

Welcome to the

Palm OS Cookbook
Navigate this online document as follows:

To see bookmarks Type Command-7
To see information on
Adobe Acrobat Reader

Type Command-?

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar

U.S. Robotics®

Palm OS™ Cookbook

Some information in this manual may be out of date.
Read all Release Notes files for the latest information.

©1996 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmit-
ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and Graffiti are registered trademarks, and Palm
Computing, HotSync, Palm OS, and the Palm OS logo are trademarks of U.S. Robotics
and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK ARE
SUBJECT TO THE LICENSE AGREEMENT.

Canada
Metrowerks Inc.
1500 du College, suite 300
St. Laurent, QC
H4L 5G6 Canada

voice: (514) 747-5999
fax: (514) 747-2822

U.S.A. and International
Metrowerks Corporation
2201 Donley Drive
Suite 310
Austin, TX 78758

voice: (512) 873-4700
fax: (512) 873-4900

U.S. Robotics, Palm Computing Division
Mail Order
1-800-881-7256
Metrowerks Mail Order
voice: (800) 377-5416
fax: (512) 873-4901

U.S. Robotics, Palm Computing Division
World Wide Web site: http://www.usr.com/palm

Metrowerks World Wide Web site (Internet): http://www.metrowerks.com
Registration information (Internet): register@metrowerks.com

Technical support (Internet): support@metrowerks.com
Sales, marketing, & licensing (Internet): sales@metrowerks.com

AppleLink: METROWERKS
America OnLine: goto: METROWERKS

Compuserve: goto: METROWERKS

Table of Contents

1 Building a Palm OS Application 7
Checking the File Hierarchy 7
Creating a Makefile . . 8
Compiling the Application 13
Loading the Application Onto the Device 14

2 Using the Pilot Simulator . 17
Simulator Menu Commands 17

The File Menu . 18
The Edit Menu . 18
The Window Menu 18
The Replay Menu 19
The Gremlin Menu 20

Simulator Console Commands 21
System Commands . 22
Card Info Commands 22
Heap Utility Commands. 23
Chunk Utilities . 24
Database Utilities . 25
Miscellaneous Utilities 26
Record Utilities . 27
Resource Utilities . 28
Debugging Utilities . 29
Simulator Commands 30
Differences Between Pilot Simulator and

Palm OS Hardware 31
Debugging Memory Management 32

Displaying Memory Information 33
Manipulating Memory 36

3 File Transfer With the Pilot Debugger 41
Setting Up the Pilot Debugger 41
Starting Up the Pilot Debugger 42
Loading Applications Onto the Device. 43
Copying a Database From the Device to the Macintosh 44
Palm OS Cookbook 5

Table of Contents

Importing a Database Into the Simulator 44
Exporting a Database From the Simulator 46

4 Design, Testing, and Localization Guidelines 47
Application Design Guidelines 47

Getting Started. 47
User Interface Do’s and Don’ts 48
Program Design . 49

Localizing a Palm OS Application. 52
General Localization Guidelines 52
Localization for Palm OS 53

Testing a Palm OS Application 54
Testing in Standalone Mode 54
Testing Application Integration 55

5 User Interface Design Guidelines 57
Foundations of UI Design 57

Navigation . 58
Data Entry . 59
Command Execution 60
Screen Layout . 60

User Interface Objects Overview 61
UI Design Philosophy 62

Creating Fast Applications. 62
Matching Use Frequency and Accessibility. 62
Creating Easy to Use Applications 64
6 Palm OS Cookbook

1
Building a Palm OS
Application

Building an application for the Palm OS device involves a few sim-
ple steps, discussed in this chapter:

• Checking the File Hierarchy

• Creating a Makefile
• Compiling the Application
• Loading the Application Onto the Device

When you’re working with your application on the Macintosh using
the Pilot Simulator, the CodeWarrior project file contains the infor-
mation needed to run your application. When you build the appli-
cation for the device, a Makefile containing similar information is
used.

NOTE: Phase 20 of the Tutorial steps you through the process of
building an application and running it on the Palm OS device. The
example code provides a working Makefile and application file hi-
erarchy.

Checking the File Hierarchy
To build the executable for your application, you need to have sev-
eral files set up in the correct folder hierarchy. The Makefile uses
these files when you build the executable, as discussed in the fol-
lowing sections.

The following files are part of the set-up. Name is the name of the ap-
plication; App is the folder in which the application resides. All files
and folders need to be located within the Palm OS SDK tree:
Palm OS Cookbook 7

Building a Palm OS Application

Creating a Makefile

Creating a Makefile
The Makefile tells the compiler which source and resource files be-
long to the application and how to compile it. You can use the sam-
ple Makefile that is included in Phase 20 of the tutorial in your
application, but you need to make the following changes:

• In the Compile Options section, set ERROR_CHECK_LEVEL as
desired, choosing from these options:
– 0—ERROR_CHECK_NONE (no error checking)
– 1—ERROR_CHECK_PARTIAL (display fatal errors only)
– 2—ERROR_CHECK_FULL (display fatal or nonfatal er-

rors)
For example, to set error checking to full, the Makefile should
say:
-d ERROR_CHECK_LEVEL=2 ∂
For more information, see “The Error Manager,” in Chapter
6, “Palm OS Managers” of “Developing Palm OS Applica-
tions, Part I.”

Filename File Folder

Name.c Source code; can be more than one file. App:Src

Name.h Header file; can be more than one file. App:Src

Name.r List of resources used when building for
the device.

App:Src

NameRsc.c List of resources used when building for
the Simulator.

App:Src

NameRsc.h Header file containing resource ID defi-
nitions.

App:Src

*.rsrc Resource file, usually one file per form. App:Rsc

Makefile App

Name.µ Code Warrior Project file. App
8 Palm OS Cookbook

Building a Palm OS Application

Creating a Makefile

• If you’re compiling a localized version, set the COUNTRY
and LANGUAGE compiler options. Currently, you have
these choices:
– 0—COUNTRY_UNITED_STATES
– 1—COUNTRY_FRANCE
– 2—COUNTRY_GERMANY
– 0—LANGUAGE_ENGLISH
– 1—LANGUAGE_FRENCH
– 2—LANGUAGE_GERMAN

For example, to set the country to France and the language to
French, the Makefile should contain these lines:
-d COUNTRY=1∂
-d LANGUAGE=1∂
If you compile with a non-zero COUNTRY or LANGUAGE
option, the compiler uses the resources in the folder that has
a name corresponding to the options.

• In the Object List section, list each source file (.c file) except
the Name.Rsc.c file.

• In the Objects section, list each resulting object (.o) file.
• In the Compiles section, list each source file and correspond-

ing object file.
• In the Final Link section, provide the name of the target. Set

the creator identifier assigned to the application executable
by Palm Developer Support. It should match the
appFileCreator defined in the Name.h file. See the exam-
ple file for more information.

Listing 1.1 shows the Makefile used in Phase 20 of the tutorial.

Listing 1.1 Sample Makefile

###
Makefile for Pilot MemoPad Tutorial
Target: MemoPad
#
Compiles and links the MemoPad tutorial
application for running on the Palm OS device.
#

Palm OS Cookbook 9

Building a Palm OS Application

Creating a Makefile

To run this make, use the MPW Directory Menu
to set the current directory to the MemoPad
directory, go to the Build menu, select
"Build" and enter "MemoPad" into the dialog box.

###

###
Set up paths
###
LIB_DIR = :::Libraries:PalmOS:
INC_DIR = :::Incs:
SRC_DIR = :Src:
OBJ_DIR = :Obj:

###
Set up Compiler
###
Use Metrowerks compiler
CC = MWC68K
CPP = MWC68K
LINK = MWLink68K

###
Compile Options
#
The most likely options you might change are
COUNTRY, LANGUAGE, and ERROR_CHECK_LEVEL.

###
C_OPTIONS = ∂

-d COUNTRY=0∂
-d LANGUAGE=0∂

 -d ERROR_CHECK_LEVEL=2 ∂
-d CMD_LINE_BUILD ∂

 -d EMULATION_LEVEL=0 ∂
10 Palm OS Cookbook

Building a Palm OS Application

Creating a Makefile

 -d ENVIRONMENT=0 ∂
 -d MEMORY_FORCE_LOCK=1 ∂
-nosyspath ∂
-i ":Src:" ∂
-i "{INC_DIR}" ∂
-i "{INC_DIR}System:" ∂
-i "{INC_DIR}UI:" ∂
-i "{INC_DIR}Hardware:" ∂
-model near ∂
-intsize 2 ∂
-maxerrors 3 ∂
-opt speed -opt global -opt peep ∂

 -mbg on ∂
-b ∂
-d PILOT_PRECOMPILED_HEADERS_OFF

LINK_OPTIONS = -single -custom

###
Object List
#
Each of the source files must be listed here.
###
OBJECTS = ∂

 "{LIB_DIR}StartupCode.c.o" ∂
 "{OBJ_DIR}MemoPad.c.o"

###
Compiles
#
There should be one compile statement per source
file. On the right side of the first line is a
list of files the target depends on. The target
is only regenerated if one of those files changes
Palm OS Cookbook 11

Building a Palm OS Application
Creating a Makefile
###
"{OBJ_DIR}MemoPad.c.o" ƒ MakeFile
"{SRC_DIR}MemoPad.c"
 {CPP} -o "{OBJ_DIR}MemoPad.c.o" ∂
 "{SRC_DIR}MemoPad.c" ∂

{C_OPTIONS}

###
Final Link
##
MemoPad ƒƒ MakeFile {OBJECTS} "{SRC_DIR}MemoPad.r"
#
Link all of the code together.
#
{LINK} {LINK_OPTIONS} -t rsrc -c RSED ∂

{OBJECTS} ∂
-o MemoPad.code

Delete -i "MemoPad"
#
Build a description of all the resources used by
the application
#
{CC} -d RESOURCE_COMPILER ∂

{C_OPTIONS} ∂
-e ∂
"{SRC_DIR}MemoPad.r" > MemoPad.i

#
Process the ui resources and combine them and
the code into a single file for use on the
device. Optionally set other data about the
device file like its type, creator, version
number, name, etc. Type PilotRez in the MPW
Worksheet to see a description of PilotRez
options.
#
PilotRez -v 1 -t appl -c MEMP -it MemoPad.i -ot

"MemoPad"
12 Palm OS Cookbook

Building a Palm OS Application
Compiling the Application
#
Pilot Desktop prefers device files to end with
.prc
#
Duplicate -y "MemoPad" "MemoPad.prc"

#
Pilot Debugger is used by application developers
to send the device application to the device.
Place a duplicate of the file in a place handy
for the debugger.
#

Duplicate -y "MemoPad.prc" "{PilotDir}"Debugger

Compiling the Application
With both the Makefile and the resource file for your application
complete, launch MPW, then follow these steps:

1. From the Directory menu, choose Set Directory to set the di-
rectory to your application’s directory, that is, the directory
that contains the Rsc and Src folders and the Makefile (called
App in the listing above).

2. From the Build menu, choose Full Build to build the execut-
able for your application using the newly created Makefile.

3. When prompted, enter the target name defined in the Final
Link section of the Makefile (for example, MemoPad).
A successful build using the example Makefile copies the ex-
ecutable to the Debugger folder.
Palm OS Cookbook 13

Building a Palm OS Application
Loading the Application Onto the Device
Loading the Application Onto the Device
The current procedure for downloading an application onto a Palm
OS device involves using the Pilot Debugger of the Palm OS. You
first establish a connection between the Macintosh and the Palm OS
device, then download the executable.

To load an application onto the device, follow these steps:

1. Launch the PilotDebugger application found in the Debug-
ger folder of the Palm OS SDK on the Macintosh.

2. Click on the Console window to bring it to the front.
3. Place a Palm OS device in a cradle connected to the Macin-

tosh serial port.
4. On the Palm OS device, launch the Preferences application.
5. On the Palm OS device, use Graffiti to enter the shortcut “.2.”

The sequence consist of four strokes: the shortcut stroke, fol-
lowed by two taps (to generate a period), followed by the
stroke for the number 2. Remember to enter the number
stroke in the right side of the Graffiti area.
This sequence tells the device to listen to the Debugger.

6. If you’ve successfully entered the “.2” shortcut sequence, and
the Palm OS device is connected to the Macintosh correctly
through the serial port, and the Pilot Debugger application is
running with the Console window in front, then you’ll see
the text “Ready...” show up on the Console window on the
Macintosh. If sound is enabled, the device clicks.

7. To verify that the Palm OS device is responding to com-
mands from the Macintosh, type into the Console window
dir 0

then press the Enter (not Return) key or Cmd-Return.
A list of databases should appear in the Console window. If
something is wrong, you’ll notice a few seconds delay and
then see a message like ### Error $00000404 occurred.
Note that if the Console window is not the active window
when you enter the “.2” shortcut, you’ll miss the “Ready...”
message but will still be able to enter commands in the Con-
sole window.
Entering the “.2” shortcut sequence a second time does not
print another “Ready...” message. If you’re not sure whether
14 Palm OS Cookbook

Building a Palm OS Application
Loading the Application Onto the Device
the connection is established, enter dir 0 in the Console
window and see if there is a response.
You can now load your application onto the device; a copy of
the executable was placed in the Debugger folder when you
compiled the application with the Makefile.

8. In the Pilot Debugger Console window, type
import 0 application

then press Enter (not Return).

The “0” in the import command sends the application to the first
memory card. Executable is the name of the executable to send.
The Debugger looks for the executable in the Debugger folder. The
executable name is not case sensitive here, but you must include the
extension, if there is one (usually .prc).

When the import is complete, the launcher screen on the Palm OS
device displays the application you just downloaded and you can
select it to run it.

When you finish using the Pilot Debugger, you have to reset the
Palm OS device. (The reset hole is on the back of the device.) Until
you have done that, the serial port of the Palm OS device is held by
the remote debug nub, waiting for more commands from the Pilot
Debugger. This means that HotSync fails and power is continually
fed to the serial port from the batteries.

When you send other versions of an application to the Palm OS de-
vice, an existing version must be removed first. The Debugger com-
mand del 0 databasename accomplishes the removal, where
databasename is the name of the database shown in the directory
listing (dir 0). In this case, the name is case sensitive. Note that
databasename refers to either an executable or an application’s da-
tabase.
Palm OS Cookbook 15

Building a Palm OS Application
Loading the Application Onto the Device
16 Palm OS Cookbook

2
Using the Pilot Simulator

The Pilot Simulator lets you run and test your application by pro-
viding a graphic representation of the Palm OS device within the
Macintosh environment.

To test your application, you can click the mouse on the representa-
tion of the device’s physical controls (including the silk-screened
icons) or click any of the menus, buttons, or other user interface
items your application provides. You can also use the mouse to
write in the Graffiti area of the representation of the device that’s
visible on the Macintosh. As you do this, you can trace events or in-
teract with your application from the Console window.

This chapter serves as a reference to the Simulator, discussing these
topics:

• Simulator Menu Commands
• Simulator Console Commands
• Differences Between Pilot Simulator and Palm OS Hardware
• Debugging Memory Management

Simulator Menu Commands
This section discusses all Simulator menus (from left to right) and
describes each command (from top to bottom).

The following menus are discussed:

• The File Menu
• The Edit Menu
• The Window Menu
• The Replay Menu
• The Gremlin Menu
Palm OS Cookbook 17

Using the Pilot Simulator
Simulator Menu Commands
The File Menu

Save Card 0...

Writes the contents of memory card 0 to a file called Pilot Card 0 in
the currently simulated application’s folder.

The card corresponds to the memory card on the actual Palm OS de-
vice, on which all application databases and add-on applications are
stored.

Save Card 1...

Writes the contents of memory card 1 to a file called Pilot Card 1 in
the currently simulated application’s folder.

Currently, it makes sense only to save card 0.

Save Before Quitting

Saves a snapshot of the contents of both memory cards after
StopApplication has been called.

When an application exits, it saves certain information like prefer-
ences to the memory card. If you use this command, the Simulator
saves what the application would save to the memory card to a file
called Pilot Card 0.

Quit

Quits the application.

The Edit Menu
The Edit menu offers the standard Macintosh editing commands for
the Console window and the Event Trace window.

The Window Menu
The Window menu provides access to two special windows: the
Console window and the Event Trace window. Close either window
by clicking the button in the top-left corner or by deselecting that
window in the menu.
18 Palm OS Cookbook

Using the Pilot Simulator
Simulator Menu Commands
Console

Activates the Console window. Type Help and press Enter (or Cmd-
Return) in the Console window for a list of available commands.

See Simulator Console Commands for a list of all commands.

Event Trace

Displays the Event Trace window. The Event Trace window displays
the last 100 events generated by the system software and applica-
tion.

Chapter 4, “Palm OS Events,” of “Developing Palm OS Applica-
tions, Part I” lists and discusses all Palm OS events.

The Replay Menu
The Replay menu allows you to record pen and key events to a
script file. You can then use the script file to replay the same events.
This is useful for testing and repeating problem cases. The general
process of using the commands in this menu is as follows:

1. Select the Record command.
2. Record pen and key events.
3. Deselect the Record command.
4. Select the Replay command. By default, the last script saved

is already displayed in the file selection dialog.
5. Choose Pause and Step during replay to look in detail at the

events that are executed.

Record

Begins recording pen and key events to a file. To stop recording, de-
select this command.

Break

Inserts a stop into the script so it stops during replay. Does not stop
the recording process.

Save As

Saves the recorded script to a file you specify. By default, the Simu-
lator saves a script to a file with the extension .LOG whenever you
Palm OS Cookbook 19

Using the Pilot Simulator
Simulator Menu Commands
stop recording. Use the Save As command to create an additional
copy of that script file. The default filename is “Pilot Script.”

Playback

Plays back a previously recorded script. You are prompted to locate
the script.

Pause

Pauses playback of a script. This command is available during play-
back, but not during the recording process.

Step

Plays back the next pen or key event, then pauses. This command is
available during playback, but not during the recording process.

Realtime

Tries to execute the script at the rate at which it was recorded. With
this option off, scripts execute as fast as possible. Realtime is useful
when timing-dependent UI elements such as repeating buttons are
used.

The Gremlin Menu
Gremlins are a facility to generate random pen and key events. You
can use the facility to reveal program problems. Each Gremlin is a
unique sequence of random taps, strokes, and so on. Red lines indi-
cate how the pen was moved over the screen by the Gremlin.

Gremlins range from 0 to 1000 and each Gremlin is repeatable. From
the menu, you can invoke only Gremlin 0. To start up any other
Gremlin, use the Console window (see the Gremlins command
under Simulator Commands).

New

Runs Gremlin number 0. Iterates through all events in that Gremlin,
running continuously.

Step

Performs the next Gremlin event, then stops.
20 Palm OS Cookbook

Using the Pilot Simulator
Simulator Console Commands
Resume

Resumes running continuously after a step or stop.

Stop

Stops generating Gremlin events.

Simulator Console Commands
This section provides descriptions and syntax for the commands
available in the console window. It covers the following commands:

• System Commands
• Card Info Commands
• Heap Utility Commands
• Chunk Utilities
• Database Utilities
• Miscellaneous Utilities
• Record Utilities
• Resource Utilities
• Debugging Utilities
• Simulator Commands

NOTE: Console commands are not case sensitive!
Palm OS Cookbook 21

Using the Pilot Simulator
System Commands
System Commands

Card Info Commands

Command Result Syntax

Feature Display, get, register,
or unregister
feature(s).

feature [options...]
-all: Display a list of all known features
-unreg <creator> <num>: Unregister feature

(use only on RAM features)
-get <creator> <num> : Get a feature
-set <creator> <num> <value>: Set a feature

Kinfo Get kernel info. kinfo [options...]
 -sem <id>|all : get semaphore info
 -tmr <id>|all : get timer info

Command Result Syntax

cardformat Format a
memory card.

cardformat <cardNo> <cardName>
<manufName> <ramStoreName>
cardNo, manufName, and ramStoreName are
strings.
WARNING: The Simulator’s behavior is un-
predictable if you reformat the card containing
your application.

cardinfo Get info on a
memory card.

cardinfo <cardNo>

storeinfo Get info on a
memory store.

storeinfo <cardNo>
22 Palm OS Cookbook

Using the Pilot Simulator
Heap Utility Commands
Heap Utility Commands

Command Result Syntax

HL List all the heaps on a memory card. hl <cardNo>

HI Initialize a memory heap. hi <hex heapID>

HD Do a heap dump. hd <hex heapID>

HT Do a heap total. ht <hex heapID>

HC Compact a memory heap. hc <hex heapID>

HChk Do a heap check. hchk <hex heapID>

HS Do a heap scramble. hs <hex heapID>

HF Allocate all free bytes, except specified
number of bytes.

hf <hex heapID> [free bytes]

NOTE: For more information, see Debugging Memory Management.
Palm OS Cookbook 23

Using the Pilot Simulator
Chunk Utilities
Chunk Utilities

a. The hex chunk ptr/ID is the value in the Start column of a heap dump (HD).

Cmd Result Syntax

New Allocate a new
chunk in a heap.

new <hex heapID> <hex chunkSize> [options...]
-n : non-movable
-c : fill contents
-o <ownerID> : set owner (0-14)
-near <ptr> : In same heap as <ptr>

 so <heapID> is ignored
-lock : pre-lock

Free Dispose of a
chunk.

free <hex chunk ptr/ID>a [options..]
-card <cardNo> : card number when local ID

 specified instead of chunk ptr

Lock Lock a chunk. lock <hex chunk ptr/ID>a [options..]
 -card <cardNo> : card number when local ID
 specified instead of chunk ptr

Unlock Unlock a chunk. unlock <hex chunk ptr/ID>a [options..]
-card <cardNo> : card number when local ID

 specified instead of chunk ptr

Info Get info on a
chunk.

 info <hex chunk ptr/ID>a [options..]
-card <cardNo> : card number when local ID

 specified instead of chunk ptr

Resize Resize an exist-
ing chunk.

resize <hex chunk ptr/ID>a <hex newSize> [options..]
-c : check and fill contents
-card <cardNo> : card number when local ID

 specified instead of chunk ptr

Set-
Owner

Set the owner of
a chunk.

setowner <hex chunk ptr/ID> <owner> [options..]
 -card <cardNo> : card number when local ID
 specified instead of chunk ptr
24 Palm OS Cookbook

Using the Pilot Simulator
Database Utilities
Database Utilities

Cmnd Result Syntax

Import Import a data-
base.

import [-r] <cardNo> <filename>
-r : Import from Macintosh resource file
-u : Create new unique IDs
-d : Update creation and modification dates

Export Export a data-
base.

export [-m] <cardNo> <filename>
-m : Export as Macintosh resource file

Create Create a data-
base.

create <cardNo> <name> [options...]
-t <type> : Database type, 4 characters
-c <creator> : Database creator, 4 characters
-v <version> : Database version
-r : Resource database

Del Delete a data-
base.

del <cardNo> <databaseName>

Dir List database
directory.

dir <cardNo>|<searchOptions> [displayOptions]
 <searchOptions>:

-t search by type
-c search by creator

 -latest search for only latest version of each database

 <displayOptions>
-a show all info for each database
-n show name
-id show ChunkID
-s show size
-r show number of records
-at show attributes
-v show version
-d show dates
-m show modification
-i show info fields
-tc show type & creator

Note: follow any option with - to turn it off.
Palm OS Cookbook 25

Using the Pilot Simulator
Miscellaneous Utilities
Miscellaneous Utilities

a.Use the opened command to find the access ptr for a database.

Open Open a data-
base.

open <cardNo> <name> [options...]
-r open read-only
-p leave open

Close Close a data-
base.

close <access ptr>

Opened List all open
databases.

opened

SetInfo Set info in a
database.

setinfo <cardNo> <dbName> [options...]
<options>:

-v <version> set version
-m <modification #> set modification number
-n <name> set name

Command Result Syntax

SimSync Simulate a Sync on a database. De-
leted records are removed and dirty
flags are cleared.

simsync [access ptr]a

SysAlarmDump Display the alarm table sysalarmdump

Cmnd Result Syntax
26 Palm OS Cookbook

Using the Pilot Simulator
Record Utilities
Record Utilities

a.Use the opened command to find the access ptr for a database.

Command Result Syntax

AttachRecord Attach a record
to a database.

attachrecord <access ptr>a <record handle>
<index> [options...]
 -r replace existing record

DetachRecord Detach a record
from a database.

detachrecord <access ptr>a <index>

AddRecord Add a record to
a database.

addrecord <access ptr>a <index> <record text>

DelRecord Delete a record
from a database.

delrecord <access ptr>a <index>

Change-
Record

Replace record
in a database.

changerecord <access ptr>a <index> <record text>

ListRecords List records in a
database.

listrecords <access ptr>a

SetRecordInfo Set info on a da-
tabase record.

setrecordinfo <access ptr>a index [options...]
-a <hex attr> set attributes
-u <uniqueID> set unique ID

MoveRecord Move a record
from one index
to another.

moverecord <access ptr>a <from> <to>

FindRecord Find a record
by unique ID.

findrecord <access ptr>a <id>
Palm OS Cookbook 27

Using the Pilot Simulator
Resource Utilities
Resource Utilities

Command Result Syntax

GetResource Get a resource. getresource -t <type> -id <id>

ListResources List resources in a
database.

list resources <access ptr>

SetResourceInfo Set resource info. setresourceinfo <access ptr>
<index> [options...]

-t <resType> set resource type
-id <resID> set resource id

AddResource Add a resource to
a database.

addresource <access ptr> -t <type> -id <id>
<record text>

DelResource Delete a resource
from a database.

delresource <access ptr> <index>

ChangeResource Change a resource
in a database.

changeresource <access ptr> <index>
<resource text>
28 Palm OS Cookbook

Using the Pilot Simulator
Debugging Utilities
Debugging Utilities

Command Result Syntax

DM Display memory. dm <addr> [<count>]

SB Set byte sb <addr> <value>

MDebug Set memory man-
ager debug mode.
Sets the level of
memory checking
used whenever a
memory manager
API function is exe-
cuted.
This command is
helpful in tracking
memory corrup-
tion bugs.

mdebug [options..]
Shortcuts:

-full : Full checking (slowest)
-partial : Partial checking (faster)
-off : No checking (fastest)

Fine tuning (Which heaps are checked/scrambled):
-a : check/scramble all heaps each time
-a- : check/scramble affected heap only

Heap checking:
-c : check heap(s) on some Mem calls
-ca : check heap(s) on every Mem call
-c- : turn off heap checking

Heap scrambling:
-s : scramble heap(s) on some Mem calls
-sa : scramble heap(s) every Mem call
-s- : turn off heap scramble

Free chunk checking:
-f : check free chunk contents
-f- : don't check free chunk contents

Minimum dynamic heap free space recording:
(recorded in the global GMemMinDynHeapFree)

-min : record minimum free space in
dynamic heap

-min- : don't record minimum free space
Palm OS Cookbook 29

Using the Pilot Simulator
Simulator Commands
Simulator Commands

Command Result Syntax

Gremlin Activate a particular
Gremlin until a certain
event.

gremlin [num] [until]
num—gremlin number
until—number of input events to generate.

PopulateDB PopulateDB <number of records>
<max. record size>[15]

Date Display or set the current
date.

date [mm/dd/yyyy]

Time Display or set the current
time in 24-hour format;
seconds are not dis-
played.

time [hh:mm[:ss]]

AlarmSound Display or set the alarm
sound state.

alarmsound [on|off]

SystemSound Display or set the system
sound state.

systemsound [on|off]

SyncNotify Send HotSync notifica-
tion to the current appli-
cation.

syncnotify
30 Palm OS Cookbook

Using the Pilot Simulator
Differences Between Pilot Simulator and Palm OS Hardware
Differences Between Pilot Simulator and
Palm OS Hardware

There are a few differences between an application running under
the Pilot Simulator and one running on a Palm OS device, which can
cause difficulties during debugging. In particular, the Simulator al-
lows an application to do a few things that won’t work on the de-
vice. If your application runs under the Simulator but doesn’t run
on the device, check for these potential problems:

• Does your application use standard C run-time library calls?
These calls work under the Simulator but may not work on
the device. The calls include memory management routines
(malloc, free), string operations (strcpy, strcmp), mathemati-
cal functions (rand, cos), and so on. There are Palm OS equiv-
alents for most of these functions. Note that even if a
standard C run-time library call works on the device, it un-
necessarily enlarges your application.

• Are you writing to storage RAM without using DMWrite?
The Palm OS device enforces write protection and the Simu-
lator does not. On the device, a bus error results. Under the
Simulator, there are no problems.

• Are you accessing 16- or 32-bit memory values at odd ad-
dresses? The Simulator allows this, but the device generates a
bus error. This often happens when you are working with
packed data rather than defined structures.

• Does your application attempt intra-application jumps of
more than 32K? This results in link errors. You can often
overcome this problem by rearranging your code.

• Does your application overflow the stack? Applications run-
ning on the device have only a 2K stack. Applications run-
ning under the Simulator have a much larger stack. If your
application stores a lot of data in local variables, this problem
could arise. Store the data in global variables or in allocated
database chunks instead.

• Pointer errors have a much more dramatic effect on the de-
vice than under the Simulator. This is due to the greater den-
sity of data in the device’s memory than in Macintosh
memory. Any bad pointer values, array overwrites, and so
on, are much more likely to destroy important data on the
Palm OS device than on the Macintosh.
Palm OS Cookbook 31

Using the Pilot Simulator
Debugging Memory Management
In addition, there are a few harmless differences between the Palm
OS device and the Simulator:

• The buttons on the front of the simulated device do not
switch applications because you can run only one application
at a time under the Simulator.

• The four buttons are simulated by the F9, F10, F11, and F12
keys on your keyboard.

• The scroll up and scroll down buttons are simulated by the
page up and page down keys on your keyboard.

Debugging Memory Management
This section looks in some detail at debugging memory manage-
ment. Using commands that can be executed from the Console win-
dow of the Simulator or from the Console window of the Pilot
Debugger, you can make sure that your application manages mem-
ory correctly. This includes making sure it is not corrupting mem-
ory, causing unnecessary heap fragmentation, or leaving unused
memory chunks around (that is, causing memory leaks).

This section assumes that you understand how memory is struc-
tured in the Palm OS environment. In particular, you need to know
how memory is subdivided into heaps, the different types of mem-
ory chunks (movable and nonmovable) in heaps, and how the data
manager stores information. “Palm OS Memory Management” in
“Developing Palm OS Applications” describes this in detail.

The Console window accepts the same memory debugging com-
mands in either the Pilot Simulator or the Pilot Debugger. The only
difference is that when you run the Pilot Debugger, each command
you enter in the Console window communicates with the device
over the serial port in order to carry out its function on the device.

Two classes of memory management commands are available.
These are discussed in the next two sections:

• Displaying Memory Information
• Manipulating Memory (commands that actively manipulate

memory or put the memory manager into different modes)
32 Palm OS Cookbook

Using the Pilot Simulator
Debugging Memory Management
Displaying Memory Information
A number of commands are available for displaying how memory is
allocated. At the highest level, there are commands for displaying
the available heaps and summary information about each heap. At
the lowest level, there are commands for displaying how each heap
is subdivided and for getting information on each chunk in a heap.

Card Info

Syntax CardInfo <cardno>

Description Displays the total amount of RAM and ROM on a memory card.
Also displays the total amount of free space in RAM and the total
number of heaps. This is especially helpful when you want a snap-
shot overview of the memory situation. The current Palm OS device
only has one memory card slot, so the <cardno> argument has to be
0 (for the first memory card).

Example cardinfo 0
Name: Card 0
Manuf: Palm Computing
Version: 0001
CreationDate: 12345678
ROM Size: 00000000
RAM Size: 0003811A
Free Bytes: 000315F6
Number of heaps: #4

Heap List

Syntax HL <cardno>

Description Displays a list of heaps on a memory card. For each heap, shows the
heapID, pointer, size, free bytes, biggest free chunk, and flags. The
heapID is important because it must be passed to the commands
which display more detailed information about each heap.

Example hl 0
Palm OS Cookbook 33

Using the Pilot Simulator
Debugging Memory Management
Heap Total

Syntax HT <heapID>

Description Displays summary information about a heap. This includes the total
heap size; the number of master pointers available for movable
chunks (numHandles); and the total number of free chunks, mov-
able chunks, and nonmovable chunks currently allocated.

Example ht 1
Displaying Heap ID: 0001, mapped to 00B2B20A

Heap Summary:
flags: 0000
size: 10000
numHandles: #200
Free Chunks: #1 (FC42 bytes)
Movable Chunks: #3 (0094 bytes)
Non-Movable Chunks: #0 (0000 bytes)

Heap Dump

Syntax HD <heapID>

Description Displays all the chunks in a heap. For each chunk, it shows the start
address, the handle if it’s a movable chunk, the local ID, the re-
quested size, the actual size, the lock count, the owner ID, the flags
and some identifying information about the chunk, including the
database it belongs to, its resource type, and ID or record number.

If you dump the dynamic heap (heapID 0), the identifying informa-
tion indicates whether or not the chunk is allocated by one of the
system managers.

Example hd 1
34 Palm OS Cookbook

Using the Pilot Simulator
Debugging Memory Management
Heap Check

Syntax HChk <heapID>

Description Checks the integrity of a heap and displays an error message if it de-
tects an error in the heap structure. The HD (Heap Dump) and HT
(Heap Total) commands also check the integrity but sometimes
HChk is more convenient because it doesn’t print extra information.

Example hchk 0
Heap OK

Chunk Info

Syntax Info -card <cardNo> <localID>

Description Most useful for converting a Local ID to a chunk pointer or handle.
Given a card number and Local ID (in hex), returns information
about the chunk that the Local ID refers to. This includes a pointer
to the start of the chunk data, the handle of the chunk (if it’s a mov-
able chunk), the flags, size, owner ID, lock count, and the heap ID of
the heap that the chunk resides in.

Example info -card 0 8123
Info on Chunk at: 00B2B56C
Handle: 80B2B212
Flags: 0000
Size: 005A
Owner: #1
LockCount: #0
Heap ID: 0001
Palm OS Cookbook 35

Using the Pilot Simulator
Debugging Memory Management
Manipulating Memory
This section describes the commands available for manipulating
memory. For example, there are commands for filling a heap, com-
pacting a heap, and scrambling a heap. These are all useful when
you want to test the behavior of your application in various mem-
ory situations.

Another command, MDebug, puts the memory manager into differ-
ent modes that are helpful for tracking down intermittent memory
problems.

Heap Compact

Syntax HC <heapID>

Description Forces a heap to be compacted. This essentially merges all the free
chunks together. Normally, the memory manager compacts a heap
only when a memory allocation fails.

Example hc 0
Heap Compacted

Heap Fill

Syntax HF <heapID> [freeBytes]

Description Fills a memory heap with memory chunks until there are only
<freeBytes> free bytes. This is useful for testing the behavior of your
application in low-memory situations. If <freeBytes> is not speci-
fied, the entire heap is filled, with 0 free bytes remaining.

Example hf 1 100
36 Palm OS Cookbook

Using the Pilot Simulator
Debugging Memory Management
Heap Scramble

Syntax: HS <heapID>

Description Scrambles a heap. As a result, any movable chunks in the heap are
moved to another location in the heap. This is useful for detecting
situations where your application may have kept around a pointer
to an unlocked chunk. After a scramble, any pointers to unlocked
chunks are invalid and will most likely cause your application to
crash.

Example hs 1
Heap Scrambled

Memory Manager Debug Mode

Syntax: MDebug [options..]
Shortcuts:
-full : Full checking (slowest)
-partial : Partial checking (faster)
-off : No checking (fastest)

Fine Tuning:
Which heaps are checked/scrambled:
-a : check/scramble ALL heaps each time
-a- : check/scramble affected heap only

Heap Checking:
-c : check heap(s) on some Mem calls
-ca : check heap(s) on every Mem call
-c- : turn off heap checking

Heap Scrambling:
-s : scramble heap(s) on some Mem calls

 -sa : scramble heap(s) every Mem call
-s- : turn off heap scramble

Free Chunk Checking:
 -f : check free chunk contents

-f- : don't check free chunk contents
Palm OS Cookbook 37

Using the Pilot Simulator
Debugging Memory Management
Min Dynamic Heap free space recording:
(Recorded in the global GMemMinDynHeapFree)
-min : record minimum free space in

dynamic heap
-min- : don't record minimum free space

Description Puts the memory manager into the selected debug mode. Can put it
into modes where heaps are automatically scrambled and checked
after your application makes certain memory manager calls. Once
you put the memory manager into one of these debug modes, you
are dropped into the Debugger as soon as a corrupted heap is de-
tected.

Most of the time, the MDebug command is used with the -partial
argument. This puts the memory manager into a mode where on
every memory manager call, it scrambles and checks the heap that
memory manager call operates on. This makes your application run
significantly slower, but the performance degradation is tolerable
under the Pilot Simulator running on a Macintosh Quadra or faster.

A more stringent mode is entered with the -full argument. This
makes the memory manager check every heap on every memory
manager call. The performance degradation from this command is
usually quite bad, so it’s best not to use it until the last stages of ver-
ification.

The other options (-a, -c, -s, -f) can be used to fine tune the
debug mode. You’ll notice that -partial and -full are merely
shortcuts that set the these other options for you. After setting the
mode using -partial or -full, you can further fine tune it by en-
tering one or more of these other options.

The last option, -min, makes the memory manager record the mini-
mum amount of free space ever detected in the dynamic heap. After
setting this option, you can run your application for awhile and
then enter the MDebug command with no options, to display the
minimum amount of free space ever detected in the dynamic heap.
This is helpful in determining the “breathing room” in the dynamic
heap.
38 Palm OS Cookbook

Using the Pilot Simulator
Debugging Memory Management
Examples: mdebug -partial
Current mode = 001A
 Only Affected heap checked/scrambled per call
Heap(s) checked on EVERY Mem call
Heap(s) scrambled on EVERY Mem call
Free chunk contents filled & checked

Minimum dynamic heap free space recording OFF

mdebug -full
Current mode = 003A
Every heap checked/scrambled per call
Heap(s) checked on EVERY Mem call
Heap(s) scrambled on EVERY Mem call
Free chunk contents filled & checked

Minimum dynamic heap free space recording OFF

mdebug -min
Current mode = 007A
Every heap checked/scrambled per call
Heap(s) checked on EVERY Mem call
Heap(s) scrambled on EVERY Mem call
Free chunk contents filled & checked

Minimum dynamic heap free space recording on:
Current value: 0 bytes

mdebug
Current mode = 007A
Every heap checked/scrambled per call
Heap(s) checked on EVERY Mem call
Heap(s) scrambled on EVERY Mem call
Free chunk contents filled & checked

Minimum dynamic heap free space recording on:
Current value: 15918 bytes
Palm OS Cookbook 39

Using the Pilot Simulator
Debugging Memory Management
mdebug -a-
Current mode = 005A
Only Affected heap checked/scrambled per call
Heap(s) checked on EVERY Mem call
Heap(s) scrambled on EVERY Mem call
Free chunk contents filled & checked

Minimum dynamic heap free space recording on:
Current value: 15918 bytes
40 Palm OS Cookbook

3
File Transfer With the Pilot
Debugger

The Pilot Debugger is a Macintosh application that communicates
through the Macintosh serial port with a Palm OS device. It allows
you to download applications to the device and to upload data files
created on the device to the Macintosh.

This chapter describes how to use the Pilot Debugger for file trans-
fer between a Palm OS device and a Macintosh, discussing these
topics:

• Setting Up the Pilot Debugger
• Starting Up the Pilot Debugger
• Loading Applications Onto the Device
• Copying a Database From the Device to the Macintosh
• Importing a Database Into the Simulator
• Exporting a Database From the Simulator

NOTE: You can also use the Pilot Debugger to debug memory
management. See Debugging Memory Management.

Setting Up the Pilot Debugger
To use the Pilot Debugger, you need to connect the Palm OS device,
through its cradle, to the Macintosh modem port. For best results,
use a high-speed Macintosh modem cable that has a DIN-8 connec-
tor on one side and a DB-25 connector on the other. Make sure the
cable is marked “high speed”; only those cables have the necessary
hardware handshaking lines. Connect the DB-25 end into the Palm
OS device cradle using a DB-9 to DB-25 adaptor.
Palm OS Cookbook 41

File Transfer With the Pilot Debugger
Starting Up the Pilot Debugger
Starting Up the Pilot Debugger
Before the Pilot Debugger can communicate with the Palm OS de-
vice, you must launch a background task on the device which
watches for commands sent from the Macintosh. To do this, follow
these steps:

1. On the Macintosh, launch the Pilot Debugger application
found in the Debugger folder of the Palm OS SDK.

2. Click on the Console window to bring it to the front.
3. Place a Palm OS device in a cradle connected to the Macin-

tosh serial port.
4. On the Palm OS device, use Graffiti to enter the shortcut “.2.”

The sequence consists of four strokes: the shortcut stroke, fol-
lowed by two taps (to generate a period), followed by the
stroke for the number 2. Remember to enter number the
stroke on the right side of the Graffiti area.
This sequence tells the device to listen to the Debugger.

5. If you’ve successfully entered the “.2” shortcut sequence, and
the Palm OS device is connected to the Macintosh correctly
through the serial port, and the Pilot debugger application is
running with the Console window in front, then you’ll see
the text “Ready...” in the Console window on the Macintosh.
If sound is enabled, the device clicks.

6. To verify that the Palm OS device is responding to com-
mands from the Macintosh, type into the Console window
dir 0

then press the Enter (not Return) key or Cmd-Return.
A list of databases on the device appears in the Console win-
dow. If something is wrong, you’ll notice a few second delay,
then a message like ### Error $00000404 occurred.

NOTE: If the Console window is not the active window when you
enter the “.2” shortcut, you’ll miss the "Ready..." message but will
still be able to enter commands in the Console window.

Entering the “.2” shortcut sequence a second time does not print an-
other “Ready...” message. If you’re not sure whether the connection
is established, enter dir 0 in the Console window and see if it
works.
42 Palm OS Cookbook

File Transfer With the Pilot Debugger
Loading Applications Onto the Device
Loading Applications Onto the Device
Before you can load an application onto the Palm OS device, you
must first build an executable for the device. While building an ap-
plication for the Simulator involves using a CodeWarrior project,
building one for the Palm OS device itself requires using a Makefile
(see Building a Palm OS Application).

The sample Makefile automatically copies the application into the
Debugger folder. If your Makefile doesn’t do this, you have to copy
your application into the Debugger folder before proceeding.

1. If the Palm OS device is already running an old copy of your
application, type del 0 appname into the Debugger Con-
sole window to remove it.

2. In the Console window of the Pilot Debugger application,
type

import 0 appname
and press the Enter key.
appname is the case-sensitive name of your application. If
the name contains spaces, enclose it in double quotes.
In the Console window, output like the following should ap-
pear:
Creating Database on card 0

 name: HwrTest
 type appl, creator hwrt

Importing resource 'code'=1....
Importing resource 'code'=0....
Importing resource 'data'=0....
Importing resource 'MBAR'=1000....
Importing resource 'tFRM'=1000....
Importing resource 'tFRM'=1900....
Importing resource 'tAIB'=1000....
Importing resource 'tver'=1....
Importing resource 'tAIN'=1000....
Importing resource 'pref'=0....
Success!!

Your application is now loaded onto the Palm OS device and
you can switch to it using the launcher button on the device.
Palm OS Cookbook 43

File Transfer With the Pilot Debugger
Copying a Database From the Device to the Macintosh
Copying a Database From the Device to the
Macintosh

To copy either an application database or a data database from the
Palm OS device to the Macintosh, follow these steps:

1. In the Console window of the Pilot Debugger, enter the dir
0 command to get a list of databases on the device and verify
the name of the database you wish to copy.

2. In the Console window of the Pilot Debugger, type export
0 <dbname> where <dbname> is the case-sensitive name of
the database you wish to copy and press the Enter key. (Don’t
confuse the application with the database.) If <dbname> has
one or more spaces in it, enclose it in double quotes.
In the Console window, you should see output like the fol-
lowing:
Exporting record #0....
Exporting record #1....
Success!!

The database has been copied into the Debugger folder
under the same name as it had on the device. If you wish,
you can now import this database into your simulated appli-
cation on the Macintosh as described in Importing a Data-
base Into the Simulator.

Importing a Database Into the Simulator
While debugging your application, you may at times find it helpful
to take a database from the device and load it into the Pilot Simula-
tor on the Macintosh. This lets you single-step through the source
code of your application while it is working with data that origi-
nated on the device.

First, you must get the database off of the device by following the
instructions in Copying a Database From the Device to the Macin-
tosh. Then follow these steps to load the database into the
Simulator:

1. Copy the database file into your application’s folder on the
Macintosh. The application must have been compiled for use
with the Simulator. If you’ve just exported it from the device,
44 Palm OS Cookbook

File Transfer With the Pilot Debugger
Importing a Database Into the Simulator
you’ll have to copy it out of the Debugger folder and into
your simulated application’s root folder.

2. Launch your simulated application.
3. From the Window menu, select Console.

This opens a Simulator Console window.
4. In the Console window, type

opened

then press the Enter key.
This prints a list of open databases in the Simulator. If the da-
tabase you want to import is already in the Simulator’s mem-
ory image and is open, you have to close it first. If you see
that it is open, enter
close <accessP>

into the Console window, where <accessP> is the access
pointer of the database that is displayed by the opened com-
mand. For example, you might enter: close 0054280C if
0054280C was the access pointer of the database.

5. In the Console window, type
import 0 <dbname>

where <dbname> is the name of the database you want to im-
port.

6. If you had to close the old database before importing the new
one (described in step 4) save the memory card image and
quit the Simulator.
This closes the database belonging to your application, and
it’s not possible to force it to use the new database without re-
starting the application.

Closing the Simulator and restarting it allows the application to
start fresh with the replacement database. To save the memory card
image, follow these steps:

1. From the File menu, choose Save Card 0.
2. When prompted for the location, choose the current folder

and the default name (Pilot Card 0), then click the Save but-
ton.

3. After saving, quit the Simulator and relaunch it to use the
new database.

When you have a saved memory card image in the same folder as
your application, the Simulator uses it the next time it launches.
Palm OS Cookbook 45

File Transfer With the Pilot Debugger
Exporting a Database From the Simulator
Consequently, all databases that exist in the saved memory card
image reappear the next time you launch your application.

Exporting a Database From the Simulator
Occasionally, it is helpful to take a database generated in your simu-
lated application and write it out as a separate Macintosh file. You
can then take this file and import it into a real device using the Pilot
Debugger, or look at it using a Macintosh file utility.

1. Launch your application (which has to be compiled for use
with the Simulator).

2. From the Window menu, select Console.
This opens a Simulator Console window.

3. In the Console window, enter the command
dir 0

to get a list of databases in the Simulator’s memory card im-
age.

4. Verify the name of the database that you wish to export.
5. In the Console window, enter the command

export 0 <dbname>

where <dbname> is the case-sensitive name of the database
you wish to export, and press the Enter key. (Use double
quotes if the name contains spaces.)
In the Console window, output like the following should ap-
pear:
Exporting record #0....
Exporting record #1....
Success!!

The database is now copied into the application folder under
the same name it had in the Simulator’s memory card image.
If you wish, you can now import this database into your
Palm OS device using the import command from the Pilot
Debugger’s Console window.
46 Palm OS Cookbook

4
Design, Testing, and
Localization Guidelines

This chapter helps you develop an application that’s fast, robust,
and consistent with other applications on the device.

The information was collected from engineers, testers, and other ex-
perts who designed, developed, and tested the four applications
shipped with the first Palm OS device. A section on localization
helps those developers that intend to make their application avail-
able in other languages.

The chapter discusses these topics:

• Application Design Guidelines
• Localizing a Palm OS Application
• Testing a Palm OS Application

Application Design Guidelines
This section provides some application design guidelines. It dis-
cusses these topics:

• Getting Started
• User Interface Do’s and Don’ts
• Program Design
• Working With Databases

Getting Started
As you’re starting to design your Palm OS application, keep in mind
the differences between a hand-held device and a desktop com-
puter. Note that these differences are not just restrictions, but reflect
what your users want to do with the device. For a successful, easy to
use application, follow these guidelines:
Palm OS Cookbook 47

Design, Testing, and Localization Guidelines
Application Design Guidelines
• Remember that the Palm OS device is meant for data viewing
and gathering, not for data processing.

• Off-load all heavy-duty processing onto the desktop com-
puter.

• Design for the small square screen. Strip all complexity from
the user interface that you possibly can. Examine each feature
on the desktop and ask yourself whether it’s really needed,
then try to implement it if it is.

• If you do decide to implement a feature, remember that easy
access by one tap can reduce the complexity of your user in-
terface.

User Interface Do’s and Don’ts
After you’ve decided how your application will appear on the Palm
OS device, the next step is creating a preliminary user interface. All
Palm OS applications are based on a set of resource templates in-
cluded with your development environment. You design your ap-
plication’s interface by filling in the templates appropriately.

A detailed specification of all user interface guidelines is provided
in User Interface Design Guidelines.

NOTE: All developers are urged to include the first set of rules
listed here in their test plan. Applications that don’t follow them
may cause problems for other applications on the device.

Here’s a summary of the most important rules you should follow to
make your application consistent with other Palm OS applications:
• Whenever a field for user input is available, make sure that:

– system keyboard is available via shortcut
– system keyboard is available via menu
– Graffiti input is possible (regular strokes and shortcuts)
– cut, copy, paste, and undo are possible

• Don’t gray-out unusable menu items.
• Don’t change or obscure the Graffiti status indicator area.
• Don’t change or obscure the behavior of the silk-screened

icons.
48 Palm OS Cookbook

Design, Testing, and Localization Guidelines
Application Design Guidelines
• Some applications (such as games) may find it useful to over-
load the buttons. If you do that, release the buttons at every
possible opportunity.

• Be sure to handle the clipboard correctly. If you use it, allow
users to copy and paste between applications; if you don’t,
make sure it’s intact when you exit.

• Don’t nest dialog boxes too deeply.

Here are some additional recommendations that make your applica-
tion easier to use:

• If you can, provide command strokes for each menu com-
mand.

• If you can, allow finger navigation. For finger navigation,
buttons need to be big enough for the system to recognize
which button has been pushed. This is done by the Palm OS
system software.

• Provide help dialogs (tips) where possible.
• Support Graffiti navigation: left-right-forward-backward

movement is part of a field’s behavior. Your application
should provide inter-field navigation if appropriate by allow-
ing users to get to the next and previous screen using down/
up and up/down keystrokes.

Program Design
After you have some rudimentary user interface components, you
can start writing the program itself. As you do, remember to look at
the tutorial examples and the source code for the resident applica-
tions for examples. In addition, follow the guidelines below.

Integrating With the Palm OS Environment

When users work with a Palm OS application, they expect to be able
to switch to other applications, receive alarms, and so on. Your ap-
plication will integrate well with others if you follow these guide-
lines:
• All applications should handle sysAppLaunchCmdNormal-

Launch and handle or ignore other application launch codes
as appropriate.
Palm OS Cookbook 49

Design, Testing, and Localization Guidelines
Application Design Guidelines
• Handle system preferences properly. System preferences de-
termine the display of
– date formats
– time formats
– number formats
– first day of week (Sunday or Monday)

Note that system preferences are independent of localization
issues.

• Allow the system to post alarms, low-battery warnings, and
system messages during synchronization.

• Store state information in the application preferences data-
base not in the application record database. Call
PrfGetAppPreferences and PrfSetAppPreferences to
save and restore preferences. This is important if your appli-
cation returns to the last displayed view by default.

• If your application uses the serial port, be sure to free it up
whenever you no longer need it so that the HotSync applica-
tion can use it.

• If your application supports private records, be sure they are
unavailable to the global find when they should be hidden.

• The application name is defined in two places:
– The application icon name (optional), is a string resource

in the application’s resource file (tAIN). It is used by the
launcher screen, and is often shorter than the long name.
Using the icon name is useful if you plan to localize your
application.

– The long name is specified in the Makefile (required) and
used by HotSync, the About box, the Memory display,
and the database header.

Avoiding Potential Pitfalls and Achieving Optimum
Performance

Because the Palm OS device has limited heap space and storage, op-
timization is critical. The Palm OS currently has no wait cursor.
50 Palm OS Cookbook

Design, Testing, and Localization Guidelines
Application Design Guidelines
To make your application as fast and efficient as possible, optimize
for heap space first, speed second, code size third, and follow these
guidelines:
• Ask Palm Developer Support for a unique creator ID for your

application and use that ID to avoid overwriting other appli-
cations’ databases (email: devsupp@palm.com).

• Use only one event loop to simplify debugging.
• Allocate handles for your memory to avoid heap

fragmentation.
• Sort on demand; don’t keep different sort lists around. This

makes your program simpler and requires less storage.
• Dynamic memory is a potential bottleneck. Don’t put large

structures on the stack.
• To conserve the battery, avoid continual polling. If your ap-

plication is in a wait loop, poll at short intervals (for example,
every tenth of a second) instead. The event loop of the Hard-
ball example application included with your Palm OS SDK il-
lustrates how to do this.

• Arrange subroutines within the application to avoid 32K
jumps (detectable only when building for the device; doesn’t
show in Simulator).

• Version your applications and databases using
dmSetDatabasInfo when creating a database. Databases
default to version 0 if the version isn’t explicitly set.

• Call dmDatabaseInfo to check the database version at ap-
plication start-up.

• To have your application run well within the constraints of
the limited dynamic heap (32K) follow these guidelines:
– Allocate memory chunks instead of using global variables

where possible.
– Switch from one UI form to another instead of stacking

up dialog boxes.
– Edit database records in place; don’t make extra copies on

the dynamic heap.
• Your application only has 2K of stack space. Avoid placing

large amounts of data on the stack; global variables are pref-
erable to local variables (however, chunks are preferable to
global variables).
Palm OS Cookbook 51

Design, Testing, and Localization Guidelines
Localizing a Palm OS Application
Working With Databases

• Keep data in database records compact. To avoid perfor-
mance problems, Palm OS databases are not compressed, but
all data are tightly packed. This pays off for storage and dur-
ing HotSync.

• All records in a database should be of the same type and for-
mat. This is not a requirement, but is highly recommended to
avoid processing overhead.

• Be sure your application modifies the flags in the database
header appropriately when the user deletes or otherwise
modifies information.

• When the user deletes a record, be sure to remove all data
from it but don’t remove the record itself. That way, the Desk-
top application can retrieve the information that the record is
deleted the next time there is a HotSync.

• Don’t display deleted records.

Localizing a Palm OS Application
If you’re planning to localize the software you’re developing for the
Palm OS device, start by looking at the localized versions of the four
PIM applications on the device. Then plan your application’s inter-
face, keeping in mind localization issues.

General Localization Guidelines
When you start planning for the localized version of your applica-
tion, follow these guidelines:

• When designing the layout of a screen, try to allow extra
space in strings. Don’t use the English language version of
the software as a guide. If you can, use a larger dialog than
the English version requires. Note that because of the partic-
ularly scarce screen real estate on the Palm OS device, you
may have to use abbreviations at times.

• Don’t put strings in code. Separate any language-dependent
strings from the code itself. If you have to print directly to the
screen, remember that a one-line warning or message in one
language may need more than one line in another language.
52 Palm OS Cookbook

Design, Testing, and Localization Guidelines
Localizing a Palm OS Application
• Using a fine granularity is usually helpful. You can then con-
catenate strings as needed (and in the order needed) to arrive
at a correct translation.

• Consider using string templates. For example, the MemoPad
application uses the template: Memo # of %. The application
can replace # and % to change the text.

Localization for Palm OS
There are several issues you need to pay special attention to when
localizing a Palm OS application.

• Preferences. Your application needs to check and use the set-
tings users have chosen in the system preferences. The de-
fault preferences at startup are different for the different
localized versions, though they can be overridden. The fol-
lowing settings are available:
– Date formats
– Time formats
– Start day of week
– Number formats

Note that there is no currency setting. There are also no sepa-
rate setting for long and short dates; the long date format is
mapped to the short date format.

• Translating Palm OS Resources. Applications that use only
standard Macintosh ResEdit resources can use certain stan-
dard translation tools such as Resourcer or AppleGlot to fa-
cilitate translation. Because Palm OS resources are
proprietary, you can’t use these tools but have to translate
each resource individually instead.

• Font Issues. A Palm OS application is developed on the Mac-
intosh but uses Windows fonts. The conversion occurs auto-
matically; don’t try to second-guess the Windows font
mapping.

• Capital letters with accent marks may be the same size as the
letters without (in effect, the letter itself becomes one pixel
shorter).

• Remember that most resources, for example lists, fields, and
tips scroll if you need more space.
Palm OS Cookbook 53

Design, Testing, and Localization Guidelines
Testing a Palm OS Application
Testing a Palm OS Application
Testing a Palm OS Application consists of two stages, discussed in
the next two sections:

• Testing in Standalone Mode makes sure that your application
runs error-free and is robust in standalone mode.

• Testing Application Integration makes sure that your applica-
tion is integrated with the Palm OS environment.

Testing in Standalone Mode
Testing your application in standalone mode involves a few simple
steps:

• Make sure your application runs error free when you use the
Pilot Simulator (see Using the Pilot Simulator).

• When you can detect no more errors, run the Gremlins auto-
mated testing application available from the Simulator. Your
application should be able to pass at least 500,000 Gremlin
events. If your application can handle one million events, it is
considered robust.

• Run Gremlins with mdebug set to full. To do that, type
mdebug -full into the console window, then run one of the
Gremlins.

• Look for memory leakage after running Gremlins with the
command hd 0 (see Manipulating Memory in Using the
Pilot Simulator).

• Ensure correct behavior in out of memory conditions by
using heap fill, heap compact, heap scramble, and heap
check. See Debugging Memory Management.

• Perform limits testing:
– Fill up memory and see if the application still runs.
– Make sure you handle a storage-full situation properly.

The application should be able to detect that there’s no
memory left, and should warn the user and not attempt to
write records to a database.

• Finally, download your application to the Palm OS device
and perform testing there. Start by continuing testing in
standalone mode, then test its integration with the Palm OS
environment and with other applications.
54 Palm OS Cookbook

Design, Testing, and Localization Guidelines
Testing a Palm OS Application
Testing Application Integration
A Palm OS application needs to fit in with the environment in a way
that users expect. For example, users need instant access to other ap-
plications such as the calculator; they expect to have access to Graf-
fiti and the on-screen keyboard; and they expect to access
information with the global find. Here are some guidelines:

• Be sure your application does not obscure or change the
Graffiti area, silk-screened buttons, and power button.

• Follow the guidelines listed in User Interface Design Guide-
lines and pay special attention to these points:
– Test that the different user input modes (e.g. Graffiti and

keyboard) are available for each field.
– Test that menu items work with shortcuts as advertised.
– Put limits on the length of fields and test them.
– Test that any growable control, such as the launcher win-

dow or the popdown menus, scrolls correctly.
• Be sure your application uses the System Preferences for nu-

meric formats, date, time, and start day of week. Do this even
if you’re not planning on localizing your software.

• Test that your application handles system messages during
and after synchronization properly.

• Don’t display deleted records.
• Test that your application doesn’t exceed the maximum num-

ber of categories.
• Test that your application handles the global find properly.

Generally searches and sorts aren’t case sensitive.
• If your application allows for private records, test that they

are hidden properly and that a global find ignores them.
• Always leave the Graffiti icon area free; don’t obscure Graffiti

shift indicators.

• Test that your application uses a consistent default state
when the user enters it:
– Some applications have a fixed default; for example, the

Date Book always displays the current day when
launched.

– Other applications return to the place the user exited last.
In that case, remember to have a default if that place is no
Palm OS Cookbook 55

Design, Testing, and Localization Guidelines
Testing a Palm OS Application
longer available. Because of HotSync and Preferences,
don’t assume the application data is the same it was when
the user looked at it last.

• Test for performance. Launching, switching, and finding
should be fast.

• If your application uses sounds, be sure it uses the Warning
and Confirmation sounds properly.
56 Palm OS Cookbook

5
User Interface Design
Guidelines

The Palm OS device is designed for rapid entry and quick retrieval
of information. To maximize performance, the UI should minimize
navigation between windows, opening of dialog boxes, and so on.
The layout of application screens needs to be simple so that the user
can pick up the product and use it effectively after a short time. It’s
especially helpful if the UI of your application is consistent with
other applications on the device so users work with familiar pat-
terns.

This chapter helps you design a user interface that’s intuitive, easy
to use, and consistent with other applications on the device. It dis-
cusses these topics:

• Foundations of UI Design
• User Interface Objects Overview
• UI Design Philosophy

NOTE: Guidelines for implementing specific user-interface objects,
such as information on the size of buttons or the font for labels, is
provided in Chapter 3, “Palm OS User Interface Resources,” of
“Developing Palm OS Applications.”

Foundations of UI Design
Users of the Palm OS device operate it with a plastic stylus or their
fingers. Four buttons provide access to the Personal Information
Management (PIM) applications (Date Book, To Do list, Address
Book and Memo Pad). Here are some guidelines you should follow
to make your application’s interface consistent with these and other
applications.
Palm OS Cookbook 57

User Interface Design Guidelines
Foundations of UI Design
• Provide an application icon for the Launcher. When users
want to open your application, they go to the launcher screen
and select the icon.

• Your application probably needs a base screen that provides
an overview of all available information. This screen is typi-
cally a list view.

• Allow users to view most record information by pressing the
navigation keys. Each event, to do item, address, memo page,
and so on, is called a record.

• For more efficient screen use, consider organizing records
into user-defined categories. Users can switch between cate-
gories using a popup menu or can display all records at once.

• Detailed information and advanced navigation require the
use of a stylus. See Data Entry for different data entry modes.

• Don’t require double taps.
• Don’t use grayed-out menu commands; instead, remove the

command when it’s not available.
• Use bold font for labels, nonbold for editable items.

Navigation
Users can move through an applications by the following methods:

• Switching applications. Users press the physical buttons
representing the PIM applications, or access a launcher to
switch applications.

• Switching views. Each PIM application has two or more
views (or modes), typically a list view (or view mode) and an
edit view (or edit mode). The user taps on records or uses
command buttons to toggle between these views.
Edit mode gives users access to the Details button, for set-
tings which affect the entire record. They can also access spe-
cific menu commands for records. In many applications,
tapping on a record switches the application to edit mode
and displays an input cursor.

• Switching categories of records. A popup menu lets users
switch between categories. The popup menu is found in the
list view of applications that support categories.
58 Palm OS Cookbook

User Interface Design Guidelines
Foundations of UI Design
• Switching records in applications. Depending on the appli-
cation, the user can scroll through lists of records, and tap on
the records or a Details button for further information.

• Scrolling. Records too long to display in one screen are scrol-
lable. On-screen scroll buttons allow users to move up or
down one line at a time. The physical arrow buttons allow
users to move up and down one page at a time.

Data Entry
Users can enter data, which is stored at the application and system
level, as follows:

• Graffiti. Graffiti characters are written in the text area on the
digitizer and appear on the screen at the cursor location. The
user places the cursor directly on the screen with the stylus.

• On-screen keyboard. In place of Graffiti, the user taps with
the stylus an on-screen keyboard that types text into a tempo-
rary window. When the user dismisses the keyboard, the sys-
tem inserts that text at the cursor location.

• Controls. Buttons, check boxes, and popup lists provide a
quick way to enter settings and select options.

• HotSync. The user can type data on the PC and download it
to the Palm OS device.

In addition, follow these guidelines when designing the data entry
interface for your application:
• Let users perform basic data entry in place.
• Provide a Details dialog for more elaborate data entry.
• In the Details dialog, use this format:

Item (right-justified):Value(left-justified)

for example:
Date:4-1-96

• Allow users to interact with an application through either a
button, menu, or popup list. Don’t provide both a button and
a menu for the same actions.
Palm OS Cookbook 59

User Interface Design Guidelines
Foundations of UI Design
Command Execution
Users can execute commands as follows:

• Command buttons. Users execute common commands by
tapping on command buttons at the bottom of the screen.

• Menus. Commands not represented by command buttons
can be accessed via a simple menu system. The user taps on a
menu hard icon in the digitizer area to invoke a menu bar.
Provide menu shortcuts if possible.

• Graffiti menu command shortcuts. Users can write a special
Graffiti stroke and a command keystroke to execute a menu
command. This is analogous to keyboard shortcuts on a per-
sonal computer. For example, writing the command stroke
symbol (a bottom-left to top-right line) and “C” allows the
user to copy the selected text.

Screen Layout
When designing the screen layout for your application, follow these
guidelines:

• Use the resources provided with the development environ-
ment and use the values for width, height, default font, and
so on, provided in Chapter 3, “User Interface Resources” of
“Developing Palm OS Applications.”

• Always go to the edge of the screen (don’t use borders). This
maximizes screen real estate available to the application.

• In the title bar for each screen, provide both the application
name and the name of the screen (if possible).

• When your application brings up a dialog, align it with the
bottom of the screen. Leave the screen Title bar visible if
possible.

• Align buttons at the bottom of the screen with the bottom
edge of the screen.

• When using buttons in dialogs, leave space (three pixels) be-
tween the edge of the dialog and the buttons.

• Text surrounded by borders normally has one pixel above
and below the font height.

• Controls that can be displayed in groups have at least two
pixels to the left and right of the text label (the exception is
60 Palm OS Cookbook

User Interface Design Guidelines
User Interface Objects Overview
command buttons, which require wider margins to accom-
modate the rounded border).

User Interface Objects Overview
The Palm OS development environment provides a set of Macintosh
resource templates that application developers use to implement the
buttons, dialogs, and other UI elements. The table below maps user
interface element to resources. All resources are discussed in detail
in Chapter 3, “Palm OS User Interface Resources,” of “Developing
Palm OS Applications, Part I.” Specific design recommendations for
some of the elements are provided below.

UI Element and
Functionality

Example Resource

Command button
Execute command.

Button (tBTN)

Push buttons
Select a value (same as
radio buttons).

Push button (tPBN)

Hot text entry
Invoke dialog that
changes text of the
button.

Selector trigger (tSLT)

Increment arrows
Increment/decrement
values, or scroll.

Button (tBTN) or re-
peating button (tREP)

Check box
Toggle on or off.

Checkbox (tCBX)

Popup lists
Choose a setting from
a list.

Popup trigger (tPUT)
Popup list (tPUL)
List (tLST)
Palm OS Cookbook 61

User Interface Design Guidelines
UI Design Philosophy
UI Design Philosophy
This section looks at some issues that underlie the design of a user
interface for the Palm OS Device. It discusses these topics:

• Creating Fast Applications
• Matching Use Frequency and Accessibility
• Creating Easy to Use Applications

Creating Fast Applications
Speed is a critical design objective for hand-held organizers, and is
not limited to execution speed of the code. The total time needed to
navigate, select, and execute commands can have tremendous im-
pact on overall efficiency.

The user should be able to keep up with someone on the telephone
when setting up appointments, looking up phone numbers, etc. Pri-
orities include the ability to

• execute key commands quickly
• navigate to key screens quickly
• find key data quickly (for example phone numbers)

Matching Use Frequency and Accessibility
PC user interfaces are typically designed to display commands as if
they were used equally. In reality, usage of commands tends to drop
off rapidly after a few key commands. Similarly, some settings are

Menus
Execute commands
not found on screen.

Menu Bar (MBAR)
Menu (MENU)

Text fields
Display text (single or
multiple lines).

Field resource (tFLD)

UI Element and
Functionality

Example Resource
62 Palm OS Cookbook

User Interface Design Guidelines
UI Design Philosophy
more likely to be used than others (for example, a 3 PM to 4 PM
meeting occurs much more frequently than a 3:25 to 4:15 meeting).
More frequently used commands and settings should be easier to
find and faster to execute.

• Software commands executed with extreme frequency
should be accessible by one tap.

• Infrequently used commands may require more user actions
to execute.

To make something more easily accessible, follow these guidelines:

• Minimize the number of taps to execute a function or make a
setting.

• Commonly executed multistep operations, such as going to
today, should have command buttons to streamline
execution.

• Minimize the need to change screens.

• Minimize the number of dialogs to open and close; avoid dia-
logs within dialogs.

Choose the appropriate UI object when making a speed vs. screen
layout decision:

• Buttons on the screen provide instant access but take up
valuable screen space.

• Push buttons are faster than popup lists and should be used
if they fit on the screen reasonably.

• Popup lists are faster than manual input or increment/decre-
ment buttons but can be cumbersome if there are too many
items on the list or if they need to scroll.

Frequency Example Accessibility

Several times
per hour.

Checking today’s sched-
ule or to do items.

One tap.

Several times
per day.

One hour meeting start-
ing at the top of the hour.

One tap, write in
place.

Several times
per week.

Setting a weekly meeting
(repeating event).

Several taps, sec-
ond dialog box.
Palm OS Cookbook 63

User Interface Design Guidelines
UI Design Philosophy
Creating Easy to Use Applications
The user must be able to pick the product up and, with no training
or instruction, navigate between applications (without getting
stuck) and execute basic commands within five minutes. Advanced
commands should be easily accessible but should not be in the way.
The design must therefore fit the following criteria:

• Users need to know where they are. The PIM applications
and modal dialog boxes have black title bars that indicate the
application name and view.

• Make it obvious to the user how to get to different views. The
command buttons provide the best example of achieving
this.

• Use buttons for important commands.

• Accomplishing common tasks should be fast and easy. Mini-
mizing steps helps not only speed but ease of use.

Ease of use amounts to a series of trade-offs. Striking the best bal-
ance for the most people is the biggest challenge of UI design. For
example:

• The fewer buttons on the screen, the less time it takes to learn
how to use the product. However, having a button on screen
means the user does not need to memorize how to find it.
Keeping a few frequently used buttons on screen helps re-
duce the time spent learning basic functionality.

• Advanced features should not be in the way for beginners,
but should not require multiple-step searching.

• Consistency reduces the time needed to learn an application
by limiting the number of things that people need to keep in
their head at once. If the up arrow key does different things
on different screens, for example, the user needs to memorize
an entire set of rules to use the device easily.
64 Palm OS Cookbook

	Building a Palm OS Application
	Checking the File Hierarchy
	Creating a Makefile
	Compiling the Application
	Loading the Application Onto the Device

	Using the Pilot Simulator
	Simulator Menu Commands
	The File Menu
	Save Card 0...
	Save Card 1...
	Save Before Quitting
	Quit

	The Edit Menu
	The Window Menu
	Console
	Event Trace

	The Replay Menu
	Record
	Break
	Save As
	Playback
	Pause
	Step
	Realtime

	The Gremlin Menu
	New
	Step
	Resume
	Stop

	Simulator Console Commands
	System Commands
	Card Info Commands
	Heap Utility Commands
	Chunk Utilities
	Database Utilities
	Miscellaneous Utilities
	Record Utilities
	Resource Utilities
	Debugging Utilities
	Simulator Commands
	Differences Between Pilot Simulator and Palm OS Ha...
	Debugging Memory Management
	Displaying Memory Information
	Card Info
	Heap List
	Heap Total
	Heap Dump
	Heap Check
	Chunk Info

	Manipulating Memory
	Heap Compact
	Heap Fill
	Heap Scramble
	Memory Manager Debug Mode

	File Transfer With the Pilot Debugger
	Setting Up the Pilot Debugger
	Starting Up the Pilot Debugger
	Loading Applications Onto the Device
	Copying a Database From the Device to the Macintos...
	Importing a Database Into the Simulator
	Exporting a Database From the Simulator

	Design, Testing, and Localization Guidelines
	Application Design Guidelines
	Getting Started
	User Interface Do’s and Don’ts
	Program Design
	Integrating With the Palm OS Environment
	Avoiding Potential Pitfalls and Achieving Optimum ...
	Working With Databases

	Localizing a Palm OS Application
	General Localization Guidelines
	Localization for Palm OS

	Testing a Palm OS Application
	Testing in Standalone Mode
	Testing Application Integration

	User Interface Design Guidelines
	Foundations of UI Design
	Navigation
	Data Entry
	Command Execution
	Screen Layout

	User Interface Objects Overview
	UI Design Philosophy
	Creating Fast Applications
	Matching Use Frequency and Accessibility
	Creating Easy to Use Applications

