>
</tr>
<tr>
<td>InitFromResolution</td>
<td>50</td>
</tr>
<tr>
<td>InitSolution</td>
<td>56</td>
</tr>
<tr>
<td>InitSolution1</td>
<td>56</td>
</tr>
<tr>
<td>Integral</td>
<td>37, 54, 60</td>
</tr>
<tr>
<td>Integration</td>
<td>33, 34, 37</td>
</tr>
<tr>
<td>InterpolationAkima</td>
<td>49</td>
</tr>
<tr>
<td>InterpolationBilinear</td>
<td>49</td>
</tr>
<tr>
<td>InterpolationLinear</td>
<td>48</td>
</tr>
<tr>
<td>Interval</td>
<td>45</td>
</tr>
<tr>
<td>Inv</td>
<td>44</td>
</tr>
<tr>
<td>Iso</td>
<td>63, 64</td>
</tr>
<tr>
<td>IterativeLoop</td>
<td>59</td>
</tr>
<tr>
<td>IterativeLoopN</td>
<td>59</td>
</tr>
<tr>
<td>JacNL</td>
<td>54</td>
</tr>
<tr>
<td>Jacobian</td>
<td>32, 34, 37</td>
</tr>
<tr>
<td>Jn</td>
<td>43</td>
</tr>
<tr>
<td>Lanczos</td>
<td>57</td>
</tr>
<tr>
<td>Laplace</td>
<td>45</td>
</tr>
<tr>
<td>LastTimeStepOnly</td>
<td>63</td>
</tr>
<tr>
<td>Lin</td>
<td>52</td>
</tr>
<tr>
<td>Line</td>
<td>53</td>
</tr>
<tr>
<td>Link</td>
<td>50</td>
</tr>
<tr>
<td>LinkCplx</td>
<td>50</td>
</tr>
<tr>
<td>List</td>
<td>16</td>
</tr>
<tr>
<td>ListAlt</td>
<td>16</td>
</tr>
<tr>
<td>Local</td>
<td>37, 54, 60</td>
</tr>
<tr>
<td>Log</td>
<td>42</td>
</tr>
<tr>
<td>Log10</td>
<td>42</td>
</tr>
<tr>
<td>Loop</td>
<td>34</td>
</tr>
<tr>
<td>Name</td>
<td>29, 30, 32, 33, 34, 35, 37, 38, 62</td>
</tr>
<tr>
<td>NameOfBasisFunction</td>
<td>30</td>
</tr>
<tr>
<td>NameOfCoef</td>
<td>30</td>
</tr>
<tr>
<td>NameOfConstraint</td>
<td>30, 34</td>
</tr>
<tr>
<td>NameOfFormulation</td>
<td>35, 37</td>
</tr>
<tr>
<td>NameOfMesh</td>
<td>35</td>
</tr>
<tr>
<td>NameOfPostProcessing</td>
<td>38</td>
</tr>
<tr>
<td>NameOfSpace</td>
<td>34</td>
</tr>
<tr>
<td>NameOfSystem</td>
<td>37</td>
</tr>
<tr>
<td>Network</td>
<td>34, 50</td>
</tr>
<tr>
<td>NeverDt</td>
<td>55</td>
</tr>
<tr>
<td>Node</td>
<td>34</td>
</tr>
<tr>
<td>NodesOf</td>
<td>41</td>
</tr>
<tr>
<td>NodeTable</td>
<td>65</td>
</tr>
<tr>
<td>NoMesh</td>
<td>63</td>
</tr>
<tr>
<td>NoNewLine</td>
<td>64</td>
</tr>
<tr>
<td>Norm</td>
<td>44</td>
</tr>
<tr>
<td>Normal</td>
<td>48</td>
</tr>
<tr>
<td>NormalSource</td>
<td>48</td>
</tr>
<tr>
<td>NumberOfPoints</td>
<td>33</td>
</tr>
<tr>
<td>OnBox</td>
<td>62</td>
</tr>
<tr>
<td>OnElementsOf</td>
<td>61</td>
</tr>
<tr>
<td>OnGlobal</td>
<td>61</td>
</tr>
<tr>
<td>OnGrid</td>
<td>61</td>
</tr>
<tr>
<td>OnLine</td>
<td>61</td>
</tr>
<tr>
<td>OnPlane</td>
<td>61</td>
</tr>
<tr>
<td>OnPoint</td>
<td>61</td>
</tr>
<tr>
<td>OnRegion</td>
<td>61</td>
</tr>
<tr>
<td>OnSection</td>
<td>61</td>
</tr>
<tr>
<td>Operation</td>
<td>35, 38</td>
</tr>
<tr>
<td>Order</td>
<td>49</td>
</tr>
<tr>
<td>OriginSystem</td>
<td>35</td>
</tr>
<tr>
<td>OverrideTimeStepValue</td>
<td>63</td>
</tr>
<tr>
<td>Pi</td>
<td>16</td>
</tr>
<tr>
<td>Point</td>
<td>54</td>
</tr>
<tr>
<td>Syntax index</td>
<td>141</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quadrangle</td>
<td>54</td>
</tr>
<tr>
<td>Quantity</td>
<td>30, 34, 37</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Rand</td>
<td>48</td>
</tr>
<tr>
<td>Re</td>
<td>45</td>
</tr>
<tr>
<td>Region</td>
<td>29, 32, 41</td>
</tr>
<tr>
<td>Resolution</td>
<td>30, 35</td>
</tr>
<tr>
<td>Rot</td>
<td>23</td>
</tr>
<tr>
<td>Rotate</td>
<td>44</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>SaveSolution</td>
<td>56</td>
</tr>
<tr>
<td>SaveSolutions</td>
<td>56</td>
</tr>
<tr>
<td>Scalar</td>
<td>51</td>
</tr>
<tr>
<td>ScalarField</td>
<td>49</td>
</tr>
<tr>
<td>SendToServer</td>
<td>63</td>
</tr>
<tr>
<td>SetFrequency</td>
<td>57</td>
</tr>
<tr>
<td>SetTime</td>
<td>57</td>
</tr>
<tr>
<td>Sign</td>
<td>43</td>
</tr>
<tr>
<td>SimpleTable</td>
<td>65</td>
</tr>
<tr>
<td>Sin</td>
<td>42</td>
</tr>
<tr>
<td>Sinh</td>
<td>43</td>
</tr>
<tr>
<td>Skin</td>
<td>62</td>
</tr>
<tr>
<td>Smoothing</td>
<td>62</td>
</tr>
<tr>
<td>Solve</td>
<td>55</td>
</tr>
<tr>
<td>SolveAgain</td>
<td>55</td>
</tr>
<tr>
<td>SolveJac</td>
<td>55</td>
</tr>
<tr>
<td>Solver</td>
<td>35</td>
</tr>
<tr>
<td>Sort</td>
<td>63</td>
</tr>
<tr>
<td>Sqrt</td>
<td>42</td>
</tr>
<tr>
<td>SquDyadicProduct</td>
<td>46</td>
</tr>
<tr>
<td>SquNorm</td>
<td>44</td>
</tr>
<tr>
<td>StoreInField</td>
<td>64</td>
</tr>
<tr>
<td>StoreInMeshBasedField</td>
<td>65</td>
</tr>
<tr>
<td>StoreInRegister</td>
<td>64</td>
</tr>
<tr>
<td>StoreMaxInRegister</td>
<td>64</td>
</tr>
<tr>
<td>SubRegion</td>
<td>29</td>
</tr>
<tr>
<td>SubSpace</td>
<td>30</td>
</tr>
<tr>
<td>Support</td>
<td>30</td>
</tr>
<tr>
<td>Sur</td>
<td>52</td>
</tr>
<tr>
<td>SurAxi</td>
<td>52</td>
</tr>
<tr>
<td>SurfaceArea</td>
<td>48</td>
</tr>
<tr>
<td>Symmetry</td>
<td>34</td>
</tr>
<tr>
<td>System</td>
<td>35</td>
</tr>
<tr>
<td>SystemCommand</td>
<td>57</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>65</td>
</tr>
<tr>
<td>Tan</td>
<td>42</td>
</tr>
<tr>
<td>Tangent</td>
<td>48</td>
</tr>
<tr>
<td>TangentSource</td>
<td>48</td>
</tr>
<tr>
<td>Tanh</td>
<td>43</td>
</tr>
<tr>
<td>TanhC2</td>
<td>43</td>
</tr>
<tr>
<td>Target</td>
<td>63</td>
</tr>
<tr>
<td>Tensor</td>
<td>46</td>
</tr>
<tr>
<td>TensorDiag</td>
<td>46</td>
</tr>
<tr>
<td>TensorField</td>
<td>49</td>
</tr>
<tr>
<td>TensorSym</td>
<td>46</td>
</tr>
<tr>
<td>TensorV</td>
<td>46</td>
</tr>
<tr>
<td>Test</td>
<td>57</td>
</tr>
<tr>
<td>Tetrahedron</td>
<td>54</td>
</tr>
<tr>
<td>TimeFunction</td>
<td>29</td>
</tr>
<tr>
<td>TimeLegend</td>
<td>65</td>
</tr>
<tr>
<td>TimeLoopAdaptive</td>
<td>58</td>
</tr>
<tr>
<td>TimeLoopNewmark</td>
<td>58</td>
</tr>
<tr>
<td>TimeLoopTheta</td>
<td>58</td>
</tr>
<tr>
<td>TimeStep</td>
<td>62</td>
</tr>
<tr>
<td>TimeTable</td>
<td>65</td>
</tr>
<tr>
<td>TransferInitSolution</td>
<td>56</td>
</tr>
<tr>
<td>TransferSolution</td>
<td>56</td>
</tr>
<tr>
<td>Transpose</td>
<td>44</td>
</tr>
<tr>
<td>Triangle</td>
<td>53</td>
</tr>
<tr>
<td>TTrace</td>
<td>44</td>
</tr>
<tr>
<td>Type</td>
<td>29, 30, 33, 34, 35</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td>44</td>
</tr>
<tr>
<td>UnitVectorX</td>
<td>47</td>
</tr>
<tr>
<td>UnitVectorY</td>
<td>47</td>
</tr>
<tr>
<td>UnitVectorZ</td>
<td>47</td>
</tr>
<tr>
<td>Update</td>
<td>56</td>
</tr>
<tr>
<td>UpdateConstraint</td>
<td>56</td>
</tr>
<tr>
<td>UsingPost</td>
<td>38</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Value</td>
<td>37, 63</td>
</tr>
<tr>
<td>Vector</td>
<td>46, 51</td>
</tr>
<tr>
<td>VectorField</td>
<td>49</td>
</tr>
<tr>
<td>Vol</td>
<td>52</td>
</tr>
<tr>
<td>VolAxi</td>
<td>52</td>
</tr>
<tr>
<td>VolAxiRectShell</td>
<td>53</td>
</tr>
<tr>
<td>VolAxiSphShell</td>
<td>53</td>
</tr>
<tr>
<td>VolAxiSqu</td>
<td>53</td>
</tr>
<tr>
<td>VolAxiSquRectShell</td>
<td>53</td>
</tr>
<tr>
<td><code>VolAxiSquSphShell</code></td>
<td>53</td>
</tr>
<tr>
<td>----------------------</td>
<td>----</td>
</tr>
<tr>
<td><code>VolRectShell</code></td>
<td>53</td>
</tr>
<tr>
<td><code>VolSphShell</code></td>
<td>53</td>
</tr>
<tr>
<td><code>VolumesOf</code></td>
<td>41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>X</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>X</code></td>
</tr>
<tr>
<td><code>XYZ</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>Y</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Y</code></td>
</tr>
<tr>
<td><code>Yn</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><code>Z</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Z</code></td>
</tr>
</tbody>
</table>