colwise {plyr} | R Documentation |
Turn a function that operates on a vector into a function that operates column-wise on a data.frame.
colwise(.fun, .cols = true, ...) catcolwise(.fun, ...) numcolwise(.fun, ...)
.fun |
function |
.cols |
either a function that tests columns for inclusion, or a quoted object giving which columns to process |
... |
other arguments passed on to |
catcolwise
and numcolwise
provide version that only operate
on discrete and numeric variables respectively.
# Count number of missing values nmissing <- function(x) sum(is.na(x)) # Apply to every column in a data frame colwise(nmissing)(baseball) # This syntax looks a little different. It is shorthand for the # the following: f <- colwise(nmissing) f(baseball) # This is particularly useful in conjunction with d*ply ddply(baseball, .(year), colwise(nmissing)) # To operate only on specified columns, supply them as the second # argument. Many different forms are accepted. ddply(baseball, .(year), colwise(nmissing, .(sb, cs, so))) ddply(baseball, .(year), colwise(nmissing, c("sb", "cs", "so"))) ddply(baseball, .(year), colwise(nmissing, ~ sb + cs + so)) # Alternatively, you can specify a boolean function that determines # whether or not a column should be included ddply(baseball, .(year), colwise(nmissing, is.character)) ddply(baseball, .(year), colwise(nmissing, is.numeric)) ddply(baseball, .(year), colwise(nmissing, is.discrete)) # These last two cases are particularly common, so some shortcuts are # provided: ddply(baseball, .(year), numcolwise(nmissing)) ddply(baseball, .(year), catcolwise(nmissing)) # You can supply additional arguments to either colwise, or the function # it generates: numcolwise(mean)(baseball, na.rm = TRUE) numcolwise(mean, na.rm = TRUE)(baseball)