| matchPDict {Biostrings} | R Documentation |
A set of functions for finding all the occurrences (aka "matches" or "hits") of a set of patterns (aka the dictionary) in a reference sequence or set of reference sequences (aka the subject)
The following functions differ in what they return: matchPDict
returns the "where" information i.e. the positions in the subject of all the
occurrences of every pattern; countPDict returns the "how many
times" information i.e. the number of occurrences for each pattern;
and whichPDict returns the "who" information i.e. which patterns
in the input dictionary have at least one match.
vcountPDict and vwhichPDict are vectorized versions
of countPDict and whichPDict, respectively, that is,
they work on a set of reference sequences in a vectorized fashion.
This man page shows how to use these functions (aka the *PDict
functions) for exact matching of a constant width dictionary i.e.
a dictionary where all the patterns have the same length (same number
of nucleotides).
See ?`matchPDict-inexact` for how to use these functions
for inexact matching or when the original dictionary has a variable width.
matchPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)
countPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)
whichPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)
vcountPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", collapse=FALSE, weight=1L,
verbose=FALSE, ...)
vwhichPDict(pdict, subject,
max.mismatch=0, min.mismatch=0, with.indels=FALSE, fixed=TRUE,
algorithm="auto", verbose=FALSE)
pdict |
A PDict object containing the preprocessed dictionary. All these functions also work with a dictionary that has not been
preprocessed (in other words, the |
subject |
An XString or MaskedXString object containing the
subject sequence for An XStringSet object containing the subject sequences
for If |
max.mismatch, min.mismatch |
The maximum and minimum number of mismatching letters allowed (see
|
with.indels |
Only supported by If |
fixed |
Whether IUPAC ambiguity codes should be interpreted literally or not
(see |
algorithm |
Ignored if |
verbose |
|
collapse, weight |
If If |
... |
Additional arguments for methods. |
In this man page, we assume that you know how to preprocess a dictionary
of DNA patterns that can then be used with any of the *PDict
functions described here. Please see ?PDict if you don't.
When using the *PDict functions for exact matching of a constant
width dictionary, the standard way to preprocess the original dictionary
is by calling the PDict constructor on it with no extra
arguments. This returns the preprocessed dictionary in a PDict
object that can be used with any of the *PDict functions.
If M denotes the number of patterns in the pdict
argument (M <- length(pdict)), then matchPDict returns
an MIndex object of length M,
and countPDict an integer vector of length M.
whichPDict returns an integer vector made of the indices of the
patterns in the pdict argument that have at least one match.
If N denotes the number of sequences in the subject
argument (N <- length(subject)), then vcountPDict
returns an integer matrix with M rows and N columns,
unless the collapse argument is used. In that case, depending
on the type of weight, an integer or numeric vector is returned
(see above for the details).
vwhichPDict returns a list of N integer vectors.
H. Pagès
Aho, Alfred V.; Margaret J. Corasick (June 1975). "Efficient string matching: An aid to bibliographic search". Communications of the ACM 18 (6): 333-340.
PDict-class,
MIndex-class,
matchPDict-inexact,
isMatchingAt,
coverage,MIndex-method,
matchPattern,
alphabetFrequency,
DNAStringSet-class,
XStringViews-class,
MaskedDNAString-class
## ---------------------------------------------------------------------
## A. A SIMPLE EXAMPLE OF EXACT MATCHING
## ---------------------------------------------------------------------
## Creating the pattern dictionary:
library(drosophila2probe)
dict0 <- DNAStringSet(drosophila2probe)
dict0 # The original dictionary.
length(dict0) # Hundreds of thousands of patterns.
pdict0 <- PDict(dict0) # Store the original dictionary in
# a PDict object (preprocessing).
## Using the pattern dictionary on chromosome 3R:
library(BSgenome.Dmelanogaster.UCSC.dm3)
chr3R <- Dmelanogaster$chr3R # Load chromosome 3R
chr3R
mi0 <- matchPDict(pdict0, chr3R) # Search...
## Looking at the matches:
start_index <- startIndex(mi0) # Get the start index.
length(start_index) # Same as the original dictionary.
start_index[[8220]] # Starts of the 8220th pattern.
end_index <- endIndex(mi0) # Get the end index.
end_index[[8220]] # Ends of the 8220th pattern.
nmatch_per_pat <- elementNROWS(mi0) # Get the number of matches per pattern.
nmatch_per_pat[[8220]]
mi0[[8220]] # Get the matches for the 8220th pattern.
start(mi0[[8220]]) # Equivalent to startIndex(mi0)[[8220]].
sum(nmatch_per_pat) # Total number of matches.
table(nmatch_per_pat)
i0 <- which(nmatch_per_pat == max(nmatch_per_pat))
pdict0[[i0]] # The pattern with most occurrences.
mi0[[i0]] # Its matches as an IRanges object.
Views(chr3R, mi0[[i0]]) # And as an XStringViews object.
## Get the coverage of the original subject:
cov3R <- as.integer(coverage(mi0, width=length(chr3R)))
max(cov3R)
mean(cov3R)
sum(cov3R != 0) / length(cov3R) # Only 2.44% of chr3R is covered.
if (interactive()) {
plotCoverage <- function(cx, start, end)
{
plot.new()
plot.window(c(start, end), c(0, 20))
axis(1)
axis(2)
axis(4)
lines(start:end, cx[start:end], type="l")
}
plotCoverage(cov3R, 27600000, 27900000)
}
## ---------------------------------------------------------------------
## B. NAMING THE PATTERNS
## ---------------------------------------------------------------------
## The names of the original patterns, if any, are propagated to the
## PDict and MIndex objects:
names(dict0) <- mkAllStrings(letters, 4)[seq_len(length(dict0))]
dict0
dict0[["abcd"]]
pdict0n <- PDict(dict0)
names(pdict0n)[1:30]
pdict0n[["abcd"]]
mi0n <- matchPDict(pdict0n, chr3R)
names(mi0n)[1:30]
mi0n[["abcd"]]
## This is particularly useful when unlisting an MIndex object:
unlist(mi0)[1:10]
unlist(mi0n)[1:10] # keep track of where the matches are coming from
## ---------------------------------------------------------------------
## C. PERFORMANCE
## ---------------------------------------------------------------------
## If getting the number of matches is what matters only (without
## regarding their positions), then countPDict() will be faster,
## especially when there is a high number of matches:
nmatch_per_pat0 <- countPDict(pdict0, chr3R)
stopifnot(identical(nmatch_per_pat0, nmatch_per_pat))
if (interactive()) {
## What's the impact of the dictionary width on performance?
## Below is some code that can be used to figure out (will take a long
## time to run). For different widths of the original dictionary, we
## look at:
## o pptime: preprocessing time (in sec.) i.e. time needed for
## building the PDict object from the truncated input
## sequences;
## o nnodes: nb of nodes in the resulting Aho-Corasick tree;
## o nupatt: nb of unique truncated input sequences;
## o matchtime: time (in sec.) needed to find all the matches;
## o totalcount: total number of matches.
getPDictStats <- function(dict, subject)
{
ans_width <- width(dict[1])
ans_pptime <- system.time(pdict <- PDict(dict))[["elapsed"]]
pptb <- pdict@threeparts@pptb
ans_nnodes <- nnodes(pptb)
ans_nupatt <- sum(!duplicated(pdict))
ans_matchtime <- system.time(
mi0 <- matchPDict(pdict, subject)
)[["elapsed"]]
ans_totalcount <- sum(elementNROWS(mi0))
list(
width=ans_width,
pptime=ans_pptime,
nnodes=ans_nnodes,
nupatt=ans_nupatt,
matchtime=ans_matchtime,
totalcount=ans_totalcount
)
}
stats <- lapply(8:25,
function(width)
getPDictStats(DNAStringSet(dict0, end=width), chr3R))
stats <- data.frame(do.call(rbind, stats))
stats
}
## ---------------------------------------------------------------------
## D. USING A NON-PREPROCESSED DICTIONARY
## ---------------------------------------------------------------------
dict3 <- DNAStringSet(mkAllStrings(DNA_BASES, 3)) # all trinucleotides
dict3
pdict3 <- PDict(dict3)
## The 3 following calls are equivalent (from faster to slower):
res3a <- countPDict(pdict3, chr3R)
res3b <- countPDict(dict3, chr3R)
res3c <- sapply(dict3,
function(pattern) countPattern(pattern, chr3R))
stopifnot(identical(res3a, res3b))
stopifnot(identical(res3a, res3c))
## One reason for using a non-preprocessed dictionary is to get rid of
## all the constraints associated with preprocessing, e.g., when
## preprocessing with PDict(), the input dictionary must be DNA and a
## Trusted Band must be defined (explicitly or implicitly).
## See '?PDict' for more information about these constraints.
## In particular, using a non-preprocessed dictionary can be
## useful for the kind of inexact matching that can't be achieved
## with a PDict object (if performance is not an issue).
## See '?`matchPDict-inexact`' for more information about inexact
## matching.
dictD <- xscat(dict3, "N", reverseComplement(dict3))
## The 2 following calls are equivalent (from faster to slower):
resDa <- matchPDict(dictD, chr3R, fixed=FALSE)
resDb <- sapply(dictD,
function(pattern)
matchPattern(pattern, chr3R, fixed=FALSE))
stopifnot(all(sapply(seq_len(length(dictD)),
function(i)
identical(resDa[[i]], as(resDb[[i]], "IRanges")))))
## A non-preprocessed dictionary can be of any base class i.e. BString,
## RNAString, and AAString, in addition to DNAString:
matchPDict(AAStringSet(c("DARC", "EGH")), AAString("KMFPRNDEGHSTTWTEE"))
## ---------------------------------------------------------------------
## E. vcountPDict()
## ---------------------------------------------------------------------
## Load Fly upstream sequences (i.e. the sequences 2000 bases upstream of
## annotated transcription starts):
dm3_upstream_filepath <- system.file("extdata",
"dm3_upstream2000.fa.gz",
package="Biostrings")
dm3_upstream <- readDNAStringSet(dm3_upstream_filepath)
dm3_upstream
subject <- dm3_upstream[1:100]
mat1 <- vcountPDict(pdict0, subject)
dim(mat1) # length(pdict0) x length(subject)
nhit_per_probe <- rowSums(mat1)
table(nhit_per_probe)
## Without vcountPDict(), 'mat1' could have been computed with:
mat2 <- sapply(unname(subject), function(x) countPDict(pdict0, x))
stopifnot(identical(mat1, mat2))
## but using vcountPDict() is faster (10x or more, depending of the
## average length of the sequences in 'subject').
if (interactive()) {
## This will fail (with message "allocMatrix: too many elements
## specified") because, on most platforms, vectors and matrices in R
## are limited to 2^31 elements:
subject <- dm3_upstream
vcountPDict(pdict0, subject)
length(pdict0) * length(dm3_upstream)
1 * length(pdict0) * length(dm3_upstream) # > 2^31
## But this will work:
nhit_per_seq <- vcountPDict(pdict0, subject, collapse=2)
sum(nhit_per_seq >= 1) # nb of subject sequences with at least 1 hit
table(nhit_per_seq) # max is 74
which.max(nhit_per_seq) # 1133
sum(countPDict(pdict0, subject[[1133]])) # 74
}
## ---------------------------------------------------------------------
## F. RELATIONSHIP BETWEEN vcountPDict(), countPDict() AND
## vcountPattern()
## ---------------------------------------------------------------------
subject <- dm3_upstream
## The 4 following calls are equivalent (from faster to slower):
mat3a <- vcountPDict(pdict3, subject)
mat3b <- vcountPDict(dict3, subject)
mat3c <- sapply(dict3,
function(pattern) vcountPattern(pattern, subject))
mat3d <- sapply(unname(subject),
function(x) countPDict(pdict3, x))
stopifnot(identical(mat3a, mat3b))
stopifnot(identical(mat3a, t(mat3c)))
stopifnot(identical(mat3a, mat3d))
## The 3 following calls are equivalent (from faster to slower):
nhitpp3a <- vcountPDict(pdict3, subject, collapse=1) # rowSums(mat3a)
nhitpp3b <- vcountPDict(dict3, subject, collapse=1)
nhitpp3c <- sapply(dict3,
function(pattern) sum(vcountPattern(pattern, subject)))
stopifnot(identical(nhitpp3a, nhitpp3b))
stopifnot(identical(nhitpp3a, nhitpp3c))
## The 3 following calls are equivalent (from faster to slower):
nhitps3a <- vcountPDict(pdict3, subject, collapse=2) # colSums(mat3a)
nhitps3b <- vcountPDict(dict3, subject, collapse=2)
nhitps3c <- sapply(unname(subject),
function(x) sum(countPDict(pdict3, x)))
stopifnot(identical(nhitps3a, nhitps3b))
stopifnot(identical(nhitps3a, nhitps3c))
## ---------------------------------------------------------------------
## G. vwhichPDict()
## ---------------------------------------------------------------------
subject <- dm3_upstream
## The 4 following calls are equivalent (from faster to slower):
vwp3a <- vwhichPDict(pdict3, subject)
vwp3b <- vwhichPDict(dict3, subject)
vwp3c <- lapply(seq_len(ncol(mat3a)), function(j) which(mat3a[ , j] != 0L))
vwp3d <- lapply(unname(subject), function(x) whichPDict(pdict3, x))
stopifnot(identical(vwp3a, vwp3b))
stopifnot(identical(vwp3a, vwp3c))
stopifnot(identical(vwp3a, vwp3d))
table(sapply(vwp3a, length))
which.min(sapply(vwp3a, length))
## Get the trinucleotides not represented in upstream sequence 21823:
dict3[-vwp3a[[21823]]] # 2 trinucleotides
## Sanity check:
tnf <- trinucleotideFrequency(subject[[21823]])
stopifnot(all(names(tnf)[tnf == 0] == dict3[-vwp3a[[21823]]]))
## ---------------------------------------------------------------------
## H. MAPPING PROBE SET IDS BETWEEN CHIPS WITH vwhichPDict()
## ---------------------------------------------------------------------
## Here we show a simple (and very naive) algorithm for mapping probe
## set IDs between the hgu95av2 and hgu133a chips (Affymetrix).
## 2 probe set IDs are considered mapped iff they share at least one
## probe.
## WARNING: This example takes about 10 minutes to run.
if (interactive()) {
library(hgu95av2probe)
library(hgu133aprobe)
probes1 <- DNAStringSet(hgu95av2probe)
probes2 <- DNAStringSet(hgu133aprobe)
pdict2 <- PDict(probes2)
## Get the mapping from probes1 to probes2 (based on exact matching):
map1to2 <- vwhichPDict(pdict2, probes1)
## The following helper function uses the probe level mapping to induce
## the mapping at the probe set IDs level (from hgu95av2 to hgu133a).
## To keep things simple, 2 probe set IDs are considered mapped iff
## each of them contains at least one probe mapped to one probe of
## the other:
mapProbeSetIDs1to2 <- function(psID)
unique(hgu133aprobe$Probe.Set.Name[unlist(
map1to2[hgu95av2probe$Probe.Set.Name == psID]
)])
## Use the helper function to build the complete mapping:
psIDs1 <- unique(hgu95av2probe$Probe.Set.Name)
mapPSIDs1to2 <- lapply(psIDs1, mapProbeSetIDs1to2) # about 3 min.
names(mapPSIDs1to2) <- psIDs1
## Do some basic stats:
table(sapply(mapPSIDs1to2, length))
## [ADVANCED USERS ONLY]
## An alternative that is slightly faster is to put all the probes
## (hgu95av2 + hgu133a) in a single PDict object and then query its
## 'dups0' slot directly. This slot is a Dups object containing the
## mapping between duplicated patterns.
## Note that we can do this only because all the probes have the
## same length (25) and because we are doing exact matching:
probes12 <- DNAStringSet(c(hgu95av2probe$sequence, hgu133aprobe$sequence))
pdict12 <- PDict(probes12)
dups0 <- pdict12@dups0
mapProbeSetIDs1to2alt <- function(psID)
{
ii1 <- unique(togroup(dups0, which(hgu95av2probe$Probe.Set.Name == psID)))
ii2 <- members(dups0, ii1) - length(probes1)
ii2 <- ii2[ii2 >= 1L]
unique(hgu133aprobe$Probe.Set.Name[ii2])
}
mapPSIDs1to2alt <- lapply(psIDs1, mapProbeSetIDs1to2alt) # about 5 min.
names(mapPSIDs1to2alt) <- psIDs1
## 'mapPSIDs1to2alt' and 'mapPSIDs1to2' contain the same mapping:
stopifnot(identical(lapply(mapPSIDs1to2alt, sort),
lapply(mapPSIDs1to2, sort)))
}