
The gnu Binary Utilities

Version 2.9.4

May 1993

Roland H. Pesch
Je�rey M. Osier
Cygnus Support

Cygnus Support
TEXinfo 1999-08-19.17

Copyright c
 1991, 92, 93, 94, 95, 96, 97, 1998 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the
conditions for verbatim copying, provided also that the entire resulting derived work is
distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modi�ed versions.

Introduction 1

Introduction

This brief manual contains preliminary documentation for the gnu binary utilities (col-
lectively version 2.9.4):

ar Create, modify, and extract from archives

nm List symbols from object �les

objcopy Copy and translate object �les

objdump Display information from object �les

ranlib Generate index to archive contents

readelf Display the contents of ELF format �les.

size List �le section sizes and total size

strings List printable strings from �les

strip Discard symbols

c++filt Demangle encoded C++ symbols

addr2line

Convert addresses into �le names and line numbers

nlmconv Convert object code into a Netware Loadable Module

windres Manipulate Windows resources

dlltool Create the �les needed to build and use Dynamic Link Libraries

2 gnu Binary Utilities

Chapter 1: ar 3

1 ar

ar [-]p[mod [relpos]] archive [member...]
ar -M [<mri-script]

The gnu ar program creates, modi�es, and extracts from archives. An archive is a single
�le holding a collection of other �les in a structure that makes it possible to retrieve the
original individual �les (called members of the archive).

The original �les' contents, mode (permissions), timestamp, owner, and group are pre-
served in the archive, and can be restored on extraction.

gnu ar can maintain archives whose members have names of any length; however, de-
pending on how ar is con�gured on your system, a limit on member-name length may be
imposed for compatibility with archive formats maintained with other tools. If it exists, the
limit is often 15 characters (typical of formats related to a.out) or 16 characters (typical of
formats related to co�).

ar is considered a binary utility because archives of this sort are most often used as
libraries holding commonly needed subroutines.

ar creates an index to the symbols de�ned in relocatable object modules in the archive
when you specify the modi�er `s'. Once created, this index is updated in the archive
whenever ar makes a change to its contents (save for the `q' update operation). An archive
with such an index speeds up linking to the library, and allows routines in the library to
call each other without regard to their placement in the archive.

You may use `nm -s' or `nm --print-armap' to list this index table. If an archive lacks
the table, another form of ar called ranlib can be used to add just the table.

gnu ar is designed to be compatible with two di�erent facilities. You can control its
activity using command-line options, like the di�erent varieties of ar on Unix systems; or,
if you specify the single command-line option `-M', you can control it with a script supplied
via standard input, like the MRI \librarian" program.

4 gnu Binary Utilities

1.1 Controlling ar on the command line

ar [-]p[mod [relpos]] archive [member...]

When you use ar in the Unix style, ar insists on at least two arguments to execute: one
keyletter specifying the operation (optionally accompanied by other keyletters specifying
modi�ers), and the archive name to act on.

Most operations can also accept further member arguments, specifying particular �les
to operate on.

gnu ar allows you to mix the operation code p and modi�er
ags mod in any order,
within the �rst command-line argument.

If you wish, you may begin the �rst command-line argument with a dash.

The p keyletter speci�es what operation to execute; it may be any of the following, but
you must specify only one of them:

d Delete modules from the archive. Specify the names of modules to be deleted
as member . . . ; the archive is untouched if you specify no �les to delete.

If you specify the `v' modi�er, ar lists each module as it is deleted.

m Use this operation to move members in an archive.

The ordering of members in an archive can make a di�erence in how programs
are linked using the library, if a symbol is de�ned in more than one member.

If no modi�ers are used with m, any members you name in the member ar-
guments are moved to the end of the archive; you can use the `a', `b', or `i'
modi�ers to move them to a speci�ed place instead.

p Print the speci�ed members of the archive, to the standard output �le. If the
`v' modi�er is speci�ed, show the member name before copying its contents to
standard output.

If you specify no member arguments, all the �les in the archive are printed.

q Quick append ; Historically, add the �les member . . . to the end of archive,
without checking for replacement.

The modi�ers `a', `b', and `i' do not a�ect this operation; new members are
always placed at the end of the archive.

The modi�er `v' makes ar list each �le as it is appended.

Since the point of this operation is speed, the archive's symbol table index is
not updated, even if it already existed; you can use `ar s' or ranlib explicitly
to update the symbol table index.

However, too many di�erent systems assume quick append rebuilds the index,
so GNU ar implements q as a synonym for r.

r Insert the �les member . . . into archive (with replacement). This operation
di�ers from `q' in that any previously existing members are deleted if their
names match those being added.

If one of the �les named in member . . . does not exist, ar displays an error
message, and leaves undisturbed any existing members of the archive matching
that name.

Chapter 1: ar 5

By default, new members are added at the end of the �le; but you may use one
of the modi�ers `a', `b', or `i' to request placement relative to some existing
member.

The modi�er `v' used with this operation elicits a line of output for each �le
inserted, along with one of the letters `a' or `r' to indicate whether the �le was
appended (no old member deleted) or replaced.

t Display a table listing the contents of archive, or those of the �les listed in
member . . . that are present in the archive. Normally only the member name
is shown; if you also want to see the modes (permissions), timestamp, owner,
group, and size, you can request that by also specifying the `v' modi�er.

If you do not specify a member, all �les in the archive are listed.

If there is more than one �le with the same name (say, `fie') in an archive (say
`b.a'), `ar t b.a fie' lists only the �rst instance; to see them all, you must ask
for a complete listing|in our example, `ar t b.a'.

x Extract members (named member) from the archive. You can use the `v' mod-
i�er with this operation, to request that ar list each name as it extracts it.

If you do not specify a member, all �les in the archive are extracted.

A number of modi�ers (mod) may immediately follow the p keyletter, to specify varia-
tions on an operation's behavior:

a Add new �les after an existing member of the archive. If you use the modi�er
`a', the name of an existing archive member must be present as the relpos
argument, before the archive speci�cation.

b Add new �les before an existing member of the archive. If you use the modi�er
`b', the name of an existing archive member must be present as the relpos
argument, before the archive speci�cation. (same as `i').

c Create the archive. The speci�ed archive is always created if it did not exist,
when you request an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modi�er.

f Truncate names in the archive. gnu ar will normally permit �le names of any
length. This will cause it to create archives which are not compatible with the
native ar program on some systems. If this is a concern, the `f' modi�er may
be used to truncate �le names when putting them in the archive.

i Insert new �les before an existing member of the archive. If you use the modi�er
`i', the name of an existing archive member must be present as the relpos
argument, before the archive speci�cation. (same as `b').

l This modi�er is accepted but not used.

o Preserve the original dates of members when extracting them. If you do not
specify this modi�er, �les extracted from the archive are stamped with the time
of extraction.

s Write an object-�le index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modi�er
ag either with

6 gnu Binary Utilities

any operation, or alone. Running `ar s' on an archive is equivalent to running
`ranlib' on it.

S Do not generate an archive symbol table. This can speed up building a large
library in several steps. The resulting archive can not be used with the linker.
In order to build a symbol table, you must omit the `S' modi�er on the last
execution of `ar', or you must run `ranlib' on the archive.

u Normally, `ar r'. . . inserts all �les listed into the archive. If you would like
to insert only those of the �les you list that are newer than existing members
of the same names, use this modi�er. The `u' modi�er is allowed only for the
operation `r' (replace). In particular, the combination `qu' is not allowed, since
checking the timestamps would lose any speed advantage from the operation
`q'.

v This modi�er requests the verbose version of an operation. Many operations
display additional information, such as �lenames processed, when the modi�er
`v' is appended.

V This modi�er shows the version number of ar.

1.2 Controlling ar with a script

ar -M [<script]

If you use the single command-line option `-M' with ar, you can control its operation
with a rudimentary command language. This form of ar operates interactively if standard
input is coming directly from a terminal. During interactive use, ar prompts for input (the
prompt is `AR >'), and continues executing even after errors. If you redirect standard input
to a script �le, no prompts are issued, and ar abandons execution (with a nonzero exit
code) on any error.

The ar command language is not designed to be equivalent to the command-line options;
in fact, it provides somewhat less control over archives. The only purpose of the command
language is to ease the transition to gnu ar for developers who already have scripts written
for the MRI \librarian" program.

The syntax for the ar command language is straightforward:

� commands are recognized in upper or lower case; for example, LIST is the same as
list. In the following descriptions, commands are shown in upper case for clarity.

� a single command may appear on each line; it is the �rst word on the line.

� empty lines are allowed, and have no e�ect.

� comments are allowed; text after either of the characters `*' or `;' is ignored.

� Whenever you use a list of names as part of the argument to an ar command, you can
separate the individual names with either commas or blanks. Commas are shown in
the explanations below, for clarity.

� `+' is used as a line continuation character; if `+' appears at the end of a line, the text
on the following line is considered part of the current command.

Here are the commands you can use in ar scripts, or when using ar interactively. Three
of them have special signi�cance:

Chapter 1: ar 7

OPEN or CREATE specify a current archive, which is a temporary �le required for most of
the other commands.

SAVE commits the changes so far speci�ed by the script. Prior to SAVE, commands a�ect
only the temporary copy of the current archive.

ADDLIB archive
ADDLIB archive (module, module, ... module)

Add all the contents of archive (or, if speci�ed, each named module from
archive) to the current archive.

Requires prior use of OPEN or CREATE.

ADDMOD member, member, ... member
Add each named member as a module in the current archive.

Requires prior use of OPEN or CREATE.

CLEAR Discard the contents of the current archive, canceling the e�ect of any operations
since the last SAVE. May be executed (with no e�ect) even if no current archive
is speci�ed.

CREATE archive
Creates an archive, and makes it the current archive (required for many other
commands). The new archive is created with a temporary name; it is not actu-
ally saved as archive until you use SAVE. You can overwrite existing archives;
similarly, the contents of any existing �le named archive will not be destroyed
until SAVE.

DELETE module, module, ... module
Delete each listed module from the current archive; equivalent to `ar -d archive
module ... module'.

Requires prior use of OPEN or CREATE.

DIRECTORY archive (module, ... module)
DIRECTORY archive (module, ... module) output�le

List each named module present in archive. The separate command VERBOSE

speci�es the form of the output: when verbose output is o�, output is like that
of `ar -t archive module...'. When verbose output is on, the listing is like `ar
-tv archive module...'.

Output normally goes to the standard output stream; however, if you specify
output�le as a �nal argument, ar directs the output to that �le.

END Exit from ar, with a 0 exit code to indicate successful completion. This com-
mand does not save the output �le; if you have changed the current archive
since the last SAVE command, those changes are lost.

EXTRACT module, module, ... module
Extract each named module from the current archive, writing them into the
current directory as separate �les. Equivalent to `ar -x archive module...'.

Requires prior use of OPEN or CREATE.

LIST Display full contents of the current archive, in \verbose" style regardless of the
state of VERBOSE. The e�ect is like `ar tv archive'. (This single command is a
gnu ar enhancement, rather than present for MRI compatibility.)

8 gnu Binary Utilities

Requires prior use of OPEN or CREATE.

OPEN archive
Opens an existing archive for use as the current archive (required for many
other commands). Any changes as the result of subsequent commands will not
actually a�ect archive until you next use SAVE.

REPLACE module, module, ... module
In the current archive, replace each existing module (named in the REPLACE ar-
guments) from �les in the current working directory. To execute this command
without errors, both the �le, and the module in the current archive, must exist.

Requires prior use of OPEN or CREATE.

VERBOSE Toggle an internal
ag governing the output from DIRECTORY. When the
ag
is on, DIRECTORY output matches output from `ar -tv '. . . .

SAVE Commit your changes to the current archive, and actually save it as a �le with
the name speci�ed in the last CREATE or OPEN command.

Requires prior use of OPEN or CREATE.

Chapter 2: ld 9

2 ld

The gnu linker ld is now described in a separate manual. See section \Overview" in
Using LD: the gnu linker.

10 gnu Binary Utilities

Chapter 3: nm 11

3 nm

nm [-a | --debug-syms] [-g | --extern-only]
[-B] [-C | --demangle] [-D | --dynamic]
[-s | --print-armap] [-A | -o | --print-file-name]
[-n | -v | --numeric-sort] [-p | --no-sort]
[-r | --reverse-sort] [--size-sort] [-u | --undefined-only]
[-t radix | --radix=radix] [-P | --portability]
[--target=bfdname] [-f format | --format=format]
[--defined-only] [-l | --line-numbers]
[--no-demangle] [-V | --version] [--help] [obj�le...]

gnu nm lists the symbols from object �les obj�le If no object �les are listed as
arguments, nm assumes `a.out'.

For each symbol, nm shows:

� The symbol value, in the radix selected by options (see below), or hexadecimal by
default.

� The symbol type. At least the following types are used; others are, as well, depending
on the object �le format. If lowercase, the symbol is local; if uppercase, the symbol is
global (external).

A The symbol's value is absolute, and will not be changed by further linking.

B The symbol is in the uninitialized data section (known as BSS).

C The symbol is common. Common symbols are uninitialized data. When
linking, multiple common symbols may appear with the same name. If the
symbol is de�ned anywhere, the common symbols are treated as unde�ned
references. For more details on common symbols, see the discussion of
{warn-common in section \Linker options" in The GNU linker.

D The symbol is in the initialized data section.

G The symbol is in an initialized data section for small objects. Some object
�le formats permit more eÆcient access to small data objects, such as a
global int variable as opposed to a large global array.

I The symbol is an indirect reference to another symbol. This is a GNU
extension to the a.out object �le format which is rarely used.

N The symbol is a debugging symbol.

R The symbol is in a read only data section.

S The symbol is in an uninitialized data section for small objects.

T The symbol is in the text (code) section.

U The symbol is unde�ned.

W The symbol is weak. When a weak de�ned symbol is linked with a normal
de�ned symbol, the normal de�ned symbol is used with no error. When a
weak unde�ned symbol is linked and the symbol is not de�ned, the value
of the weak symbol becomes zero with no error.

12 gnu Binary Utilities

- The symbol is a stabs symbol in an a.out object �le. In this case, the
next values printed are the stabs other �eld, the stabs desc �eld, and the
stab type. Stabs symbols are used to hold debugging information; for more
information, see section \Stabs Overview" in The \stabs" debug format.

? The symbol type is unknown, or object �le format speci�c.

� The symbol name.

The long and short forms of options, shown here as alternatives, are equivalent.

-A

-o

--print-file-name

Precede each symbol by the name of the input �le (or archive element) in which
it was found, rather than identifying the input �le once only, before all of its
symbols.

-a

--debug-syms

Display all symbols, even debugger-only symbols; normally these are not listed.

-B The same as `--format=bsd' (for compatibility with the MIPS nm).

-C

--demangle

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. See Chapter 10 [c++�lt], page 35, for more information
on demangling.

--no-demangle

Do not demangle low-level symbol names. This is the default.

-D

--dynamic

Display the dynamic symbols rather than the normal symbols. This is only
meaningful for dynamic objects, such as certain types of shared libraries.

-f format
--format=format

Use the output format format, which can be bsd, sysv, or posix. The default
is bsd. Only the �rst character of format is signi�cant; it can be either upper
or lower case.

-g

--extern-only

Display only external symbols.

-l

--line-numbers

For each symbol, use debugging information to try to �nd a �lename and line
number. For a de�ned symbol, look for the line number of the address of the
symbol. For an unde�ned symbol, look for the line number of a relocation entry

Chapter 3: nm 13

which refers to the symbol. If line number information can be found, print it
after the other symbol information.

-n

-v

--numeric-sort

Sort symbols numerically by their addresses, rather than alphabetically by their
names.

-p

--no-sort

Do not bother to sort the symbols in any order; print them in the order en-
countered.

-P

--portability

Use the POSIX.2 standard output format instead of the default format. Equiv-
alent to `-f posix'.

-s

--print-armap

When listing symbols from archive members, include the index: a mapping
(stored in the archive by ar or ranlib) of which modules contain de�nitions
for which names.

-r

--reverse-sort

Reverse the order of the sort (whether numeric or alphabetic); let the last come
�rst.

--size-sort

Sort symbols by size. The size is computed as the di�erence between the value
of the symbol and the value of the symbol with the next higher value. The size
of the symbol is printed, rather than the value.

-t radix
--radix=radix

Use radix as the radix for printing the symbol values. It must be `d' for decimal,
`o' for octal, or `x' for hexadecimal.

--target=bfdname
Specify an object code format other than your system's default format. See
Section 16.1 [Target Selection], page 49, for more information.

-u

--undefined-only

Display only unde�ned symbols (those external to each object �le).

--defined-only

Display only de�ned symbols for each object �le.

-V

--version

Show the version number of nm and exit.

14 gnu Binary Utilities

--help Show a summary of the options to nm and exit.

Chapter 4: objcopy 15

4 objcopy

objcopy [-F bfdname | --target=bfdname]
[-I bfdname | --input-target=bfdname]
[-O bfdname | --output-target=bfdname]
[-S | --strip-all] [-g | --strip-debug]
[-K symbolname | --keep-symbol=symbolname]
[-N symbolname | --strip-symbol=symbolname]
[-L symbolname | --localize-symbol=symbolname]
[-W symbolname | --weaken-symbol=symbolname]
[-x | --discard-all] [-X | --discard-locals]
[-b byte | --byte=byte]
[-i interleave | --interleave=interleave]
[-j sectionname | --only-section=sectionname]
[-R sectionname | --remove-section=sectionname]
[-p | --preserve-dates] [--debugging]
[--gap-fill=val] [--pad-to=address]
[--set-start=val] [--adjust-start=incr]
[--change-addresses=incr]
[--change-section-address=section{=,+,-}val]
[--change-section-lma=section{=,+,-}val]
[--change-section-vma=section{=,+,-}val]
[--change-warnings] [--no-change-warnings]
[--set-section-flags=section=
ags]
[--add-section=sectionname=�lename]
[--change-leading-char] [--remove-leading-char]
[--weaken]
[-v | --verbose] [-V | --version] [--help]
in�le [out�le]

The gnu objcopy utility copies the contents of an object �le to another. objcopy uses
the gnu bfd Library to read and write the object �les. It can write the destination object
�le in a format di�erent from that of the source object �le. The exact behavior of objcopy
is controlled by command-line options.

objcopy creates temporary �les to do its translations and deletes them afterward.
objcopy uses bfd to do all its translation work; it has access to all the formats described
in bfd and thus is able to recognize most formats without being told explicitly. See section
\BFD" in Using LD.

objcopy can be used to generate S-records by using an output target of `srec' (e.g., use
`-O srec').

objcopy can be used to generate a raw binary �le by using an output target of `binary'
(e.g., use `-O binary'). When objcopy generates a raw binary �le, it will essentially pro-
duce a memory dump of the contents of the input object �le. All symbols and relocation
information will be discarded. The memory dump will start at the load address of the
lowest section copied into the output �le.

When generating an S-record or a raw binary �le, it may be helpful to use `-S' to
remove sections containing debugging information. In some cases `-R' will be useful to
remove sections which contain information which is not needed by the binary �le.

16 gnu Binary Utilities

in�le
out�le The source and output �les, respectively. If you do not specify out�le, objcopy

creates a temporary �le and destructively renames the result with the name of
in�le.

-I bfdname
--input-target=bfdname

Consider the source �le's object format to be bfdname, rather than attempting
to deduce it. See Section 16.1 [Target Selection], page 49, for more information.

-O bfdname
--output-target=bfdname

Write the output �le using the object format bfdname. See Section 16.1 [Target
Selection], page 49, for more information.

-F bfdname
--target=bfdname

Use bfdname as the object format for both the input and the output �le; i.e.,
simply transfer data from source to destination with no translation. See Sec-
tion 16.1 [Target Selection], page 49, for more information.

-j sectionname
--only-section=sectionname

Copy only the named section from the input �le to the output �le. This option
may be given more than once. Note that using this option inappropriately may
make the output �le unusable.

-R sectionname
--remove-section=sectionname

Remove any section named sectionname from the output �le. This option may
be given more than once. Note that using this option inappropriately may make
the output �le unusable.

-S

--strip-all

Do not copy relocation and symbol information from the source �le.

-g

--strip-debug

Do not copy debugging symbols from the source �le.

--strip-unneeded

Strip all symbols that are not needed for relocation processing.

-K symbolname
--keep-symbol=symbolname

Copy only symbol symbolname from the source �le. This option may be given
more than once.

-N symbolname
--strip-symbol=symbolname

Do not copy symbol symbolname from the source �le. This option may be
given more than once.

Chapter 4: objcopy 17

-L symbolname
--localize-symbol=symbolname

Make symbol symbolname local to the �le, so that it is not visible externally.
This option may be given more than once.

-W symbolname
--weaken-symbol=symbolname

Make symbol symbolname weak. This option may be given more than once.

-x

--discard-all

Do not copy non-global symbols from the source �le.

-X

--discard-locals

Do not copy compiler-generated local symbols. (These usually start with `L' or
`.'.)

-b byte
--byte=byte

Keep only every byteth byte of the input �le (header data is not a�ected). byte
can be in the range from 0 to interleave-1, where interleave is given by the `-i'
or `--interleave' option, or the default of 4. This option is useful for creating
�les to program rom. It is typically used with an srec output target.

-i interleave
--interleave=interleave

Only copy one out of every interleave bytes. Select which byte to copy with the
-b or `--byte' option. The default is 4. objcopy ignores this option if you do
not specify either `-b' or `--byte'.

-p

--preserve-dates

Set the access and modi�cation dates of the output �le to be the same as those
of the input �le.

--debugging

Convert debugging information, if possible. This is not the default because
only certain debugging formats are supported, and the conversion process can
be time consuming.

--gap-fill val
Fill gaps between sections with val. This operation applies to the load address

(LMA) of the sections. It is done by increasing the size of the section with the
lower address, and �lling in the extra space created with val.

--pad-to address
Pad the output �le up to the load address address. This is done by increasing
the size of the last section. The extra space is �lled in with the value speci�ed
by `--gap-fill' (default zero).

18 gnu Binary Utilities

--set-start val
Set the address of the new �le to val. Not all object �le formats support setting
the start address.

--change-start incr
--adjust-start incr

Change the start address by adding incr. Not all object �le formats support
setting the start address.

--change-addresses incr
--adjust-vma incr

Change the VMA and LMA addresses of all sections, as well as the start address,
by adding incr. Some object �le formats do not permit section addresses to be
changed arbitrarily. Note that this does not relocate the sections; if the program
expects sections to be loaded at a certain address, and this option is used to
change the sections such that they are loaded at a di�erent address, the program
may fail.

--change-section-address section{=,+,-}val
--adjust-section-vma section{=,+,-}val

Set or change both the VMA address and the LMA address of the named
section. If `=' is used, the section address is set to val. Otherwise, val is
added to or subtracted from the section address. See the comments under
`--change-addresses', above. If section does not exist in the input �le, a
warning will be issued, unless `--no-change-warnings' is used.

--change-section-lma section{=,+,-}val
Set or change the LMA address of the named section. The LMA address is
the address where the section will be loaded into memory at program load
time. Normally this is the same as the VMA address, which is the address
of the section at program run time, but on some systems, especially those
where a program is held in ROM, the two can be di�erent. If `=' is used, the
section address is set to val. Otherwise, val is added to or subtracted from
the section address. See the comments under `--change-addresses', above.
If section does not exist in the input �le, a warning will be issued, unless
`--no-change-warnings' is used.

--change-section-vma section{=,+,-}val
Set or change the VMA address of the named section. The VMA address is
the address where the section will be located once the program has started
executing. Normally this is the same as the LMA address, which is the address
where the section will be loaded into memory, but on some systems, especially
those where a program is held in ROM, the two can be di�erent. If `=' is used,
the section address is set to val. Otherwise, val is added to or subtracted from
the section address. See the comments under `--change-addresses', above.
If section does not exist in the input �le, a warning will be issued, unless
`--no-change-warnings' is used.

Chapter 4: objcopy 19

--change-warnings

--adjust-warnings

If `--change-section-address' or `--change-section-lma' or
`--change-section-vma' is used, and the named section does not exist, issue
a warning. This is the default.

--no-change-warnings

--no-adjust-warnings

Do not issue a warning if `--change-section-address' or
`--adjust-section-lma' or `--adjust-section-vma' is used, even if
the named section does not exist.

--set-section-flags section=
ags
Set the
ags for the named section. The
ags argument is a comma separated
string of
ag names. The recognized names are `alloc', `contents', `load',
`readonly', `code', `data', and `rom'. You can set the `contents'
ag for a
section which does not have contents, but it is not meaningful to clear the
`contents'
ag of a section which does have contents{just remove the section
instead. Not all
ags are meaningful for all object �le formats.

--add-section sectionname=�lename
Add a new section named sectionname while copying the �le. The contents of
the new section are taken from the �le �lename. The size of the section will be
the size of the �le. This option only works on �le formats which can support
sections with arbitrary names.

--change-leading-char

Some object �le formats use special characters at the start of symbols. The
most common such character is underscore, which compilers often add before
every symbol. This option tells objcopy to change the leading character of every
symbol when it converts between object �le formats. If the object �le formats
use the same leading character, this option has no e�ect. Otherwise, it will add
a character, or remove a character, or change a character, as appropriate.

--remove-leading-char

If the �rst character of a global symbol is a special symbol leading character
used by the object �le format, remove the character. The most common symbol
leading character is underscore. This option will remove a leading underscore
from all global symbols. This can be useful if you want to link together objects
of di�erent �le formats with di�erent conventions for symbol names. This is
di�erent from --change-leading-char because it always changes the symbol
name when appropriate, regardless of the object �le format of the output �le.

--weaken Change all global symbols in the �le to be weak. This can be useful when
building an object which will be linked against other objects using the -R option
to the linker. This option is only e�ective when using an object �le format which
supports weak symbols.

-V

--version

Show the version number of objcopy.

20 gnu Binary Utilities

-v

--verbose

Verbose output: list all object �les modi�ed. In the case of archives, `objcopy
-V' lists all members of the archive.

--help Show a summary of the options to objcopy.

Chapter 5: objdump 21

5 objdump

objdump [-a | --archive-headers]
[-b bfdname | --target=bfdname] [--debugging]
[-C | --demangle] [-d | --disassemble]
[-D | --disassemble-all] [--disassemble-zeroes]
[-EB | -EL | --endian={big | little }]
[-f | --file-headers]
[-h | --section-headers | --headers] [-i | --info]
[-j section | --section=section]
[-l | --line-numbers] [-S | --source]
[-m machine | --architecture=machine]
[-M options | --disassembler-options=options]
[-p | --private-headers]
[-r | --reloc] [-R | --dynamic-reloc]
[-s | --full-contents] [--stabs]
[-t | --syms] [-T | --dynamic-syms] [-x | --all-headers]
[-w | --wide] [--start-address=address]
[--stop-address=address]
[--prefix-addresses] [--[no-]show-raw-insn]
[--adjust-vma=o�set]
[--version] [--help]
obj�le...

objdump displays information about one or more object �les. The options control what
particular information to display. This information is mostly useful to programmers who are
working on the compilation tools, as opposed to programmers who just want their program
to compile and work.

obj�le . . . are the object �les to be examined. When you specify archives, objdump shows
information on each of the member object �les.

The long and short forms of options, shown here as alternatives, are equivalent. At least
one option besides `-l' must be given.

-a

--archive-header

If any of the obj�le �les are archives, display the archive header information
(in a format similar to `ls -l'). Besides the information you could list with `ar
tv', `objdump -a' shows the object �le format of each archive member.

--adjust-vma=o�set
When dumping information, �rst add o�set to all the section addresses. This
is useful if the section addresses do not correspond to the symbol table, which
can happen when putting sections at particular addresses when using a format
which can not represent section addresses, such as a.out.

-b bfdname
--target=bfdname

Specify that the object-code format for the object �les is bfdname. This option
may not be necessary; objdump can automatically recognize many formats.

For example,

22 gnu Binary Utilities

objdump -b oasys -m vax -h fu.o

displays summary information from the section headers (`-h') of `fu.o', which
is explicitly identi�ed (`-m') as a VAX object �le in the format produced by
Oasys compilers. You can list the formats available with the `-i' option. See
Section 16.1 [Target Selection], page 49, for more information.

-C

--demangle

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. See Chapter 10 [c++�lt], page 35, for more information
on demangling.

--debugging

Display debugging information. This attempts to parse debugging information
stored in the �le and print it out using a C like syntax. Only certain types of
debugging information have been implemented.

-d

--disassemble

Display the assembler mnemonics for the machine instructions from obj�le.
This option only disassembles those sections which are expected to contain
instructions.

-D

--disassemble-all

Like `-d', but disassemble the contents of all sections, not just those expected
to contain instructions.

--prefix-addresses

When disassembling, print the complete address on each line. This is the older
disassembly format.

--disassemble-zeroes

Normally the disassembly output will skip blocks of zeroes. This option directs
the disassembler to disassemble those blocks, just like any other data.

-EB

-EL

--endian={big|little}

Specify the endianness of the object �les. This only a�ects disassembly. This
can be useful when disassembling a �le format which does not describe endian-
ness information, such as S-records.

-f

--file-header

Display summary information from the overall header of each of the obj�le �les.

-h

--section-header

--header Display summary information from the section headers of the object �le.

Chapter 5: objdump 23

File segments may be relocated to nonstandard addresses, for example by using
the `-Ttext', `-Tdata', or `-Tbss' options to ld. However, some object �le
formats, such as a.out, do not store the starting address of the �le segments.
In those situations, although ld relocates the sections correctly, using `objdump
-h' to list the �le section headers cannot show the correct addresses. Instead,
it shows the usual addresses, which are implicit for the target.

--help Print a summary of the options to objdump and exit.

-i

--info Display a list showing all architectures and object formats available for speci�-
cation with `-b' or `-m'.

-j name
--section=name

Display information only for section name.

-l

--line-numbers

Label the display (using debugging information) with the �lename and source
line numbers corresponding to the object code or relocs shown. Only useful
with `-d', `-D', or `-r'.

-m machine
--architecture=machine

Specify the architecture to use when disassembling object �les. This can be
useful when disassembling object �les which do not describe architecture infor-
mation, such as S-records. You can list the available architectures with the `-i'
option.

-M options
--disassembler-options=options

Pass target speci�c information to the disassembler. Only supported on some
targets.

If the target is an ARM architecture then this switch can be used to
select which register name set is used during disassembler. Specifying
`--disassembler-options=reg-name-std' (the default) will select the
register names as used in ARM's instruction set documentation, but with
register 13 called 'sp', register 14 called 'lr' and register 15 called 'pc'.
Specifying `--disassembler-options=reg-names-apcs' will select the
name set used by the ARM Procedure Call Standard, whilst specifying
`--disassembler-options=reg-names-raw' will just use `r' followed by the
register number.

-p

--private-headers

Print information that is speci�c to the object �le format. The exact informa-
tion printed depends upon the object �le format. For some object �le formats,
no additional information is printed.

24 gnu Binary Utilities

-r

--reloc Print the relocation entries of the �le. If used with `-d' or `-D', the relocations
are printed interspersed with the disassembly.

-R

--dynamic-reloc

Print the dynamic relocation entries of the �le. This is only meaningful for
dynamic objects, such as certain types of shared libraries.

-s

--full-contents

Display the full contents of any sections requested.

-S

--source Display source code intermixed with disassembly, if possible. Implies `-d'.

--show-raw-insn

When disassembling instructions, print the instruction in hex as well as in
symbolic form. This is the default except when --prefix-addresses is used.

--no-show-raw-insn

When disassembling instructions, do not print the instruction bytes. This is
the default when --prefix-addresses is used.

--stabs Display the full contents of any sections requested. Display the contents of the
.stab and .stab.index and .stab.excl sections from an ELF �le. This is only
useful on systems (such as Solaris 2.0) in which .stab debugging symbol-table
entries are carried in an ELF section. In most other �le formats, debugging
symbol-table entries are interleaved with linkage symbols, and are visible in the
`--syms' output. For more information on stabs symbols, see section \Stabs
Overview" in The \stabs" debug format.

--start-address=address
Start displaying data at the speci�ed address. This a�ects the output of the
-d, -r and -s options.

--stop-address=address
Stop displaying data at the speci�ed address. This a�ects the output of the -d,
-r and -s options.

-t

--syms Print the symbol table entries of the �le. This is similar to the information
provided by the `nm' program.

-T

--dynamic-syms

Print the dynamic symbol table entries of the �le. This is only meaningful for
dynamic objects, such as certain types of shared libraries. This is similar to the
information provided by the `nm' program when given the `-D' (`--dynamic')
option.

--version

Print the version number of objdump and exit.

Chapter 5: objdump 25

-x

--all-header

Display all available header information, including the symbol table and relo-
cation entries. Using `-x' is equivalent to specifying all of `-a -f -h -r -t'.

-w

--wide Format some lines for output devices that have more than 80 columns.

26 gnu Binary Utilities

Chapter 6: ranlib 27

6 ranlib

ranlib [-vV] archive

ranlib generates an index to the contents of an archive and stores it in the archive. The
index lists each symbol de�ned by a member of an archive that is a relocatable object �le.

You may use `nm -s' or `nm --print-armap' to list this index.

An archive with such an index speeds up linking to the library and allows routines in
the library to call each other without regard to their placement in the archive.

The gnu ranlib program is another form of gnu ar; running ranlib is completely
equivalent to executing `ar -s'. See Chapter 1 [ar], page 3.

-v

-V Show the version number of ranlib.

28 gnu Binary Utilities

Chapter 7: size 29

7 size

size [-A | -B | --format=compatibility]
[--help] [-d | -o | -x | --radix=number]
[--target=bfdname] [-V | --version]
[obj�le...]

The gnu size utility lists the section sizes|and the total size|for each of the object
or archive �les obj�le in its argument list. By default, one line of output is generated for
each object �le or each module in an archive.

obj�le . . . are the object �les to be examined. If none are speci�ed, the �le a.out will
be used.

The command line options have the following meanings:

-A

-B

--format=compatibility
Using one of these options, you can choose whether the output from gnu size

resembles output from System V size (using `-A', or `--format=sysv'), or
Berkeley size (using `-B', or `--format=berkeley'). The default is the one-
line format similar to Berkeley's.

Here is an example of the Berkeley (default) format of output from size:

size --format=Berkeley ranlib size
text data bss dec hex filename
294880 81920 11592 388392 5ed28 ranlib
294880 81920 11888 388688 5ee50 size

This is the same data, but displayed closer to System V conventions:

size --format=SysV ranlib size
ranlib :
section size addr
.text 294880 8192
.data 81920 303104
.bss 11592 385024
Total 388392

size :
section size addr
.text 294880 8192
.data 81920 303104
.bss 11888 385024
Total 388688

--help Show a summary of acceptable arguments and options.

30 gnu Binary Utilities

-d

-o

-x

--radix=number
Using one of these options, you can control whether the size of each section
is given in decimal (`-d', or `--radix=10'); octal (`-o', or `--radix=8'); or
hexadecimal (`-x', or `--radix=16'). In `--radix=number', only the three
values (8, 10, 16) are supported. The total size is always given in two radices;
decimal and hexadecimal for `-d' or `-x' output, or octal and hexadecimal if
you're using `-o'.

--target=bfdname
Specify that the object-code format for obj�le is bfdname. This option may not
be necessary; size can automatically recognize many formats. See Section 16.1
[Target Selection], page 49, for more information.

-V

--version

Display the version number of size.

Chapter 8: strings 31

8 strings

strings [-afov] [-min-len] [-n min-len] [-t radix] [-]
[--all] [--print-file-name] [--bytes=min-len]
[--radix=radix] [--target=bfdname]
[--help] [--version] �le...

For each �le given, gnu strings prints the printable character sequences that are at
least 4 characters long (or the number given with the options below) and are followed by an
unprintable character. By default, it only prints the strings from the initialized and loaded
sections of object �les; for other types of �les, it prints the strings from the whole �le.

strings is mainly useful for determining the contents of non-text �les.

-a

--all

- Do not scan only the initialized and loaded sections of object �les; scan the
whole �les.

-f

--print-file-name

Print the name of the �le before each string.

--help Print a summary of the program usage on the standard output and exit.

-min-len
-n min-len
--bytes=min-len

Print sequences of characters that are at least min-len characters long, instead
of the default 4.

-o Like `-t o'. Some other versions of strings have `-o' act like `-t d' instead.
Since we can not be compatible with both ways, we simply chose one.

-t radix
--radix=radix

Print the o�set within the �le before each string. The single character argument
speci�es the radix of the o�set|`o' for octal, `x' for hexadecimal, or `d' for
decimal.

--target=bfdname
Specify an object code format other than your system's default format. See
Section 16.1 [Target Selection], page 49, for more information.

-v

--version

Print the program version number on the standard output and exit.

32 gnu Binary Utilities

Chapter 9: strip 33

9 strip

strip [-F bfdname | --target=bfdname]
[-I bfdname | --input-target=bfdname]
[-O bfdname | --output-target=bfdname]
[-s | --strip-all] [-S | -g | --strip-debug]
[-K symbolname | --keep-symbol=symbolname]
[-N symbolname | --strip-symbol=symbolname]
[-x | --discard-all] [-X | --discard-locals]
[-R sectionname | --remove-section=sectionname]
[-o �le] [-p | --preserve-dates]
[-v | --verbose] [-V | --version] [--help]
obj�le...

gnu strip discards all symbols from object �les obj�le. The list of object �les may
include archives. At least one object �le must be given.

strip modi�es the �les named in its argument, rather than writing modi�ed copies
under di�erent names.

-F bfdname
--target=bfdname

Treat the original obj�le as a �le with the object code format bfdname, and
rewrite it in the same format. See Section 16.1 [Target Selection], page 49, for
more information.

--help Show a summary of the options to strip and exit.

-I bfdname
--input-target=bfdname

Treat the original obj�le as a �le with the object code format bfdname. See
Section 16.1 [Target Selection], page 49, for more information.

-O bfdname
--output-target=bfdname

Replace obj�le with a �le in the output format bfdname. See Section 16.1
[Target Selection], page 49, for more information.

-R sectionname
--remove-section=sectionname

Remove any section named sectionname from the output �le. This option may
be given more than once. Note that using this option inappropriately may make
the output �le unusable.

-s

--strip-all

Remove all symbols.

-g

-S

--strip-debug

Remove debugging symbols only.

34 gnu Binary Utilities

--strip-unneeded

Remove all symbols that are not needed for relocation processing.

-K symbolname
--keep-symbol=symbolname

Keep only symbol symbolname from the source �le. This option may be given
more than once.

-N symbolname
--strip-symbol=symbolname

Remove symbol symbolname from the source �le. This option may be given
more than once, and may be combined with strip options other than -K.

-o �le Put the stripped output in �le, rather than replacing the existing �le. When
this argument is used, only one obj�le argument may be speci�ed.

-p

--preserve-dates

Preserve the access and modi�cation dates of the �le.

-x

--discard-all

Remove non-global symbols.

-X

--discard-locals

Remove compiler-generated local symbols. (These usually start with `L' or `.'.)

-V

--version

Show the version number for strip.

-v

--verbose

Verbose output: list all object �les modi�ed. In the case of archives, `strip
-v' lists all members of the archive.

Chapter 10: c++�lt 35

10 c++�lt

c++filt [-_ | --strip-underscores]
[-j | --java]

[-n | --no-strip-underscores]
[-s format | --format=format]
[--help] [--version] [symbol...]

The C++ and Java languages provides function overloading, which means that you can
write many functions with the same name (providing each takes parameters of di�erent
types). All C++ and Java function names are encoded into a low-level assembly label
(this process is known as mangling). The c++filt program does the inverse mapping: it
decodes (demangles) low-level names into user-level names so that the linker can keep these
overloaded functions from clashing.

Every alphanumeric word (consisting of letters, digits, underscores, dollars, or periods)
seen in the input is a potential label. If the label decodes into a C++ name, the C++ name
replaces the low-level name in the output.

You can use c++filt to decipher individual symbols:

c++filt symbol

If no symbol arguments are given, c++filt reads symbol names from the standard
input and writes the demangled names to the standard output. All results are printed on
the standard output.

-_

--strip-underscores

On some systems, both the C and C++ compilers put an underscore in front
of every name. For example, the C name foo gets the low-level name _foo.
This option removes the initial underscore. Whether c++filt removes the
underscore by default is target dependent.

-j

--java Prints demangled names using Java syntax. The default is to use C++ syntax.

-n

--no-strip-underscores

Do not remove the initial underscore.

-s format
--format=format

gnu nm can decode three di�erent methods of mangling, used by di�erent C++
compilers. The argument to this option selects which method it uses:

gnu the one used by the gnu compiler (the default method)

lucid the one used by the Lucid compiler

arm the one speci�ed by the C++ Annotated Reference Manual

hp the one used by the HP compiler

edg the one used by the EDG compiler

--help Print a summary of the options to c++filt and exit.

36 gnu Binary Utilities

--version

Print the version number of c++filt and exit.

Warning: c++filt is a new utility, and the details of its user interface are
subject to change in future releases. In particular, a command-line option may
be required in the the future to decode a name passed as an argument on the
command line; in other words,

c++filt symbol

may in a future release become

c++filt option symbol

Chapter 11: addr2line 37

11 addr2line

addr2line [-b bfdname | --target=bfdname]
[-C | --demangle]
[-e �lename | --exe=�lename]
[-f | --functions] [-s | --basename]
[-H | --help] [-V | --version]
[addr addr ...]

addr2line translates program addresses into �le names and line numbers. Given an
address and an executable, it uses the debugging information in the executable to �gure
out which �le name and line number are associated with a given address.

The executable to use is speci�ed with the -e option. The default is `a.out'.

addr2line has two modes of operation.

In the �rst, hexadecimal addresses are speci�ed on the command line, and addr2line

displays the �le name and line number for each address.

In the second, addr2line reads hexadecimal addresses from standard input, and prints
the �le name and line number for each address on standard output. In this mode, addr2line
may be used in a pipe to convert dynamically chosen addresses.

The format of the output is `FILENAME:LINENO'. The �le name and line number for each
address is printed on a separate line. If the -f option is used, then each `FILENAME:LINENO'
line is preceded by a `FUNCTIONNAME' line which is the name of the function containing the
address.

If the �le name or function name can not be determined, addr2line will print two
question marks in their place. If the line number can not be determined, addr2line will
print 0.

The long and short forms of options, shown here as alternatives, are equivalent.

-b bfdname
--target=bfdname

Specify that the object-code format for the object �les is bfdname.

-C

--demangle

Decode (demangle) low-level symbol names into user-level names. Besides re-
moving any initial underscore prepended by the system, this makes C++ func-
tion names readable. See Chapter 10 [c++�lt], page 35, for more information
on demangling.

-e �lename
--exe=�lename

Specify the name of the executable for which addresses should be translated.
The default �le is `a.out'.

-f

--functions

Display function names as well as �le and line number information.

38 gnu Binary Utilities

-s

--basenames

Display only the base of each �le name.

Chapter 12: nlmconv 39

12 nlmconv

nlmconv converts a relocatable object �le into a NetWare Loadable Module.

Warning: nlmconv is not always built as part of the binary utilities, since it is
only useful for NLM targets.

nlmconv [-I bfdname | --input-target=bfdname]
[-O bfdname | --output-target=bfdname]
[-T header�le | --header-file=header�le]
[-d | --debug] [-l linker | --linker=linker]
[-h | --help] [-V | --version]
in�le out�le

nlmconv converts the relocatable `i386' object �le in�le into the NetWare Loadable
Module out�le, optionally reading header�le for NLM header information. For instructions
on writing the NLM command �le language used in header �les, see the `linkers' section,
`NLMLINK' in particular, of the NLM Development and Tools Overview, which is part of the
NLM Software Developer's Kit (\NLM SDK"), available from Novell, Inc. nlmconv uses
the gnu Binary File Descriptor library to read in�le; see section \BFD" in Using LD, for
more information.

nlmconv can perform a link step. In other words, you can list more than one object �le
for input if you list them in the de�nitions �le (rather than simply specifying one input �le
on the command line). In this case, nlmconv calls the linker for you.

-I bfdname
--input-target=bfdname

Object format of the input �le. nlmconv can usually determine the format of
a given �le (so no default is necessary). See Section 16.1 [Target Selection],
page 49, for more information.

-O bfdname
--output-target=bfdname

Object format of the output �le. nlmconv infers the output format based on
the input format, e.g. for a `i386' input �le the output format is `nlm32-i386'.
See Section 16.1 [Target Selection], page 49, for more information.

-T header�le
--header-file=header�le

Reads header�le for NLM header information. For instructions on writing the
NLM command �le language used in header �les, see see the `linkers' sec-
tion, of the NLM Development and Tools Overview, which is part of the NLM
Software Developer's Kit, available from Novell, Inc.

-d

--debug Displays (on standard error) the linker command line used by nlmconv.

-l linker
--linker=linker

Use linker for any linking. linker can be an absolute or a relative pathname.

-h

--help Prints a usage summary.

40 gnu Binary Utilities

-V

--version

Prints the version number for nlmconv.

Chapter 13: windres 41

13 windres

windres may be used to manipulate Windows resources.

Warning: windres is not always built as part of the binary utilities, since it is
only useful for Windows targets.

windres [options] [input-file] [output-file]

windres reads resources from an input �le and copies them into an output �le. Either
�le may be in one of three formats:

rc A text format read by the Resource Compiler.

res A binary format generated by the Resource Compiler.

coff A COFF object or executable.

The exact description of these di�erent formats is available in documentation from Mi-
crosoft.

When windres converts from the rc format to the res format, it is acting like the
Windows Resource Compiler. When windres converts from the res format to the coff

format, it is acting like the Windows CVTRES program.

When windres generates an rc �le, the output is similar but not identical to the format
expected for the input. When an input rc �le refers to an external �lename, an output rc
�le will instead include the �le contents.

If the input or output format is not speci�ed, windres will guess based on the �le name,
or, for the input �le, the �le contents. A �le with an extension of `.rc' will be treated as
an rc �le, a �le with an extension of `.res' will be treated as a res �le, and a �le with an
extension of `.o' or `.exe' will be treated as a coff �le.

If no output �le is speci�ed, windres will print the resources in rc format to standard
output.

The normal use is for you to write an rc �le, use windres to convert it to a COFF
object �le, and then link the COFF �le into your application. This will make the resources
described in the rc �le available to Windows.

-i �lename
--input �lename

The name of the input �le. If this option is not used, then windres will use
the �rst non-option argument as the input �le name. If there are no non-option
arguments, then windres will read from standard input. windres can not read
a COFF �le from standard input.

-o �lename
--output �lename

The name of the output �le. If this option is not used, then windres will use
the �rst non-option argument, after any used for the input �le name, as the
output �le name. If there is no non-option argument, then windres will write
to standard output. windres can not write a COFF �le to standard output.

42 gnu Binary Utilities

-I format
--input-format format

The input format to read. format may be `res', `rc', or `coff'. If no input
format is speci�ed, windres will guess, as described above.

-O format
--output-format format

The output format to generate. format may be `res', `rc', or `coff'. If no
output format is speci�ed, windres will guess, as described above.

-F target
--target target

Specify the BFD format to use for a COFF �le as input or output. This is a
BFD target name; you can use the --help option to see a list of supported
targets. Normally windres will use the default format, which is the �rst one
listed by the --help option. Section 16.1 [Target Selection], page 49.

--preprocessor program
When windres reads an rc �le, it runs it through the C preprocessor �rst. This
option may be used to specify the preprocessor to use, including any leading
arguments. The default preprocessor argument is gcc -E -xc-header -DRC_

INVOKED.

--include-dir directory
Specify an include directory to use when reading an rc �le. windres will pass
this to the preprocessor as an -I option. windres will also search this directory
when looking for �les named in the rc �le.

-D target
--define sym[=val]

Specify a -D option to pass to the preprocessor when reading an rc �le.

-v Enable verbose mode. This tells you what the preprocessor is if you didn't
specify one.

--language val
Specify the default language to use when reading an rc �le. val should be a
hexadecimal language code. The low eight bits are the language, and the high
eight bits are the sublanguage.

--help Prints a usage summary.

--version

Prints the version number for windres.

--yydebug

If windres is compiled with YYDEBUG de�ned as 1, this will turn on parser
debugging.

Chapter 14: Create �les needed to build and use DLLs 43

14 Create �les needed to build and use DLLs

dlltool may be used to create the �les needed to build and use dynamic link libraries
(DLLs).

Warning: dlltool is not always built as part of the binary utilities, since it is
only useful for those targets which support DLLs.

dlltool [-d|--input-def def-�le-name]
[-b|--base-file base-�le-name]
[-e|--output-exp exports-�le-name]
[-z|--output-def def-�le-name]
[-l|--output-lib library-�le-name]
[--export-all-symbols] [--no-export-all-symbols]
[--exclude-symbols list]
[--no-default-excludes]
[-S|--as path-to-assembler] [-f|--as-flags options]
[-D|--dllname name] [-m|--machine machine]
[-a|--add-indirect] [-U|--add-underscore] [-k|--kill-at]
[-A|--add-stdcall-alias]
[-x|--no-idata4] [-c|--no-idata5] [-i|--interwork]
[-n|--nodelete] [-v|--verbose] [-h|--help] [-V|--version]
[object-file ...]

dlltool reads its inputs, which can come from the `-d' and `-b' options as well as object
�les speci�ed on the command line. It then processes these inputs and if the `-e' option
has been speci�ed it creates a exports �le. If the `-l' option has been speci�ed it creates a
library �le and if the `-z' option has been speci�ed it creates a def �le. Any or all of the
-e, -l and -z options can be present in one invocation of dlltool.

When creating a DLL, along with the source for the DLL, it is necessary to have three
other �les. dlltool can help with the creation of these �les.

The �rst �le is a `.def' �le which speci�es which functions are exported from the DLL,
which functions the DLL imports, and so on. This is a text �le and can be created by hand,
or dlltool can be used to create it using the `-z' option. In this case dlltool will scan
the object �les speci�ed on its command line looking for those functions which have been
specially marked as being exported and put entries for them in the .def �le it creates.

In order to mark a function as being exported from a DLL, it needs to have an
`-export:<name_of_function>' entry in the `.drectve' section of the object �le. This
can be done in C by using the asm() operator:

asm (".section .drectve");
asm (".ascii \"-export:my_func\"");

int my_func (void) { ... }

The second �le needed for DLL creation is an exports �le. This �le is linked with the
object �les that make up the body of the DLL and it handles the interface between the
DLL and the outside world. This is a binary �le and it can be created by giving the `-e'
option to dlltool when it is creating or reading in a .def �le.

44 gnu Binary Utilities

The third �le needed for DLL creation is the library �le that programs will link with in
order to access the functions in the DLL. This �le can be created by giving the `-l' option
to dlltool when it is creating or reading in a .def �le.

dlltool builds the library �le by hand, but it builds the exports �le by creating tempo-
rary �les containing assembler statements and then assembling these. The `-S' command
line option can be used to specify the path to the assembler that dlltool will use, and the
`-f' option can be used to pass speci�c
ags to that assembler. The `-n' can be used to
prevent dlltool from deleting these temporary assembler �les when it is done, and if `-n' is
speci�ed twice then this will prevent dlltool from deleting the temporary object �les it used
to build the library.

Here is an example of creating a DLL from a source �le `dll.c' and also creating a
program (from an object �le called `program.o') that uses that DLL:

gcc -c dll.c
dlltool -e exports.o -l dll.lib dll.o
gcc dll.o exports.o -o dll.dll
gcc program.o dll.lib -o program

The command line options have the following meanings:

-d �lename
--input-def �lename

Speci�es the name of a .def �le to be read in and processed.

-b �lename
--base-file �lename

Speci�es the name of a base �le to be read in and processed. The contents of
this �le will be added to the relocation section in the exports �le generated by
dlltool.

-e �lename
--output-exp �lename

Speci�es the name of the export �le to be created by dlltool.

-z �lename
--output-def �lename

Speci�es the name of the .def �le to be created by dlltool.

-l �lename
--output-lib �lename

Speci�es the name of the library �le to be created by dlltool.

--export-all-symbols

Treat all global and weak de�ned symbols found in the input object �les as
symbols to be exported. There is a small list of symbols which are not exported
by default; see the --no-default-excludes option. You may add to the list
of symbols to not export by using the --exclude-symbols option.

--no-export-all-symbols

Only export symbols explicitly listed in an input .def �le or in `.drectve'
sections in the input object �les. This is the default behaviour. The `.drectve'
sections are created by `dllexport' attributes in the source code.

Chapter 14: Create �les needed to build and use DLLs 45

--exclude-symbols list
Do not export the symbols in list. This is a list of symbol names separated by
comma or colon characters. The symbol names should not contain a leading
underscore. This is only meaningful when --export-all-symbols is used.

--no-default-excludes

When --export-all-symbols is used, it will by default avoid exporting certain
special symbols. The current list of symbols to avoid exporting is `DllMain@12',
`DllEntryPoint@0', `impure_ptr'. You may use the --no-default-excludes
option to go ahead and export these special symbols. This is only meaningful
when --export-all-symbols is used.

-S path
--as path Speci�es the path, including the �lename, of the assembler to be used to create

the exports �le.

-f switches
--as-flags switches

Speci�es any speci�c command line switches to be passed to the assembler when
building the exports �le. This option will work even if the `-S' option is not
used. This option only takes one argument, and if it occurs more than once
on the command line, then later occurrences will override earlier occurrences.
So if it is necessary to pass multiple switches to the assembler they should be
enclosed in double quotes.

-D name
--dll-name name

Speci�es the name to be stored in the .def �le as the name of the DLL when
the `-e' option is used. If this option is not present, then the �lename given to
the `-e' option will be used as the name of the DLL.

-m machine
-machine machine

Speci�es the type of machine for which the library �le should be built. dlltool
has a built in default type, depending upon how it was created, but this option
can be used to override that. This is normally only useful when creating DLLs
for an ARM processor, when the contents of the DLL are actually encode using
THUMB instructions.

-a

--add-indirect

Speci�es that when dlltool is creating the exports �le it should add a section
which allows the exported functions to be referenced without using the import
library. Whatever the hell that means!

-U

--add-underscore

Speci�es that when dlltool is creating the exports �le it should prepend an
underscore to the names of the exported functions.

46 gnu Binary Utilities

-k

--kill-at

Speci�es that when dlltool is creating the exports �le it should not append
the string `@ <number>'. These numbers are called ordinal numbers and they
represent another way of accessing the function in a DLL, other than by name.

-A

--add-stdcall-alias

Speci�es that when dlltool is creating the exports �le it should add aliases
for stdcall symbols without `@ <number>' in addition to the symbols with `@
<number>'.

-x

--no-idata4

Speci�es that when dlltool is creating the exports and library �les it should
omit the .idata4 section. This is for compatibility with certain operating sys-
tems.

-c

--no-idata5

Speci�es that when dlltool is creating the exports and library �les it should
omit the .idata5 section. This is for compatibility with certain operating sys-
tems.

-i

--interwork

Speci�es that dlltool should mark the objects in the library �le and exports
�le that it produces as supporting interworking between ARM and THUMB
code.

-n

--nodelete

Makes dlltool preserve the temporary assembler �les it used to create the ex-
ports �le. If this option is repeated then dlltool will also preserve the temporary
object �les it uses to create the library �le.

-v

--verbose

Make dlltool describe what it is doing.

-h

--help Displays a list of command line options and then exits.

-V

--version

Displays dlltool's version number and then exits.

Chapter 15: readelf 47

15 readelf

readelf [-a | --all]
[-h | --file-header]
[-l | --program-headers | --segments]
[-S | --section-headers | --sections]
[-e | --headers]
[-s | --syms | --symbols]
[-r | --relocs]
[-d | --dynamic]
[-V | --version-info]
[-D | --use-dynamic]
[-x <number> | --hex-dump=<number>]
[-w[liapr] | --debug-dump[=info,=line,=abbrev,=pubnames,=ranges]]
[--histogram]
[-v | --version]
[-H | --help]
elÆle...

readelf displays information about one or more ELF format object �les. The options
control what particular information to display.

elÆle . . . are the object �les to be examined. At the moment, readelf does not support
examining archives, nor does it support examing 64 bit ELF �les.

The long and short forms of options, shown here as alternatives, are equivalent. At least
one option besides `-v' or `-H' must be given.

-a

--all Equivalent to speci�ying `--file-header', `--program-headers',
`--sections', `--symbols', `--relocs', `--dynamic' and `--version-info'.

-h

--file-header

Displays the information contained in the ELF header at the start of the �le.

-l

--program-headers

--segments

Displays the information contained in the �le's segment headers, if it has any.

-S

--sections

--section-headers

Displays the information contained in the �le's section headers, if it has any.

-s

--symbols

--syms Displays the entries in symbol table section of the �le, if it has one.

-e

--headers

Display all the headers in the �le. Equivalent to `-h -l -S'.

48 gnu Binary Utilities

-r

--relocs Displays the contents of the �le's relocation section, if it ha one.

-d

--dynamic

Displays the contents of the �le's dynamic section, if it has one.

-V

--version-info

Displays the contents of the version sections in the �le, it they exist.

-D

--use-dynamic

When displaying symbols, this option makes readelf use the symblol table in
the �le's dynamic section, rather than the one in the symbols section.

-x <number>

--hex-dump=<number>

Displays the contents of the indicated section as a hexadecimal dump.

-w[liapr]

--debug-dump[=line,=info,=abbrev,=pubnames,=ranges]

Displays the contents of the debug sections in the �le, if any are present. If one
of the optional letters or words follows the switch then only data found in those
speci�c sections will be dumped.

--histogram

Display a histogram of bucket list lengths when displaying the contents of the
symbol tables.

-v

--version

Display the version number of readelf.

-H

--help Display the command line options understood by readelf.

Chapter 16: Selecting the target system 49

16 Selecting the target system

You can specify three aspects of the target system to the gnu binary �le utilities, each
in several ways:

� the target

� the architecture

� the linker emulation (which applies to the linker only)

In the following summaries, the lists of ways to specify values are in order of decreasing
precedence. The ways listed �rst override those listed later.

The commands to list valid values only list the values for which the programs you
are running were con�gured. If they were con�gured with `--enable-targets=all', the
commands list most of the available values, but a few are left out; not all targets can be
con�gured in at once because some of them can only be con�gured native (on hosts with
the same type as the target system).

16.1 Target Selection

A target is an object �le format. A given target may be supported for multiple architec-
tures (see Section 16.2 [Architecture Selection], page 50). A target selection may also have
variations for di�erent operating systems or architectures.

The command to list valid target values is `objdump -i' (the �rst column of output
contains the relevant information).

Some sample values are: `a.out-hp300bsd', `ecoff-littlemips', `a.out-sunos-big'.

You can also specify a target using a con�guration triplet. This is the same sort of name
that is passed to con�gure to specify a target. When you use a con�guration triplet as an
argument, it must be fully canonicalized. You can see the canonical version of a triplet by
running the shell script `config.sub' which is included with the sources.

Some sample con�guration triplets are: `m68k-hp-bsd', `mips-dec-ultrix',
`sparc-sun-sunos'.

objdump Target

Ways to specify:

1. command line option: `-b' or `--target'

2. environment variable GNUTARGET

3. deduced from the input �le

objcopy and strip Input Target

Ways to specify:

1. command line options: `-I' or `--input-target', or `-F' or `--target'

2. environment variable GNUTARGET

3. deduced from the input �le

50 gnu Binary Utilities

objcopy and strip Output Target

Ways to specify:

1. command line options: `-O' or `--output-target', or `-F' or `--target'

2. the input target (see \objcopy and strip Input Target" above)

3. environment variable GNUTARGET

4. deduced from the input �le

nm, size, and strings Target

Ways to specify:

1. command line option: `--target'

2. environment variable GNUTARGET

3. deduced from the input �le

Linker Input Target

Ways to specify:

1. command line option: `-b' or `--format' (see section \Options" in Using LD)

2. script command TARGET (see section \Option Commands" in Using LD)

3. environment variable GNUTARGET (see section \Environment" in Using LD)

4. the default target of the selected linker emulation (see Section 16.3 [Linker Emulation
Selection], page 51)

Linker Output Target

Ways to specify:

1. command line option: `-oformat' (see section \Options" in Using LD)

2. script command OUTPUT_FORMAT (see section \Option Commands" in Using LD)

3. the linker input target (see \Linker Input Target" above)

16.2 Architecture selection

An architecture is a type of cpu on which an object �le is to run. Its name may contain
a colon, separating the name of the processor family from the name of the particular cpu.

The command to list valid architecture values is `objdump -i' (the second column con-
tains the relevant information).

Sample values: `m68k:68020', `mips:3000', `sparc'.

objdump Architecture

Ways to specify:

1. command line option: `-m' or `--architecture'

2. deduced from the input �le

Chapter 16: Selecting the target system 51

objcopy, nm, size, strings Architecture

Ways to specify:

1. deduced from the input �le

Linker Input Architecture

Ways to specify:

1. deduced from the input �le

Linker Output Architecture

Ways to specify:

1. script command OUTPUT_ARCH (see section \Option Commands" in Using LD)

2. the default architecture from the linker output target (see Section 16.1 [Target Selec-
tion], page 49)

16.3 Linker emulation selection

A linker emulation is a \personality" of the linker, which gives the linker default values
for the other aspects of the target system. In particular, it consists of

� the linker script

� the target

� several \hook" functions that are run at certain stages of the linking process to do
special things that some targets require

The command to list valid linker emulation values is `ld -V'.

Sample values: `hp300bsd', `mipslit', `sun4'.

Ways to specify:

1. command line option: `-m' (see section \Options" in Using LD)

2. environment variable LDEMULATION

3. compiled-in DEFAULT_EMULATION from `Makefile', which comes from EMUL in
`config/target.mt'

52 gnu Binary Utilities

Chapter 17: Reporting Bugs 53

17 Reporting Bugs

Your bug reports play an essential role in making the binary utilities reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not. But
in any case the principal function of a bug report is to help the entire community by making
the next version of the binary utilities work better. Bug reports are your contribution to
their maintenance.

In order for a bug report to serve its purpose, you must include the information that
enables us to �x the bug.

17.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

� If a binary utility gets a fatal signal, for any input whatever, that is a bug. Reliable
utilities never crash.

� If a binary utility produces an error message for valid input, that is a bug.

� If you are an experienced user of binary utilities, your suggestions for improvement are
welcome in any case.

17.2 How to report bugs

A number of companies and individuals o�er support for gnu products. If you ob-
tained the binary utilities from a support organization, we recommend you contact that
organization �rst.

You can �nd contact information for many support companies and individuals in the �le
`etc/SERVICE' in the gnu Emacs distribution.

In any event, we also recommend that you send bug reports for the binary utilities to
`bug-gnu-utils@gnu.org'.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of a �le
you use in an example does not matter. Well, probably it does not, but one cannot be sure.
Perhaps the bug is a stray memory reference which happens to fetch from the location where
that pathname is stored in memory; perhaps, if the pathname were di�erent, the contents
of that location would fool the utility into doing the right thing despite the bug. Play it
safe and give a speci�c, complete example. That is the easiest thing for you to do, and the
most helpful.

Keep in mind that the purpose of a bug report is to enable us to �x the bug if it is new
to us. Therefore, always write your bug reports on the assumption that the bug has not
been reported previously.

Sometimes people give a few sketchy facts and ask, \Does this ring a bell?" Those bug
reports are useless, and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly.

To enable us to �x the bug, you should include all these things:

54 gnu Binary Utilities

� The version of the utility. Each utility announces it if you start it with the `--version'
argument.

Without this, we will not know whether there is any point in looking for the bug in the
current version of the binary utilities.

� Any patches you may have applied to the source, including any patches made to the
BFD library.

� The type of machine you are using, and the operating system name and version number.

� What compiler (and its version) was used to compile the utilities|e.g. \gcc-2.7".

� The command arguments you gave the utility to observe the bug. To guarantee you
will not omit something important, list them all. A copy of the Make�le (or the output
from make) is suÆcient.

If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

� A complete input �le, or set of input �les, that will reproduce the bug. If the utility
is reading an object �le or �les, then it is generally most helpful to send the actual
object �les, uuencoded if necessary to get them through the mail system. Making them
available for anonymous FTP is not as good, but may be the only reasonable choice
for large object �les.

If the source �les were produced exclusively using gnu programs (e.g., gcc, gas, and/or
the gnu ld), then it may be OK to send the source �les rather than the object �les. In
this case, be sure to say exactly what version of gcc, or whatever, was used to produce
the object �les. Also say how gcc, or whatever, was con�gured.

� A description of what behavior you observe that you believe is incorrect. For example,
\It gets a fatal signal."

Of course, if the bug is that the utility gets a fatal signal, then we will certainly notice
it. But if the bug is incorrect output, we might not notice unless it is glaringly wrong.
You might as well not give us a chance to make a mistake.

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of the utility is out of synch,
or you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and ours would not. If you told us to expect a crash, then when
ours fails to crash, we would know that the bug was not happening for us. If you had
not told us to expect a crash, then we would not be able to draw any conclusion from
our observations.

� If you wish to suggest changes to the source, send us context di�s, as generated by
diff with the `-u', `-c', or `-p' option. Always send di�s from the old �le to the new
�le. If you even discuss something in the ld source, refer to it by context, not by line
number.

The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.

Here are some things that are not necessary:

� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input �le will make the bug go away and which changes will not a�ect it.

Chapter 17: Reporting Bugs 55

This is often time consuming and not very useful, because the way we will �nd the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.

Of course, if you can �nd a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.

However, simpli�cation is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

� A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to �x the problem another way, or we
might not understand it at all.

Sometimes with programs as complicated as the binary utilities it is very hard to
construct an example that will make the program follow a certain path through the
code. If you do not send us the example, we will not be able to construct one, so we
will not be able to verify that the bug is �xed.

And if we cannot understand what bug you are trying to �x, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

� A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without
�rst using the debugger to �nd the facts.

56 gnu Binary Utilities

Index 57

Index

.

.stab . 24

A
addr2line . 37

address to �le name and line number 37

all header information, object �le 25

ar . 3

ar compatibility . 3

architecture . 23

architectures available . 23

archive contents . 27

archive headers . 21

archives . 3

B
base �les . 44

bug criteria . 53

bug reports. 53

bugs . 53

bugs, reporting . 53

C
c++�lt . 35

changing object addresses . 18

changing section address . 18

changing section LMA . 18

changing section VMA . 18

changing start address . 18

collections of �les . 3

compatibility, ar . 3

contents of archive . 5

crash . 53

creating archives . 5

D
dates in archive . 5

debug symbols . 24

debugging symbols . 12

deleting from archive . 4

demangling C++ symbols . 35

demangling in nm . 12

demangling in objdump 22, 37

disassembling object code . 22

disassembly architecture . 23

disassembly endianness . 22

disassembly, with source . 24

discarding symbols . 33

DLL . 43

dlltool . 43

dynamic relocation entries, in object �le 24

dynamic symbol table entries, printing 24

dynamic symbols . 12

E

ELF dynamic section information 48

ELF �le header information 47

ELF �le information . 47

ELF object �le format . 24

ELF program header information 47

ELF reloc information . 48

ELF section information. 47

ELF segment information . 47

ELF symbol table information 47

ELF version sections informations 48

endianness . 22

error on valid input . 53

external symbols . 12, 13

extract from archive . 5

F

fatal signal . 53

�le name . 12

H

header information, all . 25

I
input .def �le . 44

input �le name . 12

L

ld . 9

libraries . 3

linker . 9

listings strings . 31

58 gnu Binary Utilities

M
machine instructions . 22

moving in archive . 4

MRI compatibility, ar . 6

N
name duplication in archive. 5

name length . 3

nm . 11

nm compatibility . 12

nm format . 12

not writing archive index . 6

O
objdump . 21

object code format 13, 21, 30, 31, 37

object �le header . 22

object �le information . 21

object �le sections . 24

object formats available . 23

operations on archive . 4

P
printing from archive . 4

printing strings . 31

Q
quick append to archive . 4

R
radix for section sizes . 30

ranlib . 27

readelf . 47

relative placement in archive 5

relocation entries, in object �le 24

removing symbols . 33

repeated names in archive . 5

replacement in archive . 4

reporting bugs . 53

S

scripts, ar . 6

section addresses in objdump 21

section headers . 22

section information . 23

section sizes . 29

sections, full contents . 24

size . 29

size display format . 29

size number format . 30

sorting symbols . 13

source disassembly . 24

source �le name . 12

source �lenames for object �les 23

stab . 24

start-address . 24

stop-address . 24

strings . 31

strings, printing . 31

strip . 33

symbol index . 3, 27

symbol index, listing . 13

symbol line numbers . 12

symbol table entries, printing 24

symbols . 11

symbols, discarding . 33

U

unde�ned symbols . 13

Unix compatibility, ar. 4

updating an archive . 6

V

version . 1

VMA in objdump . 21

W

wide output, printing . 25

writing archive index . 5

i

Table of Contents

Introduction . 1

1 ar . 3

1.1 Controlling ar on the command line . 4
1.2 Controlling ar with a script . 6

2 ld . 9

3 nm . 11

4 objcopy . 15

5 objdump . 21

6 ranlib . 27

7 size . 29

8 strings . 31

9 strip . 33

10 c++�lt . 35

11 addr2line . 37

12 nlmconv . 39

13 windres . 41

14 Create �les needed to build and use DLLs
. 43

15 readelf . 47

ii gnu Binary Utilities

16 Selecting the target system 49

16.1 Target Selection . 49
16.2 Architecture selection . 50
16.3 Linker emulation selection . 51

17 Reporting Bugs . 53

17.1 Have you found a bug? . 53
17.2 How to report bugs . 53

Index . 57

