File /O

C file input and output are very similar to terminal input and output.

The <stdio.h> system header file provides file input and output
functions.

The file input and ouput module define a private data structure, the
FILE, which refers to an opened file. Because this is a private data
structure, we use only pointers to it.

There are three FILE * available from stdio.h.

stdin This is the standard input, often connected to the terminal,
from which input is obtained by default.

stdout This is the standard output, often connected to the terminal,
to which output is directed by default.

stderr This is the standard error, to which diagnostic messages
and errors should be directed.

printf prints to stdout.
scanf reads from stdin.

Opening Files

FILE *fopen(const char *filename, const char *mode)

fopen opens a file. The filename argument determines the file to be
opened, and the mode argument determines whether the file will be
read, written, or both.

e If the mode is "r", the file is opened for reading. If it does not
exist, fopen fails.

e If the mode is "w", the file is opened for writing. If it does not
exist, it is created. If it does exist, it is truncated.

e If the mode is "a", the file is opened for appending. If it does
not exist, it is created. If it does exist, further data will be added
on to the end.

In the event of an error, fopen returns NULL. It is very important
to test for this condition.

Error Reporting

extern int errno;
void perror(const char *str);

This function is useful in reporting errors to a user. It is particularly
important in file I/O, where many different errors such as file not
found, permission denied, and device full might be causing a function
to fail.

errno is set to indicate the nature of a system call failure.

fopen may fail for, among others, the following reasons.
ENOENT No such file or directory

EACCES Permission denied

EISDIR Is a directory

ENOMEM Out of memory

Use perror to report errors to the user without needing to test for
every possible error code.

perror will print the argument str, then a human-readable error
string.

perror ("Cannot open file");

The above should produce, for EACCES,
Cannot open file: Permission denied

Testing for Files

The fopen modes that write to files do not report whether the file
exists or not.

The access system call is one good way to determine whether a file
exists. This function can be found in <unistd.h>.

int access(const char *pathname, int mode) ;

The access function determines whether pathname exists and whether
it would be possible to read or write it. The precise test depends on
the specified mode.

F_OK The function returns 0 if the file exists and -1 if it does not or
if an error, such as a lack of permission on the parent directory,
occurred.

R_OK The function returns 0 if the file exists and can be read, and -1
if it cannot or in the event of an error.

W_OK The function returns 0 if the file exists and can be written, and
-1 if it cannot or in the event of an error.

void check_file(const char *filename)

{
char str[256];

if (access(filename, F_0K) == 0) {
printf ("File \"%s\" exists.\n", filename);

} else if (errno == ENOENT) {
snprintf (str, 256, "Cannot access file \"%s\"", filename);
perror(str);

+
+

Reading from Files

int fscanf (FILE *file, const char *format, ...)

fscanf is used just as scanf is used, except that file specifies the
open file from which to read data.

scanf (...) isin fact identical to fscanf (stdin, ...).

fscanf returns the number of input items successfully read.

float X, ¥, Z;
int i;

i = fscanf(f, "%f Uf %E", &x, &y, &2z);

If the fscanf successfully reads three floating-point numbers from
the file £, then i will be 3.

If fscanf cannot read at least three floating-point numbers, i would
not be 3.

This might happen if £ reached the end of the file or if an alphabetical
character were encountered after two of the numbers.

Reading from Files

Below is a simple program that reads triplets of numbers from a data
file and, considering them as a vector in 3-space, prints their length.

Note the care taken to test for error conditions when using file input
and output routines.

#include <stdio.h>
#include <math.h>

int main(void)

{
FILE *f;
int n;
float x, y, z;

f = fopen("vectors.dat", "r");

if (f == NULL) {
perror ("Error opening \"vectors.dat\"");
exit(1);

}

while (1) {
n = fscanf(f, "%f %Wf %f", &x, &y, &z);

if (n !'= 3)
break;

printf ("%f\n", sqrt(x * x + y x y + z * z));
+

return O;

Writing to Files

int fprintf(FILE *file, const char *format, ...);

fprintf is used just as printf is used, except that file specifies the
open file to which to write data.

printf(...) isin fact identical to fprintf (stdout, ...).
fprintf returns the number of output characters successfully writ-
ten. If an error is encountered, a negative value will be returned.
int fclose(FILE *file);

fclose closes the file and guarantees that all outstanding writes are
on the disk.

fclose can be called on any opened file to close it and release re-
sources associated with the open file.

It is particularly important to call fclose on files being written and
to test its return value. The data written to a file is not guaranteed
to be safe on disk until fclose is successfully called on the file.

fclose should return 0. It is important to test that it is successful
and does not instead return EOF, indicating an error.

Writing to Files

Below is a simple program that writes the integers from 1 to 10 and
their squares into squares.dat.

#include <stdio.h>

int main(void)
{

FILE *f;

int i, err;

f = fopen("squares.dat", "w");

if (f == NULL) {
perror ("Error opening \"squares.dat\"");
exit(1);

}

for (i = 1; i <= 10; i++) {
err = fprintf(f, "%d %d\n", i, i * 1i);
if (err < 0) {
perror ("Error writing to \"squares.dat\"");
exit(1);
+
+

err = fclose(f);

if (err !'= 0) {
perror ("Error closing \"squares.dat\"");
exit(1);

}

return O;

Random Access

void rewind(FILE *file)

This function “rewinds” file to start reading or writing from the
beginning.

long ftell(FILE x*file)

ftell indicates the offset between the current file position of file
and the beginning of the file.

long fseek(FILE xfile, long offset, int whence)

fseek is used to set the file position of file based on the offset and
whence arguments.

whence can be one of the following.

SEEK_SET Set the position to offset from the start of the file.
SEEK_CUR Set the position to offset from the current position.
SEEK_END Set the position to offset from the end of the file.

int feof (FILE *file)

This function returns a true value if and only if the current file posi-
tion of file is at the end of the file.

Reading a Line

char *fgets(char *str, int size, FILE x*file)
fgets is used to read a line from a file safely.
fgets reads from file into str, up to and including a newline.

fgets will stop after reading size-1 characters even if a newline isn’t
encountered, leaving room for a terminating 0.

gets will read a line from the standard input, but will happily write
past the end of a buffer if given a long enough line. Thus, use
fgets(stdin, ...) and not gets(...).

fgets will return NULL if it encounters an error or if the current
file position is the end of the file.

#include <stdio.h>

int main(void)

{
char 1line[256];
char xerr;

err = fgets(line, 256, stdin);
if (err == NULL) {
perror ("Error reading from standard input");

exit(1);

}

if (line[strlen(line) - 1] != ’\n’) {
fprintf(stderr, "Input line too long, more than 254 characters\n");
exit(1);

}

line[strlen(line) - 1] = ’\0’;

Binary 1/0O

The above functions all write data into text files.

There exist C functions which read and write binary representations
of data from and to files.

e Text data files are easier to read and debug.

e Many UNIX utilities exist which handle text data files.

e Binary data files are often more compact than text data files.

e [t is also much easier to access arbitrary offsets into arrays of
numbers in binary format than in text format.

When designing file formats, it is often best to select a text repre-
sentation of data.

Binary 1/0O

size_t fread(void #*pir, size_t size, size_t nmemb, FILE *file)
size_t fwrite(const void *ptr, size_t size, size_t mmemb,
FILE xfile)

These functions are used to perform binary input and output, reading
and writing binary images of an array of objects.

ptr points to the array of objects.
size is the size of a single object, and nmemb is the number of objects.

The functions return the number of items read or written. In the
event of an error or end-of-file condition, a number of items smaller
than nmemb will be returned.

To read or write a single object, take its address and treat it as an
array of one object.

void copy_integer(FILE *in, FILE *out)
{

int i, err;

err = fread(&i, sizeof(int), 1, in);
if (err !'= 1) {
perror ("Error reading data');
return;

}

err = fwrite(&i, sizeof(int), 1, out);
if (err '=1) {
perror ("Error writing data');
return;

}
}

Binary 1/0O

#include <stdio.h>
#include <stdlib.h>

typedef struct vector_struct {
double x;
double y;
double z;

} vector;

static void bin_vector(FILE *in, FILE *out, int nvects);

int main(void)

{
int nvects;
FILE *in, *out;

in = fopen("vector.dat", "r");
if (in == NULL) {
perror ("Cannot read \"vector.dat\"");

exit(1);

}

out = fopen("vector.bin", "w");

if (out == NULL) {
perror("Cannot write \'"vector.bin\"");
exit(1);

}

if (fscanf(in, "%d", &nvects) != 1) {
perror("Could not read vector count from \'"vector.dat\"");
exit(1);

}

bin_vector(in, out, nvects);
if (fclose(out) == EOF) {

perror("Cannot write \"vector.bin\"");

3

return O;

Binary 1/0O

/* Here we have

* in a file open for reading

* out a file open for binary writing

* nvects the number of vectors to work with.

*/
static void bin_vector (FILE *in, FILE *out, int nvects)
{

int i, err;

vector *vects;
vects = malloc(sizeof(vector) * nvects);

for (i = 0; i < nvects; i++) {
err = fscanf(in, "%1f %1f %1f", &vectsl[il.x, &vectslil.y, &vectsl[il].z);

if (err < 3)
break;

}

if (i < nvects) {
fprintf(stderr, "Could not read all %d vectors\n", nvects);
free(vects);
return;

}
err = furite(vects, sizeof(vector), nvects, out);
if (err < nvects) {
fprintf(stderr, "Could not write all %d vectors\n", nvects);

}

free(vects);

Binary 1/0O

#include <math.h>
#include <stdio.h>
#include <stdlib.h>

typedef struct vector_struct {
double x;
double y;
double z;

} vector;

int main(int argc, char **argv)

{
FILE *bin;
vector v,
int err;

if (argec !'= 2) {
fprintf(stderr, "Usage: %s <binary data file>\n", argv[0]);
exit(1);

}

bin = fopen(argv[1], "rb");

if (bin == NULL) {
perror("Cannot read input file");
exit(1);

}

while (1) {
err = fread(&v, sizeof(vector), 1, bin);
if (err < 1)
break;

printf ("%f\n", sqrt(v.x * v.x + V.y * V.y + V.Z * v.Zz));

}

return O;

