A Crash Course in C' 1

A Crash Course in C

January 1995

A Crash Course in C i il A Crash Course in C
Contents 3.9 Problems 42
0 Introduction 1 4 Structures 43
4.1 Syntax and Operations e e e e e 43
1 Fundamentals 2 _
42 typedef 45
11 EXAMpIe PrOgrams . -« o 2 43 Array of Structures L 45
1.2 Varables e 3 4.4 Usewith Functions 46
L3 Iuput/Output 4 45 Linked LESIS « « v v oot e e e 18
1.4 Keywords and Operators: The C Language 5 16 49
1.5 Expressions and Statements 9 L7 50
16 Control Flow .. 9 4.8 Example: Complex Numbers 52
1.7 The C Preprocessor v v v v v v v it it e e e e e 13 149 Problems 54
1.8 Problems e 14
5 C Libraries 55
2 Functions 18 5.1 Memory ALOCAtON « « . v v v o v et et e e e 55
2.1 Reasons for Using Functions 18 5.2 Math LIBraries . . o o v v oo oo 56
2.2 Basic Structure 18 5.3 Random Variables 57
2.3 Return Statement 20 5.4 IPUt/OULPUL « -« « v oot e 58
2.4 Difference between ANSI-C and “Traditional C” 21 5.5 SEEIIES « o v v v e e e e e e e 60
2.5 Object Storage Classes and Scope. v oo 22
A Make Program 61
2.6 Larger Programs 24
2.7 MACIOS - -« o o ot e e e e 27 B C Style Guide 63
2.8 Problems 27 Bl General Style . v v v vt e e e 63
B2 Layout . . . o vt e e e e 66
3 Pointers 29
B.3 Coding Practice L 66
3.1 Pointer Definition and Use. o oo 29
B.4 Naming Conventions 67
3.2 Pointers as Function Arguments: “Call by Value” 31
33 AITAYS © o o o e e e e e e e 32 C Answers to Problems 68
3.4 Functions Returning Pointers 34
3.5 Multidimensional Arrays oL L L 36
3.6 Strings 41
3.7 Command Line Arguments it e 41

3.8 Pointers to Functions oL 42

§0 A Crash Course in C 1
0 Introduction

Reasons to use C:
e pointers and structures
e encourages well structured control flow
e modular programming is encouraged
e easy to learn (C has few keywords)
e portability to different machines
e many functions are in libraries, not intrinsic parts of the language
e lexical scoping for variables

References:
e Brian Kernighan and Dennis Ritchie, The C Programming Language (2nd edition) (K&R)
e Stephen G. Kochan, Progr in C, Progr in ANSI C (Kochan)
e Al Kelley and Ira Pohl, A Book on C
e American National Standard for Information Systems Programming Language C, X3.159-
1989.

Three steps are necessary to use C:

e write the program using an editor
e compile (and link) it; on Unix systems, use

% cc program.c
% cc —o <name> <name>.c
This automatically runs three separate processes, using the source files <names>. ¢, to produce
the output:
preprocessor
— compiler
— linker
If there are no errors, this produces an executable file. The first cc command produces the
file a.out, while the second makes the file <name>.
e execute the program

% <name>

<name> < input.file

<name> > output.file

<name> < input.file > output.file

e e e

Different systems have different procedures to use C. See the manual or help files for details.

1 Fundamentals

1.1 Example programs

A Crash Course in C §1.1

The following are simple examples to get things started. They do not do anything useful, but they

illustrate some key characteristics

of C.

/* this is a comment */
main()
{

printf("Hello world\n");

/* function definition %/
/* start of block */
/* output; statement ends with a semicolon */

/% use ’\n’ in printf to get a linefeed */
¥ /% end of block */

Things to note in example programs:

e comments cannot be nested.

e main() is the function where the program begins execution, and can only occur once.
e specific.
o all white space (spaces, tabs, blank lines, comments) is equivalent to one space.

Syntax: main()
variable declarations
statements
main()
{
int x; /% declaration and definition */
x=5; /* assignment */
printf("%d\n", x); /* output x as an integer */
main()
{
int x=17, y=12, z; /% declaration, definition, and initialization */
z=x+y; /* arithmetic expression */
printf("z = %d + %d = %d\n", x, y, z); /* each %d prints one integer */
printf("%d * %d d\n", x, y, x*y);
main()
int x;
scanf ("%d", &x); /% values input from the keyboard using scanf(): */
printf("x = %d\n", x); /% and a pointer to x */

A common error when using scanf () is not giving pointers as the arguments; to input a variable, use

int x;
scanf ("%d", &x); /* correct */
NOT
int x;
scanf ("%d", x); /* incorrect */
§1.2 A Crash Course in C 3 4 A Crash Course in C §1.3

1.2 Variables

All variables must be declared and defined before they can be used. Variable names can be composed of
characters, digits, and the underscore character (_), and can usually be up to 32 characters long. Vari-
able names should not begin with an underscore these names are used by the compiler and the libraries.
Variables have specific types and usage; basic data types:
o char: a single byte, used for one character
can specify signed or unsigned, although signed is preferred for compatibility with int
e int: integers
— can modify with short or long
— can specify signed or unsigned
o float: single precision floating point (real) number
on floating point number
e void: no type value, for pointers and functions

o double: double precis

The specific size of each type depends on the implementation; see <limits.h> for details. On Unix systems,
<limits.h> is usually the file /usr/include/limits.h.

The derived data types are

arrays (array[10])

pointers (*pointer)

functions (function())

structures (structure.member)
enumerated (enumerated_variable)
union (union_name.member)

All variables must be declared and defined; they can also be initialized and assigned a value.
e declaration: specifies the type of the identifier
e definition: reserves storage space for the object
o initialization: gives an initial value to the object during definition
o assignment: gets a new value

/*xx definition of constants **x/

main ()
char ¢ = 'x’;
char ci = 0’; / the character ’zero’, with the integer value for ASCII(0) */
char c2 = *\0’; /* has the "integer" value zero */
int n = 10;

int n_oct = 065; /* octal */
int n_hex = 0x3d; /* hexadecimal x/

long m = 10L;
unsigned int k = 304U;
unsigned long 1 = 3040UL;

float x1 = 143.0;
float x2 = 24.6e-3;
double y = 34.1L;

1.3 Input/Output

Basic input/output is obtained using the standard library

Syntax: printf ("control string", wvariable!, wvariable2, ...)

scanf ("control string", pointerl, pointer2, ...)

The control string has place holders for the variables being used (see tables on page 16). For printf(),
there can also be characters in the control string. For scanf (), the pointers to the variables being inputed
must be used. Special characters are listed on table 5 on page 16.

/*x using printf() and scanf() xx/
main ()

int x=10;
float y;

printf("(1) %d\
printf("(2) %d\n", xx5);

printf("(3) x =");
printf (" H
printf("\n"); /%% same as (4) *%/

intf("(4) x = jd\n", x); /** same as (3) *x/

printf("input x: "); scanf("%d", &x); /** prompts for imput x/
printf£("(5) x = Yd\n", x);

/*x can input several values of different types with one scanf command *x/
printf("input x, y: "); scanf("%d %f", &x, &y);
printf("(6) x =%d, y = 4f\n", x, y);

Output: (1) 10

(2) 50

(3) x=10
(4) x =10
input x: 40
(5) x = 40

input x, y: 20 34.5
(6) x =20, y = 34.500000

§1.4 A Crash Course in C

o

Table 1: C Keywords (K&R, p. 192)

data type declarations control flow statements
auto float long static unsigned | break do if
char emum register struct void case else return
const extern short typedef volatile | continue for switch
double imt signed union default goto while

1.4 Keywords and Operators: The C Language

C has a small set of keywords; all are used to either declare data types or control the flow of the program.
See table 1 for a list of the keywords. The C operators are listed in table 2 on page 15.

1.4.1 Basic Operators

Some basic operators are
o x, /[, %y o+, - arithmetic operators
p modulus division (remainder)

e <, >, <=, >=; L= ks || logical operators
— the logical operators return a 1 (true) or 0 (false).
for any conditional test, any non-zero value is true, and a 0 is false.
= equality comparision (not =)
— 1= not equal to
- &k 1l logical AND and OR operators
— A common error is using the assignment operator = when the logical operator == is required,
e.g. (x = 2) instead of (x == 2); both are valid expressions, so the compiler will not. indicate
an error.
o =, +=, *=, /=, J= assignment operators
op= assignment, E1 op=E2 <==> E1=E1 op (E2), with E1 evaluated once
for example, x+=2 ==> x=x+2
o+, - increment /decrement by 1, as a prefix or postfix
— prefix: increments the variable and gives the new value as the result
— postfix: gives the old value as the result and then increments the variable
. negation

1(0) ==>1
! (any non-zero value) ==> 0
? conditional, compact if-else as an expression instead of a statement
e (type) casts object into a different type
.

6 A Crash Course in C §1.4

/** examples of conditional operators x*/
main()

int x=0, y=10, w=20, z, T=1, F=0;

z = (x == 0); /*x% logical operator; result —-> 0 or 1 xxx/
z=(x=0); /**%% assignment operator; result --> <x> xk*/
z = 1);

z = (x = 15);

z=(x!=2);

z = (x < 10);

z = (x <= 50);

z =) < 10); /*%* performs assignment, compares <x> with 10 %%/
z = &% y<15);

z = &% y>5 &k w==10);

z = (x==5 || y>5 && w==10);

z= (T & T && F && x && x); /xx*

z=F I TIlxIlx; JHxk
/*%x for &k and !!, order is specified, stops when result is known, skx/
/*%% value of x doesn’t matter k¥x/
3}
/%% examples of the increment and decrement operators %k/
main()
int x,y;

y = +4x; /%% prefix increment x/
printf("++x: x=Y%d, y=4d\n", x, y);

x=5;

Y = X+ /** postfix increment xx/
printf ("x++: x=Yd, y=id\n", x, y);

/*x prefix decrement %/

x=Y%d, y=hd\n", x, y);

x=5;
combines separate expressions into one, ¥y = x; /#* postfix decrement **/
— evaluates them from left to right printf("x--: x=Yd, y=kd\n", x, y);
— the value of the whole expression is the value of the rightmost sub-expression ¥
Output:
§1.4 A Crash Course in C 7 8 A Crash Course in C §1.4
/** more operator examples ¥*/ 1.4.2 Order of Evaluation
main()
Operands of most operators will be evaluated in an unspecified order; do not assume a particular order and
int x, y, z; be careful about side effects of evaluations. Also, the order in which function arguments are evaluated is not
specified. There are four operators, however, do have a specified order of operand evaluation: && 11 , ?:.
x = 128;
x / 10; /%% 12, the remainder is dropped x*/ /¥* test of order of operations ¥/
x % 10; /#* y = 8, which is remainder *x/ main ()
x = 10; int x=5, y, i=4;
= Ix; Jxx x/
1(15); J%% ox/ y = x ® +4x;
printf("x = %d, y = 4d\n", x, y);
x = 0;
y = Ix; [xx oy =1 %%/ printf("i = %d, ++i = %d\n", i, ++i);
x = 10; Depending on the order of evaluation of the function arguments, the output can be
x 4= 2; 4% x = 12 *x/
x 4= 2; Jex x = 14w/ Output: |x =6, y = 30
i=4, 44 =5
x =10 or
-= a4, *k =6 **
* [eox / Output: [x =6, y = 36 ‘
= 10; i=5, 4+i =5
x *=5; /*% x = B0 *x/ These types of expressions should be avoided.
x = 10;
x /=2; /xx x =5 *x/ 1.4.3 Type Conversion
x /= 2; Jex x = 2 xx/
C does some automatic type conversion if the expression types are mixed. If there are no unsigned values,
x =2 the rules for conversion for two operands is
y= (x<5 7510 [xx y=5 wx/ o if any long double, convert other to long double
e else if any double, convert other to double
8 e else if any float, convert other to float
y=(x<5)75:10; /*x y=10 xx/ o clse
. . — convert any char or short to int
if (x < 5) /** same as the conditional y = (x <5) ? 5 : 10; **/ — if any long, convert other to long
= 5;
el:'e If there are unsigned expressions, the conversion rules are in K&R, p. 198.
y = 10; Any explicit type conversions can be made by casting an expression to another type, using (double),
b (£loat), etc., before the expression to be cast.

/*** truncation problem with integer divide *¥x/
main()
{

int x=8, y=10;

float z1, z2;

z1l = x/y;
z2 = (float) x / (float) y;
printf("z1 = %6.2f, z2 =
3
Output: \z1 = 0.00, z2 = 0.80

.2f\n", z1, z2);

§1.5 A Crash Course in C 9

1.5 Expressions and Statements

Expressions include variable names, function names, array names, constants, function calls, arra;
ences, and structure references. Applying an operator to an expression is still an expression, and an expression
enclosed within parentheses is also an expression. An lvalue is an expression which may be assigned a value,
such as variables.

it X+y z = x+y

A statement is
 a valid expression followed by a semicolon
o a group of statements combined into a block by enclosing them in braces ({ }). This is then treated

as a single statement.
o a special statement (break, continue, do, for, goto, if, return, switch, while, and the
null statement)
A statement can be labeled, for use with goto. Since goto disrupts structured control flow, however, it is
not. generally recommended.

1.6 Control Flow

Basic control flow is governed by the if..else, while, do...while, and for statements.

1.6.1 Decision Making

10 A Crash Course in C §1.6

/%% examples of the ’'if’ statement #*x/
main()
int x=5;

if (x > 0)
printf("x = %d\n", x);

if (x < 10)

printf("x = %d\n", x);

x += 10;
}
else
x -= 10;
if (x==1)

printf("one\n");
else if (x==2)

printf("two\n");
else if (x==4)

printf ("four\n");

x /= 2;
Use the if . . .else for conditional decisions. (ezp is any valid expression, statement is any valid statement) elze if ¢
. rintf("five\n");
Syntax: if (erp) e1§e
statement {
rintf("x = %d\n", x);
if (ezp) P (¢ i\)
statement)
else
statement /** ‘else’ matches up with last unmatched ’if’ in same block level xx/
if (eopl) if (x> 0)
statement it %)
else if (ezp2) printf ("odd\n") ;
statement else ’
: printf("even\n");
else else
statement printf("negative\n");
main() /*%x check if a number is odd or even ¥¥x/ if (1x % 2)
1{
int i; if (1(x % 5))
scanf ("%d", &i); x /= 10;
if (i%2 == 0) /xx DR if (1(i%2)) ==/ }
printf("i is even\n"); else
else printf("odd\n");
printf("i is odd\n"); ¥
3
§1.6 A Crash Course in C 11 12 A Crash Course in C §1.6
1.6.2 Looping Syntax:

o while: testing at the beginning of the loop
e do...while: testing at the end of the loop, after executing the loop at least once
e for: almost the same as while, in a compact form

Syntax: | pite Ceap)

statement
do

{
statement
} while Cezp);

for (eapl-opt ; cap2-opt ; exp3-opt)
statement

Here ezp-opt is an optional expression.

main() /*x% print the numbers from 1 to 10 xx*/
{

int i;

i=1;
while (i<=10)

printf("d\n", i);

it
}
¥
main () /**% print the numbers from 1 to 10 *xx/
{
int i;
i=1;
do
{
printf ("%d\n", i++);
} while (i<=10);
main() /**% print the numbers from 1 to 10 *xx/

int i;
for (i=1 ; i<=10; i++)
printf("%d\n", i);

1.6.3 Other Control Flow

Other program control flow is governed by the switch statement, which allows comparison to a series of
constant values, and the goto, continue, break, and return statements.

switch(ezp)

case (const-exp) :
statement-opt
break;

case (const-ezp) :
statement-opt
statement-opt
break;

default:
statement-opt
break;

}

Here const-exp is a constant expression, and statement-opt is an optional statement. The break; after the
default: case is optional.

Syntaxi |y statement

goto label;
continue;
break;

return (ezp-opt) ;

Here label is a statement label.

The break; statement is used inside the while, do...while, for, and switch statements to automatically
drop out of the current loop. The continue statement is used inside the loops (not switch) to jump to
the end of the loop. With while and do...while, this jumps to the next test; with for, it jumps to the
increment step, and then the test.

/** Example with ’do...while’ and ’switch’: waiting for a yes/no answer **/
main()

char ans, c;
int answer;

do
{
printf(enter y/n: "); scanf("/c", &ans);
switch (ans)
{
case ’y’: case ’Y': answer = 1; break;
case 'n’: case 'N': answer = 0; break;
default: answer = -1; break;
}
} while (amswer == -1);

printf("answer = %d\n', answer);

¥

§1.7 A Crash Course in C 13

1.7 The C Preprocessor

Two essential preprocessor commands are #define and #include. Constants and macros are defined
with #define. The program can be split into separate files and combined with #include, and header files
can also be inserted. (See sections 2.6 and 2.7.)

#include <stdio.h>

#include <math.h>

#include "functions.c"

#define MAX 10
#define TRUE 1
#define FALSE O

After inserting the math.h header file, math subroutines can be used properly. To compile using the math
library on Unix, use

% cc -o <program> <program>.c -lm

/*x program to calculate x using the quadratic formula %/
#include <math.h>

main()

{
float a, b, c, d, x, x1, x2;
printf("input a, b, c: ");

scanf ("4f %f %f", Za, &b, &c);
d = bxb - 4.0%axc;
if (d >= 0) /#% check if solution will be real or complex *x/

x1 = (-b+sqrt(d)) / (2.0%a); /** sqrt() from the math library *x/
x2 = (-b-sqrt(d)) / (2.0%a);

/** need parentheses for proper order of operations *x/
printf("x = %f, %f\n",x1,x2);

else
printf("x is complex");

/%% an example of formated output xx/
#include <math.h>

main ()

{

int n=10, i, x;

for (i=0, x=1; i<n; i++, xx=2) /*** uses comma operator ¥*x/
printf("log(%5d) = %8.31f\n", x, log((double) x));

14 A Crash Course in C §1.8

Output: [log(1) = 0.000
log(2) = 0.693
log(4) = 1.386
log(8) = 2.079
log(16) = 2.773
log(32) = 3.466
log(64) = 4.159
log(128) = 4.852
log(256) = 5.545
log(512) = 6.238

The #if...#endif preprocessor command can be used to comment out a section of code which may have
comments within it.

/** using #if for nested comments %/
#define TRUE 1
#define FALSE 0

main()

{
int x=5;
printf("x = %d\n", x);

#if FALSE /%% everything until the matching #endif is commented **/
x = 304;

#endif

printf("x = %d\n", x);

Output: [x =5

1.8 Problems

1. Run example programs to become familiar with using C.
2. Write a program to print all Fahrenheit and Celsius temperatures using conversion

C=(F-32)%5/9

for 20° increments from 32° to 212°. (See K&R, p. 9 if you are stuck.)
3. Input a number and print all its factors
4. Input a number and decide if it is prime
5. Change the quadratic formula program so that it also prints the complex solutions
6. Input an integer and print the value of each digit in English: 932 => nine three two
7. Count the number of characters and lines in a file (use *\n’ to find lines)

§1.8 A Crash Course in C 15

Table 2: Summary of C operators (K&R, p. 53)

[Operator Description Associativity |
() Function call
[1 Array element reference left to right
- > Pointer to structure member reference

Structure member reference

= Unary minus

+ Unary plus
++ Increment
— Decrement
! Logical negation
- Ones complement right to left
* Pointer reference (indirection)
& Addr
sizeof Size of an object
(type) Type cast (conversion)
* Multiplication
/ Division left to right
% Modulus
+ Addition left to right
- Subtraction
Left shift left to right
Right shift
Less than
Less than or equal to left to right

Greater than
Greater than or equal to

Equality Teft to right
Inequality
Bitwise AND left to right
Bitwise XOR left to right
Bitwise OR Teft to right
Logical AND left to right
Logical OR * left to right
Conditional * right to left
Assignment operators right to left
; Comma operator © Teft to right

“order of operand evaluation is specified.

16 A Crash Course in C §1.8

Table 3: Basic printf Conversions (K&R, p. 244)

Character Argument Type; Printed As

d, i int; decimal number

° int; unsigned octal number (without a leading zero)

x, X int; unsigned hexadecimal number (without a leading 0x or 0X, using abcdef or

ABCDEF for 10,..., 15)

u int; unsigned decimal number

c int; single character

s char #; print characters from the string until a “\0’ or the number of characters
given by the precision

£ double; [—]m.dddddd, where the number of ds is given by the precision (default 6)

e, E double; [—]m.dddddde + xx or [~]m.ddddddE + xx where the number of ds is given
by the precision (default 6)

g, G double; use %e or %E if the exponent is less than —4 or greater than or equal to
the precision; otherwise use %f; trailing zeros and a trailing decimal point are not
printed

P void *; pointer (impl ion-dependent repr ion)
% no argument is converted; print a %

Table 4: Basic scanf Conversions (K&R, p. 246)

Character Input Data; Argument Type
El decimal integer; int *
i integer; int *; the integer may be in octal (leading 0) or hexadecimal (leading 0x
or 0X)
o octal intger (with or without leading zero); int =
u unsigned decimal integer; unsigned int x
x hexadecimal number (with or without a leading 0x or 0X); int *
c characters; char *. The next input characters (default 1) are placed at the indicated

spot. The normal skip over white space is suppressed; to read the next non-white
space character, use %1s.

s character string (not quoted); char #; pointing to an array of characters large
enough for the string and a terminating ‘\0’ that will be added
e,f,g | floating-point number with optional sign, optional decimal point, and optional ex-
ponent; float *;
% literal %; no assi is made

Table 5: Escape Sequences (K&R, p. 193)

\a bell \t horizontal tab | \’ single quote

\b backspace \v vertical tab A" double quote

\f formfeed \\ backslash \ooo octal number

\n newline \? question mark | \xhh hexadecimal number
\r _carriage refurn

§1.8 A Crash Course in C 17

Table 6: ASCII Character Set (hexadecimal value, 0xNM, base 16)

18 A Crash Course in C §2.2
2 Functions

2.1 Reasons for Using Functions
e saves repetition of common routines
e functions can be used by different parts of the program
o modularizes the program, making it easier to use:
— write—can work on pieces independently
read have to understand what the large pieces do, not each statement, hiding unnecessary detail
modify changing one part should have limited effects on other parts
debug can debug the functions independently, then put everything together
— other people can use the pieces without worrying about details
® gives new variables with each call (automatic variables, lexical scoping)
e allows recursive processes

2.2 Basic Structure

The syntax for declaring a function is

Row Column (N) Syntax:
(M) [0x2 0x3 0Oxd Ox5 Ox6 0x7 Y/ : return-type function-name(argument declarations)
0x0 [SPC 0 P : P
0x1 | 1 A Q a q local variable declarations
0x2 n 2 B R b r statements
0x3 # 3 C S c B
Ox4 $ 4 D T d t
o5 | % 5 E U e u The function prototype is a declaration and is needed if the function is defined after its use in the program.
0x6 6 F VvV f v The syntax is
0x7 ! 7 G W g w Syntax:
0x8 (8 H X h x Y " return-type function-name(argument declarations) ;
0x0 |) 9 T Y i ¥
0xA | ¥ . bz 7 where the argument declarations must include the types of the arguments, but the argument names are
0xB | + K [k { optional. If the function is defined before its use, then a prototype is not necessary, since the definition also
0xC s < L \ 1 | serves as a declaration.
0xD | - - M] m }) - - - o . X
OxE N N I 4 If the return-type is omitted, int is assumed. If there are no argument declarations, use void, not empty
X 1 n
arentheses.
oxF | / ? O _ o DEL parentiy
Here are four examples of how functions can be used:
e A function that has no arguments and does not return a value:
void print_message(void)
{
printf("hello\n");
main()
print_message() ;
§2.2 A Crash Course in C 19 20 A Crash Course in C §2.3
o A function that takes an argument. The arguments are separated by commas; the order in which they e A function that takes an argument and returns a value:
are evaluated is unspecified. The value of each argument is passed to the corresponding parameter of -
the function. :‘a“‘"
void print_integer(int i) int x, y, z=100;
{ int input_integer_le n(int n); /** prototype declaration can be **/
printf("i = %d\n", i); /** inside a function **/
x = input_integer_le_n(z);
y = input_integer_le_n(z);
printf("the sum is %d\n", x+y);
}
int input_integer_le_n(int n)
print_integer(n); {
¥ int a;
o A function that returns a value: do
— ; : : : {
int input_integer(void); /** function prototype declarations **/ printf("input a positive integer less than %d: ", n);
. scanf ("
main () } while (a
{ return a;

int x, y, z;

x = input_integer();

y = input_integer();

printf("the sum is %d\n", z=x+y);

int input_integer(void)

int a;
do
{
printf("input a positive integer: ");
scanf ("%d", &a);
} while (a <= 0);
return a;

2.3 Return Statement

A function can return a value of any type, using the return statement,

Syntax: return ezp;

return (ezp);
return;

The return statement can occur anywhere in the function, and will immediatly end that function and return
control to the function which called it. If there is no return statement, the function will continue execution
until the closing } of the function definition, and return with an undefined value.

The type of the expression returned should match the type of the function; C will automatically try to
convert ezp to the return-type.

§2.4 A Crash Course in C 21

2.4 Difference between ANSI-C and “Traditional C”

If the function return type is not int, it must be specified by the function prototype declaration. This is
done differently in ANST C and “Traditional C.” For a function returning the maximum of two numbers, the
ANSI-C function would be

float max(float x, float y);
/* DR: float max(float, float); */
/** variable names {x,y} are not necessary, only the types *x/
/*% are, but using the names makes the code more readable #*x/
main()
{

float x,y,z;
z = max(x,y);
}
float max(float x, float y) /*x argument types are in the definition *x/
if (x < y)
return y;
else

return x;

¥

The “Traditional C” declarations would be

float max(); /*x argument types are not included in the declaration %%/
main()
{

float x,y,z;

z = max(x,y); /*x the function call is the same *x/

N

22 A Crash Course in C §2.5

2.5 Object Storage Classes and Scope

Functions, as with any compound statement designated by braces ({...}), have their own scope, and can
therefore define any variables without affecting the values of variables with the same name in other functions.
To be able to affect the variables, they can be made “global” by defining them externally

Available storage classes for variables are
e automatic: declared when entering the block, lost upon leaving the block; the declarations must be
the first thing after the opening brace of the block
e static: the variable is kept through the execution of the program, but it can only be accessed by
that block
e extern: available to all functions in the file AFTER the declaration; use extern to make the variable
accessible in other files
e register: automatic variable which is kept in fast memory; actual rules are machine-dependent, and
compilers can often be more efficient. in choosing which variables to use as registers.
The scope of an object can be local to a function or block, local to a file, or completely global.
e local to a function/block: automatic or static variables which can only be used within that func-
tion/block. Function parameters (arguments) are local to that function.
o global (local to a file): static variables declared outside all functions, accessible to any functions
following the declaration
o external (accessible in several files): declared as extern, accessible to functions in that file following
the declaration, even if the variable is defined in another file.
Again, it is important to distinguish between a declaration and a definition.
o declaration: specifies the type of the identifier, so that it can subsequently be used.
o definition: reserves storage for the object
There can only be one definition of a variable within a given scope.

main()

{
int x;
int x; /#*x illegal: cannot define x twice *¥x/
x=6;

¥

Also, external variables can only be defined once, although they can be declared as often as necessary. If an
external variable is initialized during the declaration, then that also serves as a definition of the variable.

float max(x,y) int x; /*¥x definition of global variable xxx/
float x,y; /** argument types listed after the definition *%/ extern int /%% declaration so other files can use it %%/
{ extern int /*%% declaration, must be defined elsewhere **%/
if (x <y) extern int /%xx declaration, definition, and initialization %%/
return y; VAL can be used by other files ***/
else
return x; main()
¥
printf ("
¥
§2.5 A Crash Course in C 23 24 A Crash Course in C §2.6

/%% An example with limited variable scope within a file *#/
main()

int m=2, n=5;
float x=10.0, y=14.1;
int count;

int print_pair_i(int x, int y);

int print_pair_f(float x, float y);
int print_pair_d(double x, double y);
void reset_count(void);

count = print_pair_f(x, y); printf("%d\n", count);

print_pair_i(m, n);
count = print_pair_i(m, n); printf("%d\n", count);

reset_count();
count = print_pair_f(x, y); printf(

\n", count);

print_pair_d(15.0, 28.0);

count = print_pair_d(20.0, 30.0); printf("%d\n", count);
int count=0; /** all functions following this declaration **/
/%% can use this variable **/

int print_pair_i(int x, int y)
printf("(%d, %d)\n", x, y);
return ++count;
int print_pair_f(float x, float y)
printf("(4f, %)\n", x, y);
return ++count;
void reset_count(void) /** resets the counter that print_pair_i #*x/

/%% and print_pair_f use **/

int print_pair_d(double x, double y)

static int count=0; /** a private copy, supersedes previous variable xx/
printf (" (%1f, %1f)\n", x, y);
return ++count;

¥

Output: (10.000000,14.100000)
1

(2,5)

(2,5)

3

(10.000000, 14.100000)
1
(15.000000,28.000000)
(20.000000,30.000000)
2

2.6 Larger Programs

A program can also be made of pieces, with a header file. This uses the #include preprocessor command.

One w

s to compile all the files separately. This can most easily be done with make (see Appendix A).

/* FILE: large_prog.c */
#include "large.h"

int max_val; /**% the ONLY definition of max_val ***/
main ()
{

int n=1;

float x=5.0;

printf("%E, %£, %f\n", A(x), BO), C(n));

printf("Jf, %£, %f\n", A(x), C(n*2), BO));

float A(float x)

return (x*x*x);

3}

/%

P to compile:

* % cc -o large large_prog.c large_sub.c
*x

P if large_sub.c will not been changed, can use
*x % cc -c large_sub.c

*x once, followed by

*x % cc -o large large prog.c large_sub.o
*x whenever large_prog.c is changed

*/

§2.6 A Crash Course in C 25

/* FILE: large.h */
#include <stdio.h>

#define TRUE 1
#define FALSE 0

extern int max_val;
extern float A(float x);

extern float B(void);
extern float C(int n);

/* FILE: large_sub.c */
#include "large.h"

int num; /**% only functions in this file can access num %%/
float B(void)
return ((float) num);
float C(int n)
{
num=n;

return (n*4.0);

¥

This has the following output, which shows a dependence on the argument evaluation order in print£().

Output: 125.000000, 0.000000, 4.000000

125.000000, 8.000000, 2.000000

26

Alternatively, the files can be put together by the preprocess
not just the unchanged ones.

A Crash Course in C

§2.6

r. This is simpler, but it compiles all the files,

/* FILE: large-2.h */
#include <stdio.h>

#define TRUE 1
#define FALSE 0

int max_val;

/*x% global variable *x*/

int num;
float B(void)

return ((float) num);

¥

float C(int n)
{
num=n;
return (n*4.0);

3}

/* FILE: large-2_sub.c */

/**x also a global variable ***/

#include "large-2.h"

float A(float x);
main()

int n=1;
float x=5.0;

printf ("
printf ("

¥
float A(float x)

return (x*x*x);

¥

Jrxx
to compile:

wxn/

#include "large-2_sub.c"

£, %f, %f\n",
Af, %E, %f\n",

/* FILE: large-2_prog.c */

A(x), BO, C(n));
A(), C(nx2), BO);

% cc -o large large-2_prog.c

§2.7 A Crash Course in C 27

2.7 Macros

Small procedures like swap () and max () can also be written as macros using #define,

#define MAX(x,y) ((x) > () 2 (x) : () /** macro for maximum *x/
float max(float x, float y) /** function for maximum *%/

return (x>y 7 x : y);

¥

There are advantages to each. Since #define causes a macro substitution, code is replaced before compila-
tion. It will run faster, since it won’t make a function call, but it will evaluate either x or y twice, which
may have side effects or take extra computational effort. MAX will work on any arithmetic type, while max ()
will only work on floats. The functions dmax () and imax () are needed for double and integer values.

Macro substitutions do not happen within quoted strings or as parts of other identifiers: ‘#define NO 0’
does not replace ‘N0’ in “x = NOTHING; or ‘printf ("NO!");." Also, parentheses are very important:

#define RECIPROCAL_1(x) 1/(x)
#define RECIPROCAL_2(x) 1/x
main ()

float x=8.0, y;

y = RECIPROCAL_1(x+10.0);
printf("1/%3.1f = 8.5f\n", x, y);
y = RECIPROCAL_2(x+10.0);
printf("1/%43.1f = %8.5f\n", x, y);

Output: [1/8.0 = 0.05556

1/8.0 = 10.12500

To continue a macro definition onto the next line, use a *\” at the end of the current line.

2.8 Problems

8. Write a function to raise a number to an integer power, x_to_int_n(x,n)

. Write a function to calculate factorial(n)

10. Try to write the factorial function recursively

11. Write a program to input a positive number and print all the prime mumbers less than or equal to
that number, using functions like is_prime () and get_positive_int().

©

28

Table 7: Summary of Storage Clas

A Crash Course in C

s (Kochan, p. 416)

§2.8

If Storage | And Variable is | Then it can be

And can be ini-

Comments

Tnside a function/ block | Within the func-

tion/ block

Class is declared referenced tialized with
static Outside a function Anywhere within | Constant expres- | Variables are initialized
the file sions only only once at the start of

program execution; values
are retained through func-
tion calls; default initial
value is 0

extern Outside a function

Anywhere within
the file

Inside a function/ block | Within the func-

tion/ block

Constant_expres-
sions only

Variable must be declared
in at least one place with-
out the extern keyword or
in exactly one place with
an initial value

auto Inside a function/ block | Within the func-

tion/ block

Any valid expres-
sion; arrays,
structs, & unions
to constant ex-
pressions only if
{..} list is w

Variable is initialized cach
time the function/ block is
entered; no default value

Tegister

Inside a function/ block | Within the func-

tion/ block

Auy
expression

Assignment to a register
not guaranteed; varying re-
strictions on types of vari-
ables that can be declared;
cannot take the address of
a register variable; initial-
ized each time function/
block is entered; no default
value

omitled Outside a function

Anywhere
within the file or
by other files that
contain appropri-
ate declarations

Constant expres-
sions only

This declaration can ap-
pear in only one place;
variable is initialized at the
start of program execution;
default value is 0

Tuside a function/ block | (See auto)

(See auto)

Defaults to auto

§3.0 A Crash Course in C 29
3 Pointers

3.1 Pointer Definition and Use

A pointer i
int, float,

a variable whose value is the address of some other object. This object can have any valid type:
1ct, ete. The pointer declaration syntax is

Syntax: 40 st pame;

A pointer to an integer is declared as

int *p;

where ‘p? is of type ‘int *’, pointer to an integer, and “xp’ is of type integer. The type of object the
pointer references must be specified before a value can be obtained. The operators used with pointers are
the pointer reference/indirection (*) and address (&) operators:

main ()
int x, *px; /* defines the pointer px x/
px = &x; /* &x ==> address of x */
pX = X; / *px ==> value px points to */

where the value of px is the address of x, and *px is equivalent to x.

(212)

(208)
px: — [(204)
x D (200)

Figure 1: Memory diagram with pointers. The memory addresses are given by (n)

/* example program x/
main ()

int x=5, y=6, *p;

p = &x; /** pointer needs to point to something %/
printf("1. x=Yd, y=ld, *p=4d\n", x, y, *p);

x =1

printf("2. x=Yd, y=ld, *p=4d\n", x, y, *p);

*p = 8;

printf("3. x=%d, y=id, *p=Yd\n", x, y, *p);

p =&y

printf("4. x=Yd, y=4d, *p=%d\n", x, y, *p);
*p += 10 * (x * *p);
printf("5. x=Yd, y=4d, *p=%d\n", x, y, *p);

30 A Crash Course in C §3.1
Output: [1. x=5, y=6, *p=5

2. x=7, y=6, *p=T

3. x=8, y=6, *p=8

4. x=8, y=6, *p=6

5. x=8, y=486, *p=486

p=ex

p=&y *p+=10%(xx *p)
Figure 2: Memory diagram with pointers the example program

Valid pointer operations:
 assignment to a pointer of the same type
o assigning a pointer to pointer of type (void *) and back
o adding or subtracting a pointer and an integer (including increment and decrement)
.
.

subtracting or comparing two pointers which point to members of the same array
assigning or comparing to zero

/#* Valid Pointer Operations #/
#define NULL 0

main ()
{
int x, y;
int *px=(&x); /** can initialize an automatic pointer **/
int *py;
void *pv;
Py = PX; /*x assign to pointer of same type ¥x/
px = (int *) pv; /*x recast a (void *) pointer %/
pv = (void *) px; /*x recast to type (void x) *%/
Py = px+2; /*% for use with arrays *%/
pX++; /*% for use with arrays *%/
if (px == NULL) /%% compare to null pointer #x/
py=NULL; /%% assign to null pointer %%/

Invalid pointer operations:

adding two pointers

multiply, divide, shift, mask pointers

add float or double numbers to a pointer
assign pointers of different types without a cast

¥
§3.2 A Crash Course in C 31 32 A Crash Course in C §3.3
/** TIllegal Pointer Operations %%/ 3.3 Arrays
main()
An array is a contiguous space in memory which holds a certain number of objects of one type. The syntax

int x, y; for array declarations is

int *px, *py, *p;

float *pf; Syntax: o rray-namelconst-sizel ;

. static type array-name[const alization-list;

px = &x; /*% legal assignment ¥/ static type array-namel] = initialization-list;

py = &y; /*x legal assignment xx/

P = Px + py; /*x addition is illegal xx/ An array of 10 integers is declared as

P = PX * py; /** multiplication is illegal **/ int x[10];

P = px + 10.0; /*x addition of float is illegal **/ ;
, pf = px; /** assignment of different types is illegal *x/ with index values from 0 o 9.

3.2 Pointers as Function Arguments: “Call by Value”

When a function is called, it gets a copy of the arguments (“call by value”). The function cannot affect the
value that was passed to it, only its own copy. If it is necessary to change the original values, the addresses
of the arguments can be passed. The function gets a copy of the addresses, but this still gives it access to
the value itself. For example, to swap two numbers,

main()
{
float x=5.0, y=6.0;
void swap_A(float *x, float *y), swap_V(float x, float y);

printf("x = %6.2f, y = %6.2f\n", x, y);

swap_V(x, y);

printf("x = %6.2f, y = %6.2f\n", x, y);

swap_A(&x, &y);

printf("x = %6.2f, y = %6.2f\n", x, y);
¥

void swap_A(float *x, float xy) /% passes addresses of x and y **/

float tmp = x;

*x = *y;
*y = tmp;
void swap_V(float x, float y) /** passes values of x and y **/

float tmp = x;

x=y;
y = tmp;
Output: |x = 5.00, y = 6.00
x= 5.00,y= 6.00
x= 6.00,y= 5.00
Here, swap_V() does not work, but swap_A() does.

A static array can be initialized:

static int x[5] = {7,23,0,45,9};
static int x[1 = {7,23,0,45,9};

static int x[10] = {7,23,0,45,9,0,0,0,0,0};
static int x[10] = {7,23,0,45,9};

where the remaining five elements of x[10] will automatically be 0. Part of the array can be passed as an
argument by taking the address of the first element of the required subarray (using &), so &x[6] is an array
with 4 elements.

~

23 0 45 9

Figure 3: Box-and-pointer diagram of arrays: static int x[5] = {7,23,0,45,9};

D

Figure 4: Memory diagram of arrays

§3.3 A Crash Course in C 33

#define MAX 10
static int b[MAX] = {1, 5, 645, 43, 4, 65, 5408};

main()
int i;

int *p, *p_max;
static int a[l = {1, 5, 645, 43, 4, 65, 5408, 4, 7, 90};

printf("array elements: ");
for (i=0; i<MAX; i++)
printf("4d ",alil);

printf("\n");

for (i=0, p=p_max=a; i<MAX; i++, p++)
if (*p > *p_max)

{
p_max = p;
printf("new maximum value: %d\n", *p);
else
printf("\"distance\" from maximum element: %d\n", (p-p_max));

¥

Output: array elements: 1 5 645 43 4 65 5408 4 7 90
"distance" from maximum element: 0

new maximum value: 5

new maximum value: 645

"distance" from maximum element: 1

"distance" from maximum element: 2

"distance" from maximum element: 3

new maximum value: 5408

"distance" from maximum element: 1

"distance" from maximum element: 2

"distance" from maximum element: 3

The array and pointer are closely related, in that x[i] and *(x+i) both get the i+1 element in the array,
and &x[i] and (x+1) are both pointers to the i+1 element.

There are differences between them, however. An array name is a constant, while a pointer is a variable, so
int x[10], *px;
PX = X; px++; /*x valid *x/
X = pxX; Xt+; /*x invalid, cannot assign a new value **/

Also, defining the pointer only allocates memory space for the address, not for any array elements, and the
pointer does not point to anything. Defining an array (x[10]) gives a pointer to a specific place in memory
and allocates enough space to hold the array elements. To allocate space for an array declared as a pointer,
use *malloc() or *calloc(), which are declared in stdlib.h, and then free() to deallocate the space after
it is used.

34 A Crash Course in C §3.4

/**% memory_allocation for arrays *¥x/
#include <stdlib.h>

main()
{
int n;
float *a, *b;

a = (float *) malloc(n * sizeof(float)); /*%% not initialized *%%/
b = (float *) calloc(n, sizeof(float)); /*%% initialized to 0 %%/

if ((a == NULL) || (b == NULL))
printf("unable to allocate space");

free(a);
free(b);

3.4 Functions Returning Pointers

In addition to passing pointers to functions, a pointer can be returned by a function. Three pointers must
be of the same type (or be recast appropriately):

o the function return-type

o the pointer type in the return statement

o the variable the return-value is

ssigned to

The pointer should not point to an automatic local variable within the function, since the variable will not
be defined after the function is exited so the pointer value will be invalid.

/*%* returns a pointer to the maximum value in an array **+/

int maximum_vall(int A[], int n);
int maximum_val2(int *a, int n);
int *maximum_ptri(int *a, int n);
int *maximum_ptr2(int *a, int n);

main()

int i,n;

int A[100], *max;

printf("number of elements: "); scanf("%d",&n);
printf("input %d values:\n", n);

for (i=0; i<n; i++)

scanf ("d", A+i);

printf("maximum value = %d\n", maximum_vali(A,n));
printf("maximum value = %d\n", maximum_val2(A,n));

max = maximum_ptri(A,n);
printf("maximum value = %d\n", *max);

§3.4 A Crash Course in C 35

int maximum_vali(int A[], int n)
{
int max, i;
for (i=0, max=0; i<n; i++)
if (A[i] > max)
max = A[il;
return max;

¥

int maximum_val2(int *a, int n)
{
int max=0;
for (; n>0 ; n-——, a++)
if (*a > max)
max = *a;
return max;

int *maximum_ptri(int *a, int n) /*xx will work kxx/

int *max = a;
for (; n>0; n--, a++)
if (*a > *max)
max = a;
return max; /*** max points a cell in the array #**x/

int *maximum_ptr2(int *a, int n) /**%x won’t work xxx/
int max = *a;

for (; n>0; n--, a++)
if (*a > max)

max = *a;

return &max; /**% max will not exist after function ends **%/
3
Output: number of elements: 10

input 10 values:

R

maximum value = 7
maximum value = 7
maximum value = 7

36 A Crash Course in C §3.5

3.5 Multidimensional Arrays

A multidimensional array can be defined and initialized with the following syntax:

Syntax: type arra L - ows] [t- Is];

static type array-name[const-num-rows] Lconst-num-cols] = init-list;
static fype array-namel[] [const: cols] = initialization|

static int x[1[3] = {{3, 6, 9}, {4, 8, 12}}; /* static——can be initialized */
static int y[2]1[3]1 = {{3},{4}}; /x OR {{3,0,0},{4,0,0}} =*/

main()

int z[2][3];
printf("%d\n", x[11[2]1); /** output: 12 %%/

To get a pointer to the ith row of the array, use x[i-1].

Alternatively, a pointer to a pointer can be used instead of a multidimensional array, declared as int **y.
Then y points to a one-dimensional array whose elements are pointers, *y points to the first row, and *#y is
the first value.

When passing a two-dimensional array to a function, it can be be referenced in four ways:
e xxy, as a pointer to a pointer;
e xy[1, an array of pointers;
e y[1[COL], an array of arrays, unspecified number of rows; or
o y[ROW] [COL], an array of arrays, with the size fully specified.
Here COL and ROW must be constants.

§3.5 A Crash Course in C 37 38 A Crash Course in C §3.5
#define MAX 5
x[0][0]: _ x[0]1]: _ x[O]f2]: #define LINEFEED printf("\n")
3 6 9 int **imatrix(int n, int m);
x x[0]: void print_imatrixi(int A[1[MAX], int n, int m);
void print_imatrix2(int *all, int n, int m);
int sum_imatrix1(int al1[MAX], int n, int m);
o~ 4 8 12 int sum_imatrix2(int **a, int n, int m);
x[1]: void input_imatrix(int *xa, int n, int m);
<[]0} <[] <12
main ()
int i, j, n = MAX;
int **A, **b, C[MAX][MAX];
A = imatrix(n, n);
for (i=0; i<MAX; i++)
for (j=0; j<MAX; j++)
x[1][2]: 12
AT = %
x[1][1]: 8 CLil[j] =i + j;
}
x[1][0]: 4
print_imatrix1(C, MAX, MAX); LINEFEED;
x[0](2]: 9 print_imatrix2(A, n, n); LINEFEED;
x[o][1): 6 printf("%d\n", sum_imatrix1(C, MAX, MAX));
printf("%d\n", sum_imatrix2(A, n, n));
x[0][0]: 3 LINEFEED;
x[1] — printf("size of array to input: "); scanf("%d", &n);
b = imatrix(n, n);
x[0] Lo input_imatrix(b, n, n);
. D print_imatrix2(b, n, n);
3
Figure 5: Box-and-pointer & memory diagrams of 2D arrays: int **imatrix(int n, int m)
static int x[2][3]1={{3,6,9},{4,8,12}}; {
int i, **a;
a = (int **) malloc(n * sizeof (int *));
a[0] = (int %) malloc(n*m * sizeof (int));
for (i=1; i<n; i++)
a[il] = a[i-1] + m;
return a;
3
§3.5 A Crash Course in C 39 40 A Crash Course in C §3.5
void print_imatrixi(int A[MAX][MAX], int n, int m) Output: 0 1 2 3 4
{ 1 2 3 4 5
int i, 2 3 4 5 6
for (i=0; i<m; i++) 3 4 5 6 7
{ 4 5 6 7 8
for (j=0; j<m; j++)
printf("%sd ", A[i1(j1); 0 0 0 0 0
LINEFEED; 0 1 2 3 4
} 0 2 4 6 8
¥ 0 3 6 9 12
0 4 8 12 16
void print_imatrix2(int *a[], int n, int m)
100
int i, j, *b; 100
for (i=0; i<m; i++, a++)
size of array to input: 2
for (j=0, b = *a ; j<m; j++, b++) 34
printf("%5d ", *b); 75
LINEFEED; 3 4
7 5

3}
int sum_imatrix1(int a[][MAX], int n, int m)

int i, j, *b, sum=0;

for (i=0, b = *a; i < n#m; i++, b++)
sum += *b;

return sum;

int sum_imatrix2(int **a, int n, int m)
{

int i, j, *b, sum

for (i= i<n; i++, a++)
for (j=0, b = *a ; j<m; j++, b++)
sum += *b;

return sum;

¥

void input_imatrix(int *xa, int n, int m)
{
int i, j, *b;
for (i=0; i<n; i++, a++)
for (j=0, b = *a ; j<m; j++, bi+)
scanf("%d", b);

§3.6 A Crash Course in C 41

3.6 Strings

Strings are simply character arrays, or more accurately, pointers to characters. A string literal is enclosed
within quotes, "...", and is an array with those characters and a ‘\0’ at the end, so "hello" <==>
{’h’,%e’,’17,°17,70°,°\0’}. The string can be defined as

static char *p = "hello"

An example illustrating the use of pointers with the string copies one string into another:

main ()
{
char *t = "hello", s[1001;
void strcpy(char %, char *);
strepy(s,t);
printf("%s\n", s); /*% will print ’hello’ %%/

/%% strcpy: copy t to s; pointer version 2 (K&R, p 105) **/

void strcpy(char *s,char *t)

while (ks++ = *t++) /*% OR while ((ks++ = *t++) != >\0’) *x/

3.7 Command Line Arguments

It is often useful to give a program arguments when it is run. This is done with command line arguments,
which are arguments of main(). There are two arguments: an integer, argc, which is the number of items
in the command line (including the program name), and an array of strings, *argv[], which are the actual
items. The first string, argv [0], is the name of the function being executed.

If a number
a string as i

s needed, it has to be obtained using sscanf (), which is the same as scanf () except it takes
first argument. This example prints the square root of a number.

#include <math.h>
main(int argc, char xargv[]) /** program to find sqrt(x) #*x/

float x;
if (argc == 2)

sscanf (argv[1], "4f", &x);
printf("the square root of %f is %f\n", x, sqrt(x));

else
{
printf ("Wrong number of arguments\n");
printf ("usage: %s x \n", *argv);

}

42 A Crash Course in C §3.8
3.8 Pointers to Functions
Functions can return pointers, or a pointer can point to a function:

int *£(); /* a function f returning a pointer to an int */
int (*£)(); /* a pointer to a f which returns an int */

Since the precedence of () is higher than *, parentheses are needed around *f to get a pointer to a function.

float square(float x);
float cube(float x);
float arith(float x, float (*func)(float));

main()
{
float x, y, z;
printf("Enter x: "); scanf("4f", &x);

y = arith(x, square);
z = arith(x, cube);

printf("x = %f, x"2 = %f, x"3 = %f\n", x, y, 2);
3
/*x the arguments for arith() are x and func,
** which is a pointer to a function whose argument is one float
*x/

float arith(float x, float (*func)(float))
{

return (xfunc) (x);

float square(float x)

return xxx;

¥

float cube(float x)
{

return x*x*x;

3.9 Problems

11. Write a program to input two matrices, add and multiply them, and print the resulting matrices.
The matrices can be any size up to a maximum (#define MAX 5, for example). Use functions
input_matrix, print_matrix, add_matrix, multiply_matrix.

§4.0 A Crash Course in C 43

4 Structures
4.1 Syntax and Operations

A structure is a data type which puts a variety of pieces together into one object.

Syntax: struct structure-tag-opt

member-declarations
) structure-names-opt ;

struct structure-tag structure-name;

structure-name. member
ptr-to-structure->member

struct time
{
int hour;
int minute;
int second;
} now;

main()
struct time later;
now.hour = 10;

now.minute = 30;
now.second H

later = now;
printf("the later time is %d:%2d:%2d\n",
later.hour, later.minute, later.second);

¥

This declares structure tag, struct time, which keeps the members, hour, minute, second, in one piece.
The variables now and later are structures of type struct time, declared the same way as integers. The
members of the structure can be any type: int, float, double, char, arrays, other structures, and
pointers to any of these. To access the members, there are two operators available (. and ->). To access the
specified member, use the . operator.

Valid structure operations:

assigning to or copying it as a unit

accessing its members

taking its address with &

passing it as an argument to functions, returning it by functions

— With “Traditional C,” structures can not be used as arguments or return types of functions.
Pointers to structures must be used to interact with functions. If compatibility is needed, pointers
to structures should continue to be used exclusively. Unfortunately, this may connect functions
together more than necessary.

initializing it with a list of constant member values, or by assignment for automatic structures.
— Initialization is not allowed with “Traditional C,” so a separate assignment statement should be
used.

44 A Crash Course in C §4.1

Invalid structure operations:
o they may not be compared
With ANSI-C, structures are initialized in the same way as arrays,
struct time noon = {12, 00, 00};

Pointers to structures are very useful, and often necessary when functions are used. For example,
struct time now, *t;

t = &now; /* identical to x=&y with numerical types x/
(xt) .hour = 6; /* gets the hour */
t->minutes = 30; /* gets the minutes */

The variable t is a pointer to a structure. Since the precedence of . is higher that that of *, the parentheses
are needed to get the actual structure from the pointer to it. Since this is used often, the -> operator was
made to do the same thing.

Structure members can be other structures.

struct time
{

int hour, minute, second;
3,

struct date

int month, day, year;
¥
struct dt

struct date d;
struct time t;

main()

struct dt start_class;
start_class.d.month =
start_class.d.day = 5
start_class.d.year = 93;

§4.2 A Crash Course in C 45

4.2 typedef

typedef defines a new type, which can simplify the code.

Syntax: | oo odef data-type TYPE-NAME;

typedef struct structure-tag TYPE-NAME;
typedef struct

member-declarations
} TYPE-NAME ;

Using typedef also helps portability, especially with machine dependent data types and sizes. With typedef,
the change can be made in one place and is fixed for the whole program. For example,

typedef int Length, Width, Height;

typedef struct time TIME;

TIME now, *t;

will specify the types Length, Width, Height and TIME, and now and t are defined above. typedef is a
syntactic simplification to aid reading and modifying the program. It does not actually create new types.

4.3 Array of Structures

An array of structures can also be defined:

struct date

int month, day, year;
};
typedef struct date DATE;

main()

int i;
DATE birthdays[10], *bday;
bday = birthdays; /*%x pointer <==> array name #x*/
for (i=0; i<10; i++, bday++)
scanf("%d %d %d", &bday->month, &((*bday).day), &birthdays[i].year)

for (i=0, bday = birthdays; i<10; i++, bday++)
printf("%2d/%02d/%2d\n", bday->month, bday->day, bday->year);

/*x% the %02d pads the field with 0Os, not spaces *¥x/

When bday is defined as a pointer of type DATE (struct date), incrementing will be done properly to get
to successive structures in the array.

46 A Crash Course in C §4.4

4.4 Use with Functions

Structures can be used with functions. Just as with other data types, either the structure or a pointer to
the structure can be passed to the function. The choice should be based on three things,

e does the structure need to be changed by the function,

e is the structure small enough that copying it as a local argument will not affect performance,

e does compatibility with old compilers require using pointers to the structures.

In addition, the function can return a structure or a pointer to a structure.

/** functions to increment the time and date %/

#define 402d", (t).hour, (t).minute, (t).second)
#define 2d/%2d/%2d", (d).month, (d).day, (d).year)
#define LINEFEED printf("\n")

typedef struct

int hour, minute, second;
} TIME;

typedef struct
{

int month, day, year;
} DATE;

void time increment(TIME xt, DATE *d);
void date_increment (DATE xd) ;
DATE date_increment2(DATE d);

main()

TIME now;
DATE today;

now.hour = 12; now.minute = 30; now.second = 15;
today.month = 1; today.day = 7; today.year = 93;

PRINT_TIME(now); LINEFEED;
PRINT_DATE(today); LINEFEED;

time_increment (&now, &today);
PRINT_TIME(now); LINEFEED;
PRINT_DATE(today); LINEFEED;

date_increment (&today) ;
PRINT_DATE(today); LINEFEED;

PRINT_DATE (date_increment2(today)); LINEFEED;
/** calls date_increment2 three times in macro, but today is unchanged **/

PRINT_DATE(today); LINEFEED;

}
§4.4 A Crash Course in C 47 48 A Crash Course in C §4.5
/*x% time_increment needs to be able to change two values %%/ Output: 12:30:15
void time_increment (TIME %t, DATE *d) 1/ 7/93
12:30:16
if (t->second != 59) 1/ 7/93
++t->second; 1/ 8/93
else if (t->minute != 59) 1/ 9/93
1/ 8/93
t->second = 0; t->minute++;
}
else if (t->hour != 23) 4.5 Linked Lists
{
t->second = 0; t->minute = 0; t->hour++; A member of a structure can also be a pointer to the same structure type. This is useful with linked lists
and trees.
else
1 #define NodeMemory (NodePtr) malloc(sizeof (struct node))
t->second = 0; t->minute = 0; t->hour =
date_increment (d) ; struct node
} {
3 int val;
struct node *r_branch;
void date_increment (DATE *d) N struct node 1_branch;
R H
if (d->day !'= 31) /%% assume all months have 31 days %/ typedef struct node * NodePtr;

d->day++;
else if (d->month != 12)

d->day = 1; d->month++;

d->day = 1; d->month =

d->year++;

/*x* an alternative to date_increment, if it only returns one value **%/

DATE date_increment2(DATE d) /*xx can also pass date one structure xxx/
{
if (d.day != 31) /%% assume all months have 31 days xx/
++d.day;
else if (d.month != 12)
1{
d.day = 1; d.month++;
else
d.month = 1; d.year++;
}

return d;

main()
NodePtr tree, branch;

tree = (NodePtr) malloc(sizeof (struct node));
tree->val = 10;

tree->r_branch = NodeMemory;

tree->1_branch = NodeMemory;

tree->r_branch->val = 3;
tree->1_branch->val = 40;
printf("%d, %d, %d\n", tree->val, tree->r_branch->val, tree->1_branch->val);

§4.6 A Crash Course in C 49

4.6 union

With union, different types of values can be stored in the same location at different times. Space is allocated
to accomodate the largest member data type. They are syntactically identical to structures,

Syntax: union union-tag-opt

member-declarations
} union-names-opt;

union-name. member
ptr-to-union->member

/#* a simple example with unions **/
union union_ifd /#* can store either an integer, float, or double value **/
int ival;

float fval;
double dval;

main()

union union_ifd ui;

50 A Crash Course in C §4.7

4.7 enum

The type enum lets one specify a limited set of integer values a variable can have. For example, flags are
very common, and they can be either true or false.

Syntax:

enum t { tags} iabl 1

95§ i s-opt;

enum-name variable-name

The values of the enum variable are integers, but the program can be easier to read when using enum instead
of integers. Other common enumerated types are weekdays and months.

The enumerated values can be set by the compiler or set explicitly. If the compiler sets the values, it starts
at 0 and continues in order. If any value is set explicitly, then subsequent values are implicitly assigned.

enum flag_o_e {EVEN, ODD};
enum flag_o_e testl;

typedef enum flag_o_e FLAGS;
FLAGS if_even(int n);

main ()

int x;
FLAGS test2;

printf("input an integer: "); scanf(", &x);
ul.ival = 10; test2 = if_even(x);
printf("%d\n", ul.ival); if (test2 EVEN)
ul.fval = 10.34; printf("test succeeded (%d is even)\n", x);
printf("%f\n", ul.fval); else
ul.dval 10.03454834; printf("test failed (%d is odd)\n", x);
printf("%.101f\n", ul.dval);
- . _ - . - - FLAGS if_even(int n)
It is the programmer’s reponsibility to know which variable type is being stored at a given time. The code
ul.ival=10; if (n%2)
printf ("%f\n", ui.fval); return 0DD;
else
will produce an undefined result. return EVEN;
b
§4.7 A Crash Course in C 51 52 A Crash Course in C §4.8
/¥*% example with unions *x#/ 4.8 Example: Complex Numbers
#define ASSIGN_U_NONE(x) {x.utype = NONE;}
#define ASSIGN_U_INT(x,val) {x.utype = INT; i o= - .
sdefine ASSICN.UFLOAT(x,val) {x.utype = FLOAT; x.u.f = A complex number can be represented as
#define ASSIGN_U_DOUBLE(x,val) {x.utype = DOUBLE; x.u.d = val;} = a+bi=re?
typedef union with
int a = rcos(f)
float f; .
double d; b = rsin(f)
} Arith_U; ro= Va*+b?
typedef enum {NONE, INT, FLOAT, DOUBLE} Arith_E; b
typedef struct 6 = tan—! (,)
a
Arith_E utype;
Arith U u; and
} Var_Storage; .
z=z+22 = (a1 +az)+ (b +b2)i
main() z=ax*z = (@102 —bib)+ (a1bz + azbi)i
o Firpe(?1t02)i
int ij

Var_Storage al[10];

a->utype = INT; a->u.i = 10; /** pointer to union operation **/
a[1].utype = FLOAT; a[1].u.f = 11.0;

a[2].utype = DOUBLE; a[2].u.d = 12.0;

ASSIGN_U_NONE (a[3]);

ASSIGN_U_INT(a[41, 20);

ASSIGN_U_FLOAT(a[5], 21.0);

ASSIGN_U_DOUBLE(al6], 22.);

for (i=0; i<7; i++)
{
if (print_Var(a[il))
printf("\n");
}

int print_Var(Var_Storage x)

switch (x.utype)

case INT: printf (")d",x.u.i); break;
case FLOAT: printf (break;
case DOUBLE: printf ("%.81f",x.u.d); break;
default: return (0); break;

return (1);

§4.8 A Crash Course in C 5:

/¥*+ Example using structures to represent complex numbers *xx/
#include <math.h>
#include "progd-06.h"

main()
{
static COMPLEX z1 = {{1.0, 2.0}, {0.0, 0.0}};
static COMPLEX z[MAX] = { {{t.0, 1.0}, {0.0, 0.0}},
{{2.0, -1.0}, {0.0, 0.0}} };

rect_to_polar(&z1);
rect_to_polar(z);
rect_to_polar(z+1);
complex_print (z1, BOTH);
complex_print (*z, BOTH);
complex_print (*(z+1), BOTH);
z[2] = z1;

2[3] = complex_add(z[0], z[11);
complex_print (z[3], BOTH);
/+x write complex_multiply() as an exercise: &/

/** *(z+4) = complex_multiply(*z, *(z+1)); **/
/** complex_print (*(z+4), BOTH); **/
}

void complex_print (COMPLEX z, C_FLAG flag)
switch (flag)
{

case RECT:
printf("z = %8.3f +)8.3f i\n", (z.r.a), (z.r.b));
break;

case POLAR:
printf("z = "); PRINT_POLAR(z);
break;

case BOTH:
PRINT_BOTH(z) ;
break;

}

}

void rect_to_polar(COMPLEX *z)

double a = (z->r.a);
double b = (z->r.b);
z->p.r = sqrt(a*a + bxb);
z->p.theta = atan2(b,a);

COMPLEX complex_add (COMPLEX z1, COMPLEX z2)
{

COMPLEX sum;

sum.r.a = (zl.r.a) + (z2.r.a);
sum.r.b = (z1.r.b) + (z2.r.b);
rect_to_polar (gsum);

return (sum);

54 A Crash Course in C §4.9

/*x File: S4/prog4-06.h x*/
#define MAX 10

#define PRINT_RECT(z) printf("%8.3f + %8.3f i", (z.r.a), (z.r.b))
#define PRINT_POLAR(z) printf("%8.3f * exp(%8.3f i)", (z.p.r), (z.p.theta))
#define PRINT_BOTH(z) { \

printf("z = "); PRINT_RECT(z); \

printf(" = "); PRINT_POLAR(z); printf("\n"); }

struct rect

double a, b;
};

struct polar

double r, theta;
}

struct complex

struct rect r;
struct polar p;

typedef struct complex COMPLEX;

enum c_flag {RECT, POLAR, BOTH};
typedef enum c_flag C_FLAG;

/##% function prototypes for rect_to_polar, complex_add, complex_print *k*/
void rect_to_polar (COMPLEX *z);

COMPLEX complex_add (COMPLEX z1, COMPLEX z2);

void complex_print(COMPLEX z, C_FLAG flag);

/*** function prototypes for polar_to_rect, complex_multiply, complex_input,
to be written as exercises *xx/

void polar_to_rect (COMPLEX xz);

COMPLEX complex_multiply(COMPLEX z1, COMPLEX z2);

COMPLEX complex_input(void);

Output: [z = 1.000 + 2.000 i 2.236 * exp(1.107 i)
z= 1.000 + 1.000 i 1.414 * exp(0.785 i)
z= 2.000+ -1.000 i 2.236 * exp(-0.464 i)
z 3.000 + 0.000 i 3.000 * exp(0.000 i)

4.9 Problems

12. Write the functions polar_to_rect, complex_multiply, and complex_input to be used with the
answer to question 11.

§5.0 A Crash Course in C

o

5 C Libraries

The standard C libraries include functions for
memory allocation

math functions

random variables

input/output operations

file manipulations

string manipulations

other functions (see K&R, Appendix B)

5.1 Memory Allocation

To have variable array sizes, dynamic memory allocation can be used.

=i

#include <stdlib.h>

void *malloc(size_t size);
void *calloc(n, size_t size);
void free(void *p);

in ANSI C, size_t is the size of a character. The (sizeof) operator returns the size of an object in uni
of size_t. In addition, the type of the pointer returned by malloc and calloc has to be cast as needec
For example,

s
1

#include <stdlib.h>
main()
int i, n;
double *A, *a;
scanf ("%d", &n);
A = (double *) malloc(n * sizeof (double));
for (i=0; i<n; i++)
scanf ("J1£", A+i);

for (i=0, a=A; i<n; i++)
printf("A[%d]l = %Llf\n", i, *a++);

56 A Crash Course in C §5.2

5.2 Math Libraries

There are a variety of math functions available, all declared in /usr/include/math.h. Most take arguments
of type double and return values of type double. For example,

#include <math.h>

main()

{

double x,y,z,theta;

z = sqrt(x);

z = sin(theta); /**% theta is in radians %%/
z = asin(x);

z = atan(x);

z = atan2(y, x); /*xx atan(y/x) **x/

z = exp(x); [eex e"x wxx/

z = log(x); /*xx 1n(x) [natural log]l *xx/
z = pou(x, y); [xxx xy wex/

3

#include <math.h>

main()

{

double x, y, theta;

scanf ("L1f", &x);

printf("sqrt (%f) = %f\n", x, sqrt(x));
printf("sin(0.6) = %f\n", sin(0.6));
printf("atan(10) = %1f\n", atan(10.0));
printf("atan(10/20) = %1f\n", atan2(10.0, 20.0));
printf("exp(10) = %1f\n", exp(10.0));
printf("log(10) = %1f\n", log(10.0));
printf("log_10(10) = %1f\n", logl0(10.0));
printf("10°1.3 = %1f\n", pow(10.0, 1.3));

Output: [sqrt(10.000000) = 3.162278
5in(0.6) = 0.564642
atan(10) = 1.471128
atan(10/20) = 0.463648
exp(10) = 22026.465795
log(10) = 2.302585
log_10(10) = 1.000000
10°1.3 = 19.952623

When compiling, is must be specified that the math libraries are being used. For example, on Unix systems,
use

% cc -o <program> <program>.c -lm

§5.3 A Crash Course in C

=1

o

5.3 Random Variables

Using random variables is system dependent. The ANSI C functions are rand() and srand().

int rand(void);
void srand(unsigned int seed);
int RAND_MAX;

The function rand () will return a value between 0 and RAND_MAX, where RAND_MAX is defined in <std1ib.h>
and is at least 32767. The function srand() is used to seed the random number generator. Many sys
have better random number generators, and C can usually access them, although this would then not be
very portable. A good practice is to write a function or macro which returns a random number, and have
this call the system-specific routines.

#include <stdlib.h>

#define RANDOM_NUMBER_O1 ((double) rand() / RAND_MAX)
#define SEED_RANDOM_GEN(seed) (srand(seed))

main ()

{

int i, n, seed;
double *x;

printf("number of random values: "); scanf("4d", &n);

58 A Crash Course in C §5.4
5.4 Input/Output

The conversions for printf() and scanf() are described in tables 3 and 4. In addition, I/O includes
character output, sscanf (), and file manipulation.

#include <stdio.h>

int i;
char c, s[], file_name[], access_mode[];
FILE *fp;

£p = fopen(file_name, access_mode);
fflush(fp); /#x+ flush the buffers ***/
fclose(£p) ;

putchar(c); /*xx one character ¥/
putc(c, fp);

puts(s); /*%% one line *xx/
fputs(s, fp);

printf (format, argl, ...) /*x% formatted k%/
fprintf(fp, format, argl, ...)

sprintf(s, format, argl, ...);

c=getchar () ;

x = (double %) malloc(n * sizeof(double)); c=getc(fp);
gets(s);
printf("input seed: "); scanf("/d", seed); fgets(s,i,fp); *%% first i characters or till newline *xx/
SEED_RANDOM_GEN (seed) ; scanf (format, &argl, ...) /%% formatted k%/
fscanf (fp, format, &argl, ...);
for (i20; i<n; i++) sscanf (s, format, &argl, ...);
x[i] = RANDOM_NUMBER_O1;
printf ("%.81f\n", x[il);
3}
Output: [number of random values: 5
input seed: 10
0.13864904
0.86102660
0.34318625
0.27069316
0.51536290
§5.4 A Crash Course in C 59 60 A Crash Course in C §5.5
/*** reads in n integers from a file, 5.5 Strings

then prints the values to another file as type float *x/

#include <stdio.h> /**% for file manipulation functions *#*/
#include <stdlib.h> /#%% for malloc() wwx/
main ()

int i, n, *x;
char file_name [FILENAME_MAX];
FILE *fp;

printf("file name for imput: "); scanf
fp = fopen(file_name, "r");
if (fp == NULL)

, file_name);

{
printf ("error: could not open file %s\n", file_name);
exit(-1);
}
fscanf(fp, "%d", &n);

x = (int *) malloc(n * sizeof(int));

for (i=0; i<n; i++)
if (fscanf(fp, "%d", x+i) == EOF)

{
printf("error: could not input %d integers\n", n);
exit(-1);
}
fclose(fp);

printf("file name for output: "); scanf("%s"
fp = fopen(file_name, "w");
if (fp == NULL)
{
printf("error: could not open file %s\n", file_name);
exit(-1);

, file_name);

fprintf(fp, "%d\n", n);
for (i=0; i<n; i++)
if (fprintf(fp, "%8.3f\n", (float) x[i]) < 0)

{
printf ("error: could not write %d integers\n", n);
exit(-1);
}
fclose(fp);

A variety of string functions are available.

#include <string.h>

int i;

size_t n;

char *s, *sl, *s2, *to, from;;

s = strcat(sl, s2);

strchr(s, char c);

stremp(sl, s2); [#kx s1=s2 7 0 : (s1>s2 7 1 : -1) #xx/
strcpy(to, from); /*%* returns *to *¥x/

strlen(s);

strstr(sl, s2); /*%x is s2 in s17 *xx/

= strncat(sl, s2, int n); /#*x only use first n characters #*xx/
strncmp(si, s2, int n);

s = strncpy(to, from, int n);

PR

#include <string.h>
#include <stdlib.h>

main()
{
char *s, *ct = "hello";
s = (char *) malloc(100 * sizeof (char));

strepy(s, ct);
printf("%s\n", s);

if (strcmp(s, ct) == 0)
printf("strings equal\n");
else
printf("\"%s\" and \"%s\" differ\n", s, ct);

#include <stdio.h>
#include <stdlib.h>

main()

int i, j;

float x;

char xsi = "10 20 15.5", *s2;

s2 = (char *) malloc(100 * sizeof (char));

sscanf(si,
printf("i

d %d Af", &i, &, &x);
d, j =%d, x = %f\n", i, j, x);

sprintf(s2, "i = %d, j
printf("the string is \

id, x = U4E", 1, j, x);
\"\n", s2);

¥

Output: i =10, j = 20, x = 15.500000

the string is =10, j = 20, x = 15.500000"

§A A Crash Course in C 61 62 A Crash Course in C §A
A Make Program # a makefile for program large, Section 2
cc = /bi # ifi iler to b d
The make function is used to simplify the compilation process. It has three main features: /bin/ce speciiies compiler to be use
o target specifications with dependencies, O0BJS = large_prog.o large_sub.o # object files to be used
e command lines to be executed, and
o assignment of strings to variables large: $(DBJS) # makes the executable file "large"
The target is the file to be produced, either an executable file or an object file. The dependency list specifies $(CC) o large $(OBJS)
the files on which the target depends, so if any of the dependency files has been modified since the target
file was created, make will create a new target file. The command lines specify how the target is supposed $(0BJS): large.h # makes any needed/specified object files
to be made. Although this is primarily using the cc 1, other co ds can also be i
Syntax: clean: # cleans up - removes object files
yntax: # comments m $(0BJS)
var = string value
) Output: |% make -k large
$(var) # uses variable value /bin/cc -0 -c large_prog.c
target : dependencies /bin/cc -0 -c large_sub.c
o /bin/cc -o large large_prog.o large_sub.o
TAB command-lines
The following commands run make: 4 make -k
y /bin/cc -0 -c large_prog.c
4‘ ma‘;e :i <tarot-nanes /bin/cc -0 —c large_sub.c
¢ make arget-name /bin/cc -o large large_prog.o large_sub.o
When calling make, the -k argument indicates that all specified files should be compiled, even if there is an % make -k large prog.o
error compiling one file. Otherwise, make will stop when there is a compile error in any file. Jbin/cc -0 ¢ large_prog.c
a makefile for any simple, one file program, with no dependencies
% make clean
CC = /bin/cc # specifies compiler to be used rm large prog.o large_sub.o
PROGS=p # gets file name from shell
$(PROGS) : $(PROGS).c
$(CC) -o $(PROGS) $(PROGS) .c
Output: |% make program
/bin/cc -0 program.c -o program
§B.0 A Crash Course in C 63 64 A Crash Course in C §B.1
B C Style Guide /*-—- the statement following an ’if’, ’while’, ’for’ or ’do’
should always be on a separate line; this is especially true for the
When writing C code, especially when other people will use or modify the code, it is useful to adhere to a null statement --—x/
consistent set of coding guidelines. The following is not the only acceptable style, but rather an example of .
a fairly conventional style guide. ?f (.. statement; /+ BAD */
if (...) /* 0K */
statement;
B.1 General Style
Y for (...) statement; /* BAD */
Lo Lo £ S * 0K *
The first question is the placement of statements and braces. Consistency makes it casier to follow the flow °: t:temln - / /
of the program, since one can get used to looking for matching and optional braces in specific places. :
/*-—— avoid putting more than one statement on the same line —--%/ for (...); /% VERY BAD */
statementl; statement2; /% BAD «/ for (...) /% 0K */
statement1; /* 0K */
statement?2; while (...) statement; /* BAD */
- _ while (...) /% OK «/
int func(int arg) statement;
/* no indentation on the first set of braces */ !
/x around a procedure */ while (...); /% VERY BAD +/
. L while (...) /* OK %/
statement; /* each step of indentation is two spaces x/ R
if (... /* braces are indented and the matching pairs */ do statement; while (...); /% VERY BAD /
{) /* are lined up in the same column */ do /% OK «/
statement; statement;
while (...);
do /% *do’ braces should be lined up at the */ /*-—— arrange nested ’if...else’ statements in the way that is easiest to
{ /* same columm, with the ’while’ on the same */ read and understand = ———*/
statement; /* line as the close parenthesis, to avoid x/ X .
} while (...); /% confusion with the ’while’ statement */ if (... /* DK, but confusing */
statement;
label: /* labels are lined up with the enclosing braces */ else
statement; {
if (...)
switch (. statement;
{ else
case xxx: /% case labels are indented clearly mark the */ .
statement; /* places where a ’break’ statement is */ it ..
/*fall thru*/ /* expected but missing */ statement;
case yyy: 4
statement; }
break;
default: if (.. /* BETTER */
statement; statement;
break; /* should have a break statement even at the end */
} /% of the default case */
} /* all end braces line up with open braces */ statement;

§B.1 A Crash Course in C 65

/*-—— the above rules can be violated if the overall legibility is
improved as a result ---%/
switch (...) /% 0K */
1{
case xxx:
statement;
break;
case yyy:
statement;
break;
}
switch (...) /% BETTER (by lining up the */
{ /* statements, one can contrast */
case xxx: statement; break; /* the difference between the */
case yyy: statement; break; /* branches more easily) */

statementl;
statement2;

else

statement1;
statement2;

66 A Crash Course in C §B.3

B.2 Layout

e Avoid using the TAB character in a source file. Use spaces instead. This is because there is no
standard governing how TAB’s are expanded. Thus, the same file may look very differently from one
editor to another.
Avoid having any text past column 78.

B.3 Coding Practice

Always use ANSI-C style protocols for procedures.

Avoid using ‘char’, ‘float’ or any structures or unions as arguments to functions or values returned by
functions if compatibility with “Traditional C” is needed.

Avoid relying on whether ‘char’ is signed or unsigned; use ‘signed’ or ‘unsigned’ explicitly if necessary.
Avoid modifying literals. For example,

void proc(void)
{

char *p = "

a';
*p = b’} /% VERY BAD */
}
‘Whenever possible, use a single assignment statement to modify an entire structure or union. However,
do not use this to initialize structures or unions. For example,

typedef struct
{

int x, y;
} COORD;

void proci(COORD *p)
{

COORD c;
if (...) { statementl; statement2; } /x BETTER (do this only for very */ poox; /% 0K, but verbose /
else { statementl; statement2; } /* short statements!) */ oy = poyi
memcpy (&c, p, sizeof(c)); /* OK, but slow */
c = *p; /* BEST */
if () /% 0K */ 3
statement ;
else if (...) void proc2(COORD *p)
statement ; R
else if (...) COORD ¢ = #p; /% BAD, since not all compilers support initializion =/
statement; /% of structures (i.e., not portable) */
3
if (...) statement; /* BETTER */
else if (...) statement;
else if (...) statement;
§B.4 A Crash Course in C 67] A Crash Course in C §C

B.4 Naming Conventions

These are some general naming conventions.

e Avoid using °_’ as the first character of a name; these names are generally reserved for use by the
compiler and libraries.
Pre-processor symbols (#define’s) should almost always be in upper case, with
separator (e.g., DELETE_CHAR).
Type names can be either

— all upper case, with ‘.’ (e.g., RING_BUFFER), or

upper case followed by mixed case, sans ‘_’ (e.g., RingBuffer).

Variables can be either

— all lower case, with or without ‘_’ (e.g., old_value, oldvalue), or

— lower case followed by mixed case, sans * (e.g., oldValue).

as an optional

Procedure names can be either

— all lower case, with or without ‘_' (e.g., get_first, getfirst) or

upper case followed by mixed case, sans ‘_’ (e.g., GetFirst)

One can have each global name preceded by a one to three character prefix that indicates where the
name is defined. E.g., RbRemoveElement, RB_remove_element (indicating that these procedures are
defined in the RB module). Some older compilers do not allow global names with °_’ or more than 8
characters, but this restriction usually no longer applies.
A local procedure/variable should have a name that is as descriptive as possible. For example,

static int MDinslsi(...) /* too cryptic */
static int insert_list_head(...) /* much better */

C Answers to Problems

/#* "A Crash Course in C", day 1, problem 2: print fahrenheit
*x and celcius temperatures for 32-212 F in steps of 20 F **/

#define FREEZE 32
#define BOIL 212
#define STEP 20

main()
int f;
for (£=FREEZE; £<=BOIL; f+=STEP)
printf("F = %3d, C = %5.1f\n",f, (£-32.0)%5.0/9.0);

/*x "A Crash Course in C," problem 3:
*x input a number and print all its factors *x/
#include <stdio.h>

main ()
{

int i,n;

printf("input a number: "); scanf("
for (i=2; i<=n; i++)
if (1 (n%i))
printf("%6d is a factor\n", i);

",&n);

§C A Crash Course in C 69 70 A Crash Course in C §C
/**x "A Crash Course in C," problem 4 /%% "A Crash Course in C," problem 6
#% input a number and decide if it is prime #x/ #% input an integer and print it in English #x/
#include <stdio.h>
#include <math.h> main ()
#define TRUE 1 {
#define FALSE 0 int n, pow_ten;
printf("input an integer: "); scanf("%d",&n);
main() do {
{ pow_ten=1;
int i,n, nmax, prime_flag=TRUE;
while (n / pow_ten)
printf("input a number: "); scanf("%d",&n); pow_ten *= 10;
nmax = (int) sqrt((double) n);
for (pow_ten/=10; pow_ten!=0; nl=pow_ten, pow_ten/=10)
for (i=2; i<=nmax; i++) switch (n/pow_ten)
if (!(n%i)) {
prime_flag=FALSE; case 0: printf('zero "); break;
case printf("one "); break;
if (prime_flag) case 2: printf("two "); break;
printf("%6d is prime\n", n); case 3: printf("three "); break;
else case 4: printf("four "); break;
printf("%6d is not prime\n", n); case 5: printf("five "); break;
case 6: printf("six "); break;
/++ "A Crash Course in C," problem 5 case 7: printf("seven "); break;
x+ program to calculate x using the quadratic formula case 8: printf(“eight "); break;
y case 9: printf('nine "); break;
#include <math.h> }
main() printf("\ninput an integer: "); scanf("%d",&n);
} while (n>0);
float a, b, ¢, d, x1, x2;
printf("input a,b,c: "); /*xx "A Crash Course in C," problem 7
scanf ("4f 4f %E",%a, &b, &c); ¥x count the number of characters and lines xx/
d = bxb - 4.0%axc; #include <stdio.h>
if (d >= 0) /*** check if solution will be real or complex ¥/
main ()
x1 = (-b+sqrt(d)) / (2.0%a); {
/*** need parentheses for proper order %#x/ char c;
x2 = (-b-sqrt(d)) / (2.0%a); int characters, lines;
/*** use sqrt() from the math library **/
printf("x = %f, %f\n",x1,x2); while ((c=getchar()) != EOF) {
characters++;
else if (c == "\n")
lines++;
x1 = -b/(2.0%a); }
x2 = sqrt(-d)/(2.0%a); printf("%d characters, %d lines\n",characters, lines);
printf (" %f + Ufi, %f - Afi\n", x1, x2, x1, x2); }
}
¥
§C A Crash Course in C 71 72 A Crash Course in C §C

/*% "A Crash Course in C," problem 8
*x float x_to_int_n(float x, int n) raise a number to an integer power **/

float x_to_int_n(float x, int n);

main()
int n;
float x;
printf("input x, n: ");
scanf (, &x, &n);

printf("%f~%2d = %f\n", x, n, x_to_int_n(x,n));

float x_to_int_n(float x, int n)
{

float y=1.0;

for (; n>0; n--)

y *=x;

return y;
3
/** "A Crash Course in C," problems 9, 10

% int factorial(int n); calculate factorial(n)

% int factorial_r(int n); calculate factorial(n) recursively #x/

int factorial(int n);
int factorial r(int n);

main()
{
int n;
printf("input n: ");
scanf ("%d", &n);
printf("factorial(%d) = %d\n", n, factorial(n));
printf("factorial(%d) = %d\n", n, factorial_r(n));

¥
int factorial(int n)

int fact=1;

for (; n>1; n--)
fact *= n;

return fact;

int factorial r(int n)
{
if (n>1)
return nxfactorial r(n-1);
else
return 1;

/#% "A Crash Course in C," problems 11
%% input a number and find all primes less than it

s/
#include <math.h>

#define TRUE 1 /**x define flag values xx/
#define FALSE 0

int is_prime(int n); /*x function prototype declarations
int get_positive_int(void);

main()

int n,i;
while (n=get_positive_int())
for (i=2; i<=n; i++)
if (is_prime(i))
printf("%d is prime\n", i);

¥
int is_prime(int n)

int i, max;
max = (int) sqrt((double) n);

for (i=2; i<=max; i++)
if (!(n%i))
return FALSE;
return TRUE;
}

int get_positive_int(void)

int n;
do
1{
printf("input a positive number, O to quit: ");
scanf ("%d", &n);
} while (n < 0);
return n;

wx/

§C A Crash Course in C 73 74 A Crash Course in C §C
/** "A Crash Course in C," problems 11 void print_matrix(float A[][MAX], int n)
#* matrix functions: {
*x input_matrix(), print_matrix, add_matrix, multiply_matrix s/ int i,3;
for (i=0; i<n; i++) {
#define MAX 5 for (j=0; j<n; j++)
printf ("%E\t",A[i1[j1);
void print_matrix(float A[][MAX], int n); printf("\n");
void input_matrix(float A[MAX][MAX], int n); }
void add_matrix(float A[][MAX], float B[]1[MAX], float C[][MAX], int n) ¥
void multiply matrix(float A[]1[MAX], float B[] [MAX], float C[1[MAX], int n)
void input_matrix(float A[MAX][MAX], int n)
main() {
int i,3;
int n; float *a;
float A[MAX][MAX], BIMAXI[MAX], CIMAX][MAX]; for (i=0; i<n; i++) {
for (j=0, a=A[il; j<n; j++)
printf("input size of matrix: "); scanf("%d",&n); scanf ("4E",a+4) ;
if (n<MAX) { }
input_matrix(A,n); b
input_matrix(B,n);
print_matrix(A,n); void add_matrix(float A[][MAX], float B[]1[MAX], float C[][MAX], int n)
} {
else i
printf("size of matrix is too large\n"); ;oi<n; it+)
¥ ;oJ<m;)
CLil[j1 = ALLI[3] + BLil[51;
}
void multiply matrix(float A[]1[MAX], float B[] [MAX], float C[1[MAX], int n)
int i, j, k;
i<n; i++)
i oi<m;)
for (k=0, C[i1[j1=0.0; k<n; k++)
CLil[3] += Alil[k] = BIk1[j];
}
§C A Crash Course in C 75

/#% "A Crash Course in C," problems 13
*x functions complex_input(), polar_to_rect(), complex multiply()

*x/
COMPLEX complex_input (void)
{

COMPLEX z;

int ans;

double x,¥;

printf("input (0,a,b) or (i,r,theta): ");
scanf (")d %1f %1f",%ans, &x, &y);

if (ans == 1) {
z.p.T ; z.p.theta = y;
polar_to_rect (&z) ;

}

else if (ans 0 {
z.r.a=x; z.r.b=y;
rect_to_polar(&z);

else {

printf("invalid coordinate system\n");

z.r.a=0.0; zr.b = 0.0; z.p.r = 0.0; z.p.theta = 0.0;
}
return z;

}

void polar_to_rect (COMPLEX *z)
{
double r = (z->p.r);
double theta = (z->p.theta);
z->r.a = r * cos(theta);
z->r.b = r * sin(theta);

3
COMPLEX complex_multiply(COMPLEX z1, COMPLEX z2)

COMPLEX prod;

prod.p.r = (zl.p.r) * (22.p.r);
prod.p.theta = (zl.p.theta) + (z2.p.theta);
polar_to_rect (&prod) ;

return (prod);

