Appendix A:
Installation Guide for the UNIX Versions

1. Required tools.

We assume that you have either an ANSI C or a C++ compiler available. If your machine does
not have one (for example if you still use /bin/cc in Sun0S 4.1.x), we strongly suggest that you
obtain the gcc/g++ compiler from the Free Software Foundation or by anonymous ftp. As for all
GNU software mentioned afterwards, you can find the most convenient site to fetch gcc at the
address

http://www.gnu.ai.mit.edu/order/ftp.html

You can certainly compile PARI with a different compiler, but the PARI kernel takes advantage of
some optimizations provided by gcc if it is available. This results in about 20% speedup on most
architectures*.

1.1. Optional packages: The following programs and libraries are useful in conjunction with
GP, but not mandatory. They’re probably already installed somewhere on your system (with the
possible exception of readline, which we think is really worth a try). In any case, get them before
proceeding if you want the functionalities they provide. All of them are free (though you ought to
make a small donation to the FSF if you use (and like) GNU wares).

e GNU readline library. This provides line editing under GP, an automatic context-dependent
completion, and an editable history of commands. Note that it is incompatible with SUN command-
tools (yet another reason to dump Suntools for X Windows). A recent readline (version number at
least 2.2) is preferred, but older versions should be usable.

e GNU gzip/gunzip/gzcat package enables GP to read compressed data.

e GNU emacs. GP can be run in an Emacs buffer, with all the obvious advantages if you are
familiar with this editor. Note that readline is still useful in this case since it provides a much
better automatic completion than is provided by Emacs GP-mode.

e perl provides extended online help (full text from this manual) about functions and concepts,
which can be used under GP or independently (http://www.perl.com will direct you to the nearest
CPAN archive site).

e A colour-capable xterm, which enables GP to use different (user configurable) colours for
its output. All xterm programs which come with current X11R6.3 distributions will satisfy this
requirement. Under X11R6, you can for instance use color_xterm (get the latest version at
http://www.clark.net/pub/dickey/xterm).

* One notable exception is the native AIX C compiler on IBM RS/6000 workstations, which
generates fast code even without any special help from the PARI kernel sources.

1

2. Compiling the library and the GP calculator.

2.1. Basic configuration: First, have a look at the MACHINES file to see if anything funny applies
to your architecture or operating system. Then, type

./Configure

in the toplevel directory. This will attempt to configure GP/PARI without outside help. Note that
if you want to install the end product in some nonstandard place, you can use the ——prefix option,
as in

./Configure --prefix=/an/exotic/directory

(the default prefix is /usr/local). This phase extracts some files and creates a directory Ozxxx
where the object files and executables will be built. The xzx part depends on your architecture
and operating system, thus you can build GP for several different machines from the same source
tree (the builds are completely independent, so can be done simultaneously).

Configure will let the following environment variable override the defaults if set:
AS: Assembler.
CC: C compiler.
DLLD: Dynamic library linker.

For instance, Configure avoids gcc on some architectures due to various problems which may have
been fixed in your version of the compiler. You can try

env CC=gcc Configure

and compare the benches. Also, if you insist on using a C++ compiler and run into trouble with a
recent g++, try to use g++ -fpermissive.

2.2. Troubleshooting and fine tuning: Decide whether you agree with what Configure printed
on your screen (in particular the architecture, compiler and optimization flags). If anything should
have been found and was not, consider that Configure failed and follow the instructions below.
Look especially for the readline and X11 libraries, and the perl and gunzip (or zcat) binaries.

In case the default Configure run fails miserably, try
./Configure -a

(interactive mode) and answer all the questions (there aren’t that many). Of course, Configure
will still provide defaults for each answer but if you accept them all, it will fail just the same,
so be wary. In any case, we would appreciate a bug report including the complete output from
Configure and the file Ozzx/dft.Config.in that was produced in the process.

Note that even in interactive mode, you can’t directly tell Configure where the readline
library and include files are. If they are not in a standard place, it won’t find them. Nonetheless,
it first searches the distribution toplevel for a readline directory. Thus, if you just want to give
readline a try (as you probably should), you can get the source and compile it there (you don’t
need to install it). You can also use this feature together with a symbolic link, named readline,
in the PARI toplevel directory if you have compiled the readline library somewhere else, without
installing it to one of its standard locations.

Technical note: Configure can build GP on different architectures simultaneously from the same
toplevel sources. Instead of the readline link alluded above, you can create readline-osname-
arch, using the same naming conventions as for the Ozxx directory, e.g readline-1inux-i686.

2.3. Debugging/profiling: If you also want to debug the PARI library,

Configure -g

will create a directory Ozzx.dbg containing a special Makefile ensuring that the GP and PARI
library built there will be suitable for debugging (if your compiler doesn’t use standard flags, e.g. -g
you may have to tweak that Makefile). If you want to profile GP or the library (using gprof for
instance),

Configure -pg

will create an Oxxx.prf directory where a suitable version of PARI can be built.

2.4. Compilation and tests: To compile the GP binary, simply type
make gp

in the distribution directory. If your make program supports parallel make, you can speed up the
process by going to the 0zzx directory that Configure created and doing a parallel make here (for
instance make -j4 with GNU make).

2.4.1. Testing

To test the binary, type make bench. This will build a static executable (the default, built by
make gp is probably dynamic) and run a series of comparative tests on those two. To test only the
default binary, use make dobench which starts the bench immediately.

The static binary should be slightly faster. In any case, this should not take more than one
minute (user time) on modern machines. See the file MACHINES to get an idea of how much time
comparable systems need (we would appreciate a short note in the same format in case your system
is not listed and you nevertheless have a working GP executable).

If a [BUG] message shows up, something went wrong. Probably with the installation procedure,
but it may be a bug in the Pari system, in which case we would appreciate a report (including the
relevant *.dif file in the Oxxx directory and the file dft.Config.in).

Known problems:

e elliptic: the test cmcurve=ellinit([0,-3/4,0,-2,-1]) may give results which differ
slightly from the template (last decimal in a few entries). This ultimately depends on the output
of

polroots(x~3-3/4*x"2-2*x-1) [1]

at \p38, which may be 2.0 or 1.999... depending on your hardware, libraries, compiler...Intel
Pentiums running Linux often trigger this BUG (unrelated to the infamous fdiv bug), which can
safely be ignored in any case: both results are correct given the requested precision.

e program: the GP function install may not be available on your platform, triggering an
error message (“not yet available for this architecture”). Have a look at the MACHINES files (the d1
column) to check if your system is known not to support it, or has never been tested yet.

e If when running gp-dyn, you get a message of the form

3

ld.so: warning: libpari.so.zxzx has older revision than expected zxx

(possibly followed by more errors), you already have a dynamic PARI library installed and a broken
local configuration. Either remove the old library or unset the LD_LIBRARY PATH environment
variable. Try to disable this variable in any case if anything very wrong occurs with the gp-dyn
binary (e.g Illegal Instruction on startup). It doesn’t affect gp-sta.

2.4.2. Some more testing [Optional]

You can test GP in compatibility mode with make test-compat. If you want to test the
graphic routines, use make test-graphic. You will have to click on the mouse button after seeing
each image (under X11). There will be eight of them, probably shown twice (under X11, try to
resize at least one of them as a further test).

The make bench and make test-compat runs produce a Postscript file pari.ps in Oxzzz which
you can send to a Postscript printer. The output should bear some similarity to the screen images.

3. Installation.

When everything looks fine, type
make install

(You may have to do this with superuser privileges, depending on the target directories.) Beware
that, if you chose the same installation directory as before in the Configure process, this will wipe
out any files from version 1.39.15 and below that might already be there. Libraries and executable
files from newer versions (starting with version 1.900) are not removed since they are only links to
files bearing the version number (beware of that as well: if you're an avid GP fan, don’t forget to
delete the old pari libraries once in a while).

This installs in the directories chosen at Configure time the default GP executable (probably
gp-dyn) under the name gp, the default PARI library (probably libpari.so), the necessary include
files, the manual pages, the documentation and help scripts and emacs macros.

By default, if a dynamic library 1ibpari.so could be built, the static library 1ibpari.a will
not be created. If you want it as well, you can use the target make install-lib-sta. You can
install a statically linked gp with the target make install-bin-sta. As a rule, programs linked
statically (with 1libpari.a) may be slightly faster (about 5% gain), but use much more disk space
and take more time to compile. They are also harder to upgrade: you will have to recompile them
all instead of just installing the new dynamic library. On the other hand, there’s no risk of breaking
them by installing a new pari library.

3.1. The Galois package: The default polgalois function can only compute Galois groups of
polynomials of degree less or equal to 7. If you want to handle polynomials of degree bigger than
7 (and less than 11), you need to fetch a separate archive: galdata.tgz which can probably be
found at the same place where you got the main PARI archive, and on the megrez ftp server in
any case. Untar the archive in the datadir directory which was chosen at Configure time (it’s
one of the last messages on the screen if you did not run Configure -a). You can then test the
polgalois function with your favourite polynomials.

3.2. The GPRC file: Copy the file misc/gprc.dft (or gprc.dos if you're using GP.EXE) to
$HOME/ . gprc. Modify it to your liking. For instance, if you're not using an ANSI terminal, remove
control characters from the prompt variable. You can also enable colors.

If desired, also copy/modify misc/gpalias somewhere and call it from the gprc file (this
provides some common shortcuts to lengthy names). Finally, if you have superuser privileges and
want to provide system-wide defaults, you can copy your customized .gprc file to /etc/gprc.

In older versions, gphelp was hidden in pari lib directory and wasn’t meant to be used from
the shell prompt, but not anymore. If gp complains it can’t find gphelp, check whether your .gprc
(or the system-wide gprc) does contain explicit paths. If so, correct them according to the current
misc/gprc.dft.

4. Getting Started.

4.1. Printable Documentation: To print the user’s guide, for which you’ll need a working
(plain) TEX installation; type

make doc

This will create, in two passes, a file doc/users.dvi containing the manual with a table of contents
and an index. You must then send the users.dvi file to your favourite printer in the usual way,
probably via dvips. Also included are a short tutorial (doc/tutorial.dvi) and a reference card
(doc/refcard.dvi and doc/refcard.ps) for GP.

If the pdftex package is part of your TEX setup, you can produce these documents in PDF format,
which may be more convenient for online browsing (the manual is complete with hyperlinks); type

make docpdf

All these documents are available online from PARI home page and on the megrez ftp server.

4.2. C programming: Once all libraries and include files are installed, you can link your C
programs to the PARI library. A sample makefile examples/Makefile is provided to illustrate the
use of the various libraries. Type make all in the examples directory to see how they perform on
the mattrans.c program, which is commented in the manual.

4.3. GP scripts: Several complete sample GP programs are also given in the examples directory,
for example Shanks’s SQUFOF factoring method, the Pollard rho factoring method, the Lucas-
Lehmer primality test for Mersenne numbers and a simple general class group and fundamental
unit algorithm (much worse than the built-in bnfinit!). See the file examples/EXPLAIN for some
explanations.

4.4. EMACS: If you want to use gp under GNU Emacs, read the file emacs/pariemacs.txt. If
you are familiar with Emacs, we suggest that you do so.

4.5. The PARI Community: There are three mailing lists devoted to the PARI/GP package
(run courtesy of Dan Bernstein), and most feedback should be directed to those. They are:

e pari-announce: to announce major version changes. You can’t write to this one, but you
should probably subscribe.

e pari-dev: for everything related to the development of PARI, including suggestions, tech-
nical questions, bug reports or patch submissions.

e pari-users: for everything else.

To subscribe, send empty messages respectively to
pari-announce-subscribe@list.cr.yp.to
pari-users-subscribe@list.cr.yp.to
pari-dev-subscribe@list.cr.yp.to

The PARI home page (maintained by Gerhard Niklasch) at the address
http://www.parigp-home.de/

maintains an archive of all discussions as well as a download area. If don’t want to subscribe to
those lists, you can write to us at the address
pari@math.u-bordeaux.fr

At the very least, we will forward you mail to the lists above and correct faulty behaviour, if
necessary. But we cannot promise you will get an individual answer.

If you have used PARI in the preparation of a paper, please cite it in the following form

(BibTeX format):

@manual{PARI2,

organization = "{The PARI~Groupl}",

title = "{PARI/GP, Version 2.1.5}",

year = 2000,

address = "Bordeaux",

note = "available from {\tt http://www.parigp-home.de/}"
}

In any case, if you like this software, we would be indebted if you could send us an email message
giving us some information about yourself and what you use PARI for.

Good luck and enjoy!

