PALM (9 OS

Welcome to

Developing Palm OS
Applications

Part |. System and User Interface
Management

Navigate this online document as follows:

To see bookmarks Type Command-7

To see information on Type Command-?
Adobe Acrobat Reader

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar

PALM () OS

U.S. Robotics®

Developing Palm OS™
Applications

Part |

©1996 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.

Except for the foregoing, no part of this documentation may be reproduced or transmit-

ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and Graffiti are registered trademarks, and Palm
Computing, HotSync, Palm OS, and the Palm OS logo are trademarks of U.S. Robotics
and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK ARE
SUBJECT TO THE LICENSE AGREEMENT.

Canada U.S.A. and International
Metrowerks Inc. Metrowerks Corporation
1500 du College, suite 300 2201 Donley Drive

St. Laurent, QC Suite 310

H4L 5G6 Canada Austin, TX 78758

voice: (512) 873-4700
voice: (514) 747-5999 fax: (512) 873-4900
fax: (514) 747-2822

U.S. Robotics, Palm Computing Division
Mail Order

1-800-881-7256

Metrowerks Mail Order

voice: (800) 377-5416

fax: (512) 873-4901

U.S. Robotics, Palm Computing Division
World Wide Web site: http://ww. usr. coni pal m

Metrowerks World Wide Web site (Internet): htt p: // ww\. et r oner ks. com
Registration information (Internet): r egi st er @ret r oner ks. com
Technical support (Internet): support @ret r oner ks. com
Sales, marketing, & licensing (Internet): sal es@ret r oner ks. com
AppleLink: METROAERKS
America OnLine: got 0o: METROAERKS
Compuserve: got o: METRONERKS

Table of Contents

Tableof Contents v
1 Developing Palm OS Applications. 27
Overview of Application Development 27
Designing UI and Program Functionality 28
Designing Screen Layout and User Interaction. 28
Constructing UI Resources . . . oo o029
Using Managers and Filling out the Program Loglc oo 029
Using Events and Launch Codes. 29
Using the Palm OSManagers 30
Building, Debugging, and Testing 30
Building the Application and Running it on the DeV1ce ..o 31
Using Other Components of theSDK 31
Internal Structure of an Application. 31
Naming Conventions 33
Basic Hardware 34
RAMandROM 34
Palm OS Modes of Operation 34
Palm OS Connectivity.35
Real-Time Clock and Timer . . . G 1)
Palm OS Device Screen and Sound Generatlon 36
Palm OS Device Reset Switch 36

2 Application Control Flow 37
How Events Control an Application. 37
Basic Application Stages.38
The Startup Routine38
TheEventLoop 41
The Stop Routine. 44
How Action Codes Control the Application 47
Action Code Example. 47
Responding to Action Codes. 49
Predefined ActionCodes50
ActionCodeFlags 51

Developing Palm OS Applications, Part| v

Table of Contents

Action Code ParameterBlocks 51
sysAppLaunchCmdSaveData 51
sysAppLaunchCmdSystemReset. 52
sysAppLaunchCmdInitDatabase. 52
sysAppLaunchCmdSyncCallApplication 52
sysAppLaunchCmdGoto Command 53
sysAppLaunchCmdFind 54

Creating Your Own ActionCodes 55

3 Palm OS User Interface Resources 57
Menu Bar Resource00 59
Menu Resource.o 59
Application Icon Name Resource 62
AlertResourceo 63
Button Resourceo 0 L 65
Check Box Resource.¢67
Field Resourceo 70
Form Bitmap Resource 72
Form Resource 73
GadgetResourceo 77
Graffiti Shift Resource.78
Label Resource 78
List Resource. 79
Popup List Resource81
Popup Trigger Resource81
Push Button Resource 83
Repeating Button Resource. 86
Selector Trigger Resource 88
String Resource.0 90
Table Resource00 90
Title Resourceo 91
Version Number String 92
SupportedFontso o 0oL 92

4 PalmOSEvents. 93
appStopEvent00 0L 0 0oL 93

vi Developing Palm OS Applications, Part |

Table of Contents

ctlEnterEvent 93
ctlExitEvento L. 93
ctlRepeatEvent.o 00000 %4
ctlSelectEvent 94
daySelectEvent. 000000 95
fldChangedEvent.9
fldEnterEvent 96

fldHeightChangedEvent. 9
frmCloseEvent9
frmLoadEvent 97
frmOpenEvent9
frmSaveEvent9

frmUpdateEvent 98
keyDownEvent. 00009
IstEnterEvent. 100
IstExitEvent 100
IstSelectEvent101
menuEvent0 o000 101
nilEvent.00 102
penDownEvent. 102
penMoveEvent. 000000 0L 102
penUpEvent00 103
popSelectEvent.103
tblEnterEvent 104
tblExitEvent 104
tblSelectEvent105
winkEnterEvento 000 106

winExitEvent .. .106

5 PamOSUIODbjects. 107
Control Objects.107

Control Object Overview108
Control Object Events.109
StructureofaControl.110

Fields of a ControlType Structure 111
Associated Resources. 112

Developing Palm OS Applications, Part | vii

Table of Contents

Control Functions
Field Objects.

Field Object Overview

Field ObjectEvents.

Structure of a Field .

Fields of a Field Structure .
Associated Resources
Field Functions
Form Objects.
Form Object Overview

Structure of a Form .

Fields of Form Objects .
Associated Resource
Form Functions
ListObject.
List Object Overview
List Object Events
Structureofalist
List Object Fields

Associated Resources .

List Functions
Menu Objects

Menu Object Overview .

Menu Events

Structure of a Menu
Menu Object Fields.
Menu Pull-Down Fields
Menu Item Fields
Associated Resources .

Menu Functions

Date and Time UI Objects .

Date and Time Functions .
Insertion Point Object
Insertion Point Functions
Table Objects.
TableEvents.

viii Developing Palm OS Applications, Part |

Table of Contents

StructureofaTable.137
Fields of a Table Structure.139
Associated Resource139
Table Functions 140
Window Objects141
Window Events14
Structureof aWindow 000 142
Fields of a Window Structure142
Window Functions144

6 Using Palm OS Managers 147
The System Manager148
System Bootand Reset149
Power Management 150
Palm OSPowerModes150
Guidelines for Application Developers151

The Microkernel151
Application Support 0. 152
Launching and Clean-Up152
Event Processing.152
Inter-Application Communication155
Using the System Manager155
System ResetCalls 155
Power ManagementCalls.156
Application Utilities156
System Manager Functions157
The Feature Manager158
Feature Manager Overview158
Using the Feature Manager159
Feature Manager Functions160
The String Manager.160
The Time Managerlel
Using Real-Time Clock Functions.16l
Using System Ticks Functions162
Time Manager Structures162
Time Manager Function Summary163

Developing Palm OS Applications, Part | ix

Table of Contents

The System Event Manager 164
Event Translation: Pen Strokes to Key Events.164
Pen Queue Management165
Key Queue Management 166
Auto-Off Control.166
System Event Manager Function Summary167

The Pen Manager. 167
Pen Manager Functions168

The Key Manager. 168
Key Manager Functions. 168

The Graffiti Manager169
Graffiti Manager Function Summary170

The Alarm Manager. 171
Alarm Manager Overview.171
Using the Alarm Manager.172
Alarm Manager Function Summary172

The Alert Manager173
The Alert Resource 173
Alert Manager Functions 173

The Sound Manager. 174
Using the Sound Manager. 174
Sound Manager Function Summary174

The Error Manager175
Displaying Development Errors175
The Try and Catch Mechanism.176
Using the Error Manager 177

Using the Try and Catch Mechanism178
Error Manager Function Summary179
7 Control, Field, and Insertion Point Functions 181

Control Functions.181
CtlDrawControl L. 181
CtlEraseControl 181
CtlGetLabel 182
CtlGetValue 182
CtlHandleEvent 183

X Developing Palm OS Applications, Part |

Table of Contents

CtlHideControl 184
CtlHitControl 184
CtlEnabled 185
CtlSetEnabled 185
CtlSetLabel 186
CtlSetUsable. 186
CtlSetValue 187
CtIShowControl 187
Field Ul Functions 188
FldCalcFieldHeight. 188
FldCompactText 188
FldCopy oo 189
FIdCuto 189
FldDelete 190
FldDirty.o 190
FldDrawField 191
FldEraseField 191
FldFreeMemory 192
FldGetAttributes. 192
FldGetBounds 193
FldGetFont 193
FldGetInsPtPosition 194
FldGetMaxChars. 194
FldGetScrollPosition 195
FldGetSelection 195
FldGetTextAllocatedSize 196
FldGetTextHandle 196
FldGetTextHeight 197
FldGetTextLength 197
FldGetTextPtr 197
FldGetVisibleLines 198
FldGrabFocus 198
FldHandleEvent 199
Fldlnsert 200
FldMakeFullyVisible 200
FldPaste. 201

Developing Palm OS Applications, Part | Xi

Table of Contents

FldRecalculateField. 201
FldReleaseFocus 202
FldScrollable. 202
FldScrollField 203
FldSendChangeNotification . . . 203
FldSendHeightChangeNotification204
FldSetAttributes 204
FldSetBounds .. 205
FldSetDirtyo 205
FldSetFont. 206
FldSetInsPtPosition. e e e e e e e o206
FldSetMaxChars 207
FldSetScrollPosition 207
FldSetSelection. e e e e e e o208
FldSetText. 209
FldSetTextAllocatedSize. .210
FldSetTextHandle e e e e e oo o210
FldSetTextPtr 211
FldSetUsable 211
FldUndo, 212
FldWordWrapo 212
Insertion Point Functions A G
InsPtEnable 213
InsPtEnabled 213
InsPtGetHeight 214
InsPtGetLocation. 214
InsPtSetHeight. 215
InsPtSetLocation 215
Functions for System UseOnly.216
InsPtCheckBlink 216
InsPtInitialize 216

8 Form, List, and Menu Functions 217
Form Functions. e e e e e e e e 217
FrmAlert 217
FrmCloseAllForms . 217

Developing Palm OS Applications, Part |

Table of Contents

FrmCopyLabel.218
FrmCopyTitle219
FrmCustomAlert.219
FrmDeleteForm220
FrmDispatchEvent220
FrmDoDialogo 0oL 221
FrmDrawForm. 221
FrmEraseForm.222
FrmGetActiveForm.222
FrmGetActiveFormID.222
FrmGetControlGroupSelection.223
FrmGetControlValue223
FrmGetFirstForm.224
FrmGetFocus224
FrmGetFormBounds224
FrmGetFormId.225
FrmGetFormPtr225
FrmGetGadgetData.226
FrmGetLabel 226
FrmGetNumberOfObjects227
FrmGetObjectBounds.227
FrmGetObjectld228
FrmGetObjectindex.228
FrmGetObjectPositon.229
FrmGetObjectPtr. 229
FrmGetObjectType230
FrmGetTitle230
FrmGetUserModifiedState.231
FrmGetWindowHandle.231

FrmGotoForm 232
FrmHandleEvent.232
FrmHelp00 233

FrmHideObject233
FrmInitForm.23
FrmPopupForm234
FrmReturnToForm235

Developing Palm OS Applications, Part | Xiii

Table of Contents

FrmSaveAllForms
FrmSetActiveForm
FrmSetCategoryLabel.
FrmSetControlGroupSelection .
FrmSetControlValue
FrmSetEventHandler .
FrmSetFocus.
FrmSetGadgetData
FrmSetNotUserModified . e e e e e
FrmSetObjectPositon
FrmSetTitle
FrmShowObject
FrmUpdateScrollers
FrmUpdateForm
FrmVisible
List Ul Functions ..
LstDrawlist.
LstEraselist
LstGetNumberOfltems
LstGetSelection
LstGetSelectionText.
LstHandleEvent
LstMakeltem Visible e e e e e e
LstPopupListo
LstSetDrawFunction
LstSetHeight.
LstSetListChoices
LstSetPosition ..
LstSetSelection.
LstSetTopltem
Menu Functions
MenuDispose 00000 L
MenuDrawMenu.
MenuEraseStatus. L.
MenuGetActiveMenu. L.
MenuHandleEvent

xiv Developing Palm OS Applications, Part |

Table of Contents

Menulnit00 254
MenuSetActiveMenu L. 254
9 Table Functions 255
TblDrawTable 255
TblEditing.o 255
TblEraseTable 256
TblFindRowData. 256
TblFindRowlID. 257
TblGetBounds 257
TblGetColumnSpacing 258
TblGetColumnWidth 258
TblGetCurrentField. 259
TblGetltemBounds 259
TblGetltemInt 260
TblGetLastUsableRow 260
TblGetNumberOfRows 260
TblGetRowData 261
TblGetRowHeight 261
TblGetRowlID 261
TblGetSelection 262
TblGrabFocus 262
TblHandleEvent 263
TbllnsertRow 263
TblMarkRowInvalid 264
TblMarkTablelnvalid 264
TblRedrawTable 265
TblReleaseFocus 265
TblRemoveRow 266
TblRowInvalid. 266
TblRowSelectable 267
TblRowUsable. 267
TblSelectltem 268
TblSetColumnSpacing 268
TblSetColumnUsable 269
TblSetColumnWidth 269

Developing Palm OS Applications, Part | xv

Table of Contents

TblSetCustomDrawProcedure
TblSetltemInt
TblSetltemPtr
TblSetltemStyle
TblSetLoadDataProcedure.
TblSetRowData
TblSetRowHeight
TblSetRowlD
TblSetRowSelectable
TblSetRowUsable
TblSetSaveDataProcedure .
TblUnhighlightSelection

10 Window Functions.

WinAddWindow.
WinClipRectangle .
WinCopyRectangle.
WinCreateWindow
WinCreateOffscreenWindow .
WinDeleteWindow .
WinDisableWindow
WinDisplayToWindowPt .
WinDrawBitmap
WinDrawChars
WinDrawGrayLine

WinDrawGrayRectangleFrame.

WinDrawlInvertedChars.
WinDrawLine
WinDrawRectangle.
WinDrawRectangleFrame .
WinDrawWindowFrame . .
WinEnableWindow.
WinEraseChars
WinEraseLine
WinEraseRectangle.
WinEraseRectangleFrame .

XVi

Developing Palm OS Applications, Part |

Table of Contents

WinEraseWindow29
WinFillLine29
WinFillRectangle.292
WinGetActiveWindow293
WinGetClip29
WinGetDisplayExtent.293
WinGetDisplayWindow.2%
WinGetDrawWindow.2%
WinGetFirstWindow29
WinGetFramesRectangle29
WinGetPattern.2%
WinGetWindowBounds29
WinGetWindowExtent297
WinGetWindowFrameRect297
WinGetWindowPointer298
WinlnitializeWindow298
WinlnvertChars29
WinlnvertLine29
WinlnvertRectangle300
WinlnvertRectangleFrame.300
WinModal. 301
WinRemoveWindow30
WinResetClip30
WinRestoreBits.302
WinSaveBits.302
WinScrollRectangle.303
WinSetActiveWindow34
WinSetClip304
WinSetDrawWindow305
WinSetPattern305
WinSetUnderlineMode306
WinWindowToDisplayPt306
11 Miscellaneous User Interface Functions. 307
Category Functions 307
CategoryCreateList. 307

Developing Palm OS Applications, Part | xvii

Table of Contents

CategoryEdit
CategoryFind
CategoryFreeList.
CategoryGetName
CategoryGetNext.

CategoryTruncateName .
CategorySetTriggerLabel .

CategorySelect.
Character Attribute Functions
GetCharAttr.

GetCharCaselessValue

GetCharSortValue
ClipBoard Functions C e e
ClipboardAddItem
ClipboardGetltem
Font Functions
FntAccentHeight.
FntAscent.

FntAverageCharWidth .
FntBaseLine .

FntCharHeight.
FntCharsInWidth.
FntCharsWidth
FntCharWidth

FntDescenderHeight .

FntGetFont
FntGetFontPtr
FntLineHeight.
FntLineWidth

FntProportionalFont .

FntSetFont
Other User Interface Functions
AbtShowAbout
DayHandleEvent.
Functions for System UseOnly
Find

Developing Palm OS Applications, Part |

Table of Contents

FindDrawHeader 321
FindGetLineBounds 321
FindSaveMatch 321
FindStrInStr o000 321
Ullnitialize 322
UlReset. 0L 322
12 System, Error, Preferences, and Find Functions 323
System Functions.o 323
SysAppLauncho oL 323
SysBatterylnfo.o o000 0L 324
SysBroadcastActionCode 325
SysCopyStringResource. 325
SysCurAppDatabase 326
SysFormPointerArrayToStrings 326
SysHandleEvent 327
SyslnsertionSorto 328
SysKeyboardDialog 329
SysQSorto oo Lo 329
SysRandom00 330
SysReset 331
SysSetAutoOffTime. 331
SysTaskDelay 332
SysUIAppSwitch. 332
Functions for System UseOnly. 333
SysAppExit.o o000 333
SysAppInfoPtro 0L 333
SysApplnfoPtr SysCurAppInfoP (void). 333
SysAppStartup 0oL 333
SysBatteryDialog 333
SysCardlmageDeleted 333
SysCardlmagelnfo 334
SysColdBoot 334
SysCurAppInfoP. 334
SysDisableInts. 334
SysDoze 334

Developing Palm OS Applications, Part | Xxix

Table of Contents

SysGetTrapAddress
SyslInit
SysKernellnfo
SysLaunchConsole
SysLibFind
SysLiblnstall

SysLibRemove.

SysLibTblEntry
SysNewOwnerID
SysPowerOn
SysRestoreStatus
SysSetA5
SysSetTrapAddress.
SysSleep
SysUILaunch

Error Manager Functions

ErrDisplay
ErrDisplayFileLineMsg .
ErrFatalDisplaylf
ErrNonFatalDisplaylf.
ErrThrow

System Preferences Functions

Find Functions

PrefGetAppPreferences .
PrefGetPreferences .
PrefOpenPreferenceDB .
PrefSetAppPreferences .
PrefSetPreferences .

FindDrawHeader
FindGetLineBounds
FindSaveMatch
FindStrInStr

13 System Event Manager Functions

EvtAddEventToQueue .
EvtCopyEvent

xx Developing Palm OS Applications, Part |

Table of Contents

EvtDequeuePenPoint. 348
EvtDequeuePenStrokelnfo.348
EvtEnableGraffiti. 349
EvtEnqueueKeyo 00000 L 349
EvtFlushKeyQueue. 350
EvtFlushNextPenStroke.350
EvtFlushPenQueue. 351
EvtGetEvent. o000 351
EvtGetPen.00 0oL 352
EvtGetPenBtnList 352
EvtKeyQueueEmpty o0 353
EvtKeyQueueSize 353
EvtPenQueueSize 353
EvtProcessSoftKeyStroke354
EvtResetAutoOffTimer 354
EvtWakeupo o000 355
Functions for System UseOnly355
EvtDequeueKeyEvent 355
EvtEnqueuePenPoint. 355
EvtGetSysEvent 355
Evtlnitialize.o 356
EvtSetKeyQueuePtr 356
EvtSetPenQueuePtr356
EvtSysInit. 00000 356

14 Feature,Time, Float, and String Functions. 357
FtrGet oL 357
FtrGetBylndex. 358
FtrSet.o 359
FtrUnregister 359
For System UseOnly360
Ftrlnito 360
String Manager Functions360
StrATolo 360
StrCat.o 360

StrCaselessCompare36l

Developing Palm OS Applications, Part | xxi

Table of Contents

StrChr s 361
StrCompare 362
StrCopy.o 362
StrIToA oo 363
StrIlToH. 363
StrLen 363
StrStr. L L Lo 364
StrToLower 364
Time Manager Functions 365
DateAdjust 00000 365
DateDaysToDate 365
DateSecondsToDate 366
DateToAscii 0. 366
DateToDays 367
DateToDOWDMFormat. 367
DayOfMontho o000 368
DayOfWeek 368
DaysInMontho 00000 368
SelectDay 369
TimAdjust.00 369
TimDateTimeToSeconds. G 74
TimGetSeconds 370
TimGetTicks. 370
TimSecondsToDateTime. .371
TimSetSeconds. 371
TimeToAscii. 372
Functions for System UseOnly.372
TimGetAlarm 372
TimHandleInterrupt 372
TimInit.00 373
TimSetAlarm 373
Float Manager Functions 373
FplAdd o000 373
FplAToF.o 374
FplBaselOInfo 374
FplDivo 375

Developing Palm OS Applications, Part |

Table of Contents

FplFloatToLong 375
FplFloatToULong 375
FplFreeo 376
FplFToAo 376
Fpllnit00 377
FplLongToFloat 377
FplMulo 377
FplSubo 378
Alarm Manager API.00 378
AlmGetAlarm oL oo 378
AlmSetAlarm o000 379
Functions for System UseOnly. 380
AlmAlarmCallback 380
AlmCancelAll.o 380
AlmDisplayAlarm00 L. 380
AlmEnableNotification 380
AlmInit.00 0000 380
Sound Manager Functions 381
SndDoCmd oo 381
SndGetDefaultVolume 382
SndPlaySystemSound.o o000 382
SndSetDefaultVolume. 383
Functions for System UseOnly. 383
Sndnit.o 383

15 Pen, Key, and Graffiti Functions 385
Pen Manager Functions 385
PenCalibrate. 385
PenResetCalibration 386
Functions for System UseOnly. 386
PenClose 386
PenGetRawPeno L 386
PenOpen 387
PenSleepo 387
PenRawToScreen 387
PenScreenToRaw 387

Developing Palm OS Applications, Part | xxiii

Table of Contents

PenWake L. 387
Key Manager Functions 388
KeyCurrentState 388
KeyRates 389
Functions for System UseOnly. 389
KeyBootKeys 389
KeyHandlelnterrupt 390
Keylnit.o 390
KeyResetDoubleTap 390
KeySleepo 390
KeyWake 390
Graffiti Manager Functions 391
GrfAddMacroo 391
GrfAddPointo 391
GrfCleanState 392
GrfDeleteMacro 392
GrfFindBranch. 392
GrfFilterPoints. 393
GrfFlushPoints. 393
GrfGetAndExpandMacro 394
GrfGetGlyphMapping 395
GrfGetMacro L. 395
GrfGetMacroName 396
GrfGetNumPoints 396
GrfGetPointo 396
GrfGetStateo 397
GrflnitState 397
GrfMatch 398
GrfMatchGlypho 000 399
GrfProcessStroke. 399
GrfSetState 400
SysShortCutListDialog 400
Functions for System UseOnly. 400
GrfFieldChange 400
GrfFree. 401
GraffitiShift Functions. 401

xxiv Developing Palm OS Applications, Part |

Table of Contents

GsiEnable. 401
GsiEnabled00 Lo 401
Gsilnitialize L0 402
GsiSetLocation. 402
GsiSetShiftState L. 402

Developing Palm OS Applications, Part | xxv

Table of Contents

xxvi Developing Palm OS Applications, Part |

Developing Palm OS
Applications

This chapter helps you understand the basic principles of Palm OS
application development. It discusses these topics:

e Overview of Application Development explains the steps in-
volved in creating an application.

e Internal Structure of an Application provides some informa-
tion about resources the system creates for each application,
and how they are used.

¢ Naming Conventions briefly explains naming conventions
used for functions and structures.

* Basic Hardware gives some background information about
the Palm OS device.

Overview of Application Development

This section provides an overview of the process of developing an
application for the Palm OS device. It introduces the different com-
ponents of an application in the order that you'll most likely work
with them and provides many links to the related sections in this
guide and pointers to other relevant documentation included in
your developer package.

You learn about these topics:

* Designing Ul and Program Functionality

o Constructing UI Resources

o Using Managers and Filling out the Program Logic

® Building, Debugging, and Testing

© Building the Application and Running it on the Device
* Using Other Components of the SDK

Developing Palm OS Applications, Part | 27

Developing Palm OS Applications
Overview of Application Development

Designing Ul and Program Functionality

The first step in application development is to envision what users
will do as they interact with your application. After that, it's useful
to implement a small prototype and have some users interact with
it. When you're satisfied with the basic interface and user interac-
tion, you can move on from the prototype to a complete application.

This section looks as the steps involved in creating a working user
interface.

Designing Screen Layout and User Interaction

Careful Ul design is critical for a Palm OS application because using
a Palm OS device differs from using other computers. Here are a
few points you have to consider when designing your application:

* Because of the limited screen size, you have to design the lay-
out carefully. Strive for a balance between providing enough
information to the user and overcrowding the screen.

* Because users interact with the application using the pen,
user input paradigms need to be different from those of key-
board-based applications.

e Limit data input where possible. It often makes sense to let
users do the bulk of data input on the desktop while discour-
aging reliance on Graffiti and the popup keyboard.

* Consider offloading some of the computationally intensive
tasks to the desktop; use the device mostly as a satellite
viewer if you can.

* Plan integration with the desktop early. Your conduit/
backup strategy and you integration with desktop software
can greatly enhance the usefulness of your program.

The Palm OS development team has developed a set of design
guidelines that were used as the basis for the four applications resi-
dent on the device (Note Pad, Address Book, etc.). These guidelines
are summarized in Chapter 5 of the “Palm OS Cookbook.” Some in-
formation, such as recommended font size or border width, is in-
cluded in Chapter 3, “Palm OS User Interface Resources.”

Follow the design guidelines in chapters 4 and 5 of the “Palm OS
Cookbook” to make your application easier to learn and to use.

28 Developing Palm OS Applications, Part |

Developing Palm OS Applications
Overview of Application Development

Constructing Ul Resources

The ResEdit resource templates that were used to implement all the
applications resident on the device are provided with your develop-
ment environment. You can use ResEdit with the resource templates
to create your own buttons, pop-up lists, menus, and other parts of
the user interface.

The process of creating new resources is described in detail in the
tutorial; the basic process consists of entering values into the at-
tribute fields of the resource templates. Each resource has to have an
ID and may also need a width, height, label, or other attributes. The
recommended (or required) values for the different fields in each re-
source are provided in Chapter 3, “Palm OS User Interface Re-
sources.” The “Palm OS Tutorial” provides “recipes” for creating
each resource type in the Tutorial Cookbook chapter.

When you build your program, the system converts the ResEdit re-
sources into data structures that the system can work with. Different
resource types map to a different data structures, that is, UI object
type. For example, menu resources map to objects that know how to
turn highlighting on and of and fields know how to position input
cursors and process user input. The operating system provides quite
a bit of default functionality for each UI object type. Your program
logic can use, replace, or extend that functionality. Detailed informa-
tion on all structures and their fields is provided in Chapter 5,
“Palm OS UI Objects.”

Using Managers and Filling out the Program
Logic

To successfully build a Palm OS application, you need to under-
stand how the system itself is structured and how to structure your
application.

Using Events and Launch Codes

Palm OS applications are single-threaded event-driven programs.
The events are generated by the system based on user inputs and
system interrupts. The program logic may generate events as well.
The programs are structured as a series of event handlers dis-
patched from a single event loop in each program.

Developing Palm OS Applications, Part| 29

Developing Palm OS Applications
Overview of Application Development

In addition, a number of launch codes regulate how applications in-
teract with each other; for example, one application can invoke a
find action on another using a launch code. This is described in
more detail in How Action Codes Control the Application.

NOTE: To make your application interact appropriately with other
applications on the device, and to avoid other problems later, read
Chapter 4, “Design, Testing, and Localization Guidelines” of the
Palm OS Cookbook.

Using the Palm OS Managers

The Palm OS system API is divided into functional areas called
managers. Each manager has a distinct three-letter prefix used on all
API calls and structures and is discussed separately below.

e The system manager, system event manager, feature man-
ager, float manager, string manager, and so on are discussed
in Chapter 6, “Using Palm OS Managers.”

* The memory manager, data manager, and resource manager
are explained in Chapter 1, “Palm OS Memory Management”
of “Developing Palm OS Applications, Part I1.”

* The communications API is explained in Chapter 2, “Palm
OS Communications” of “Developing Palm OS Applications,
Part I1.”

NOTE: Avoid using functions from standard desktop C libraries.
These will significantly slow down and enlarge your program.
Many will not work at all on the device. Use functions provided by
the Palm OS managers instead.

Building, Debugging, and Testing

To build your application for initial debugging and testing, you use
the CodeWarrior IDE and the Pilot Simulator library, which lets you
build and debug applications on the Macintosh. Documentation for
the CodeWarrior IDE and source-level debugger is provided with
CodeWarrior.

30 Developing Palm OS Applications, Part |

Developing Palm OS Applications
Internal Structure of an Application

After you've built the application, you can use the Pilot Simulator to
run it on a simulated Pilot device on the Macintosh screen. You can
interact with the simulated buttons, menus, or fields, and even enter
Graffiti characters using the mouse. You can also use the Simulator

to test your application using an automated test suite called Grem-

lins. Using the Simulator is discussed in detail in chapter 2, “Using

the Palm OS Simulator,” of the “Palm OS Cookbook.”

Building the Application and Running it on the
Device

When you’'ve completed building and testing the application with
the Simulator, you can compile it with a Makefile from MPW and
download and run the executable on the device. This process is de-
scribed in Chapter 1, “Running an Application on the Palm OS De-
vice,” and Chapter 3, “File Transfer With the Pilot Debugger” of the
Palm OS Cookbook. Phase 20 of the Palm OS Tutorial provides step-
by-step instructions for changing a Makefile, compiling an applica-
tion, downloading the application onto the device, and running it.

Using Other Components of the SDK

The Palm OS has provided the following additional items in the de-
velopment kit to help you come up to speed quickly:

* The Palm OS tutorial provides step-by-step examples of de-
veloping an application from start to finish in its twenty
phases. Examples, both resources and code that is incremen-
tally changed, are included.

* The actual source code for the four PIM applications on the
Pilot is included as examples. The code can be a valuable aid
when you develop your own program. The software devel-
opment kit provides a royalty-free license that permits you to
use any or all of the source code from the examples in your
application.

Internal Structure of an Application

Every application running under Palm OS must have certain mini-
mum system (not UI) resources defined to be recognized by the
Palm OS system software. These required resources are created for

Developing Palm OS Applications, Part| 31

Developing Palm OS Applications
Internal Structure of an Application

you by the development environment. Most applications have other
resources that are application specific in addition to the required
minimum resources. (Throughout this chapter, resources are refer-
enced by type and ID where the type is a 4 byte ascii string like
‘code’ and the ID is a decimal integer.)

The system creates a "code’ #1 resource for every application. This
resource is the entry point for the application and is where applica-
tion initialization is performed. When the Palm OS device launches
an application, it starts executing at the first byte of the ‘code” #1 re-
source. All of the application code that you provide is included in
this resource as well.

Typically, this is startup code provided with the Palm OS
development environment that is linked in with your application
code. This startup code works as follows:

e The startup code performs application setup and initializa-
tion

e The startup code calls your “main” routine

e When your “main” routine exits, control is returned to the
startup code which performs any necessary cleanup of your
application and returns control to the Palm OS system soft-
ware.

The system also creates a "pref” #0 resource for every application.
This resource contains startup information necessary for launching
your application. The resource includes the required stack size, the
dynamic heap space required, and the task priority. Note that al-
though the "pref” #0 resource must be present, it is mainly for future
use since in the current version of the system user-interface applica-
tions do not get their own stack or priority.

The final required resources are the ‘code’ #0 and "data” #0 re-
sources. These resources contain the required size of your global
data and an image of the initialized area of that global data. When
your application is launched, a memory chunk in the dynamic heap
is allocated which is big enough to hold all of your globals and then
the "data’ #0 resource is used to initialize those globals.

32 Developing Palm OS Applications, Part |

Developing Palm OS Applications
Naming Conventions

Naming Conventions

The following conventions are use throughout the Palm OS APIL:

* Functions start with a capital letter.

* All functions belonging to a particular manager start with a
two- or three-letter prefix, such as “Ctl” for control functions
or “Ftr” for functions that are part of the feature manager.

¢ Events and other constants start with a lower case letter.
e Structure elements start with a lower case letter.
e Global variables start with a capital letter.

e Typedefs start with a capital letter and end with “type” (for
example, Dat eFor mat Type, found in DateTime.h).

e Resource types usually start with a lower case followed by
three capital letters, for example tSTR or tTBL. (There are
some customized Macintosh resources provided with your
developer package. They are all upper case, for example,
MENU.)

* Members of an enumerated type start with a lower-case pre-
fix followed by a name starting with a capital letter, as fol-
lows:

enum f or nhj ect s {
frnFiel doj,
frmCont rol Qoj
frmLi st Qoj
frmrabl eQoj
frnBi t mapQhj ,
frLi neQoj
frmFraneQoj
frmRect angl e(bj ,
frmLabel Qbj,
frnlitl eQoj,
f r mMPopupQbj ,
frmxaffiti StateQoj,
frmGadget bj };

t ypedef enum fornbj ects For nObj ect Ki nd;

Developing Palm OS Applications, Part| 33

Developing Palm OS Applications

Basic Hardware

Basic Hardware

This section helps you understand the device you're developing
your application for by discussing RAM and ROM, Palm OS Modes

of Operation, Palm OS Connectivity, Real-Time Clock and Timer,
Palm OS Device Screen and Sound Generation, Palm OS Device
Screen and Sound Generation, and Palm OS Device Reset Switch.

RAM and ROM

The first version of Palm OS runs on the Motorola 68328 “Dragon-
Ball” processor. The first memory card shipped with the device has
128K of pseudo-static RAM and 512K of ROM for the system soft-
ware and application code. A portion of the RAM (32K) is reserved
for system use and is not available for storing user data. Both the

ROM and RAM are on a memory module which users can replace.
The Palm OS device does not have a disk drive or PCMCIA support.

Palm OS Modes of Operation

To minimize power consumption, Palm OS dynamically switches
between 3 different modes of operation: sleep mode, doze mode,
and running mode.

* In sleep mode, the device looks like it is turned off: the display
is blank, the digitizer is inactive, and the main clock is
stopped. The only circuits still active are the real-time clock
and interrupt generation circuitry.

The device enters this mode when there is no user activity for
a number of minutes or when the user presses the “off” but-
ton. The device only comes out of sleep mode when there is
an interrupt, for example, when the user presses a button.

e In doze mode, the main clock is running, the device appears
like it is turned on, and the processor’s clock is running but it
is not executing instructions (that is, it is halted). When the
processor gets an interrupt, it comes out of halt and starts
processing the interrupt.

The device enters this mode it’s on but has no user input to
process.

e In running mode, the processor is actually executing instruc-
tions.

34 Developing Palm OS Applications, Part |

Developing Palm OS Applications
Basic Hardware

The device enters this mode when it detects user input (like a
tap on the screen) while in doze mode, or when it detects an
interrupt while in doze or sleep mode. The device stays in
running mode only as long as it takes to process the user
input (most likely less than a second) then it immediately re-
enters doze mode.

To maximize battery life, the processor on the Palm OS device is
kept out of running mode as much as possible. Any interrupt gener-
ated on the device must therefore be capable of “waking” up the
processor. The processor can receive interrupts from the serial port,
the hard buttons on the case, the button on the cradle, the program-
mable timer, the memory module slot, the real-time clock (for
alarms), the low battery detector, and any built-in peripherals such
as a pager or modem.

Palm OS Connectivity

The Palm OS device uses its serial port for implementing desktop
PC connectivity or other external communication. The serial com-
munication is fully interrupt-driven for receiving data. Currently,
interrupt-driven transmission of data is not implemented in soft-
ware, but the hardware does support it. There are 5 external signals
used for this communication: signal ground (SG), transmit data
(TxD), receive data (RxD), clear to send (CTS), and request to send
(RTS).

The Palm OS device has an external connector that provides the 5
serial communication signals, a general purpose output, a general
purpose input, and a cradle button input.

Real-Time Clock and Timer

The Palm OS device has a real-time clock and programmable timer
as part of the 68328. The real time clock maintains the current time
even when the system is in sleep mode (turned “off”). It is capable
of generating an interrupt to wake the device when an alarm is set
by the user. The programmable timer is used to generate the system
tick count interrupts (100 times/sec.) while the processor is in doze
or running mode. The system tick interrupts are required for peri-
odic activity such as polling the digitizer for user input, key de-
bouncing, etc.

Developing Palm OS Applications, Part| 35

Developing Palm OS Applications
Basic Hardware

The Palm OS device has one memory module socket for installing
modules which may contain ROM or RAM storage.

Palm OS Device Screen and Sound Generation

The first version of the Palm OS device has an LCD screen of
160x160 pixels. The LCD controller built into the 68328 maps a por-
tion of system memory to the LCD. Currently, the software only
supports 1 bit/pixel monochrome graphics although the controller
can support 2 bits / pixel gray scale.

The Palm OS device has a built-in digitizer overlaid onto the LCD

screen and extending about an inch below the screen. This digitizer
is capable of sampling accurately to within 0.35 mm (.0138 in) with
up to 50 accurate points/second. When the device is in doze mode,
an interrupt is generated when the pen is first brought down on the
screen. After a pen down is detected, the system software polls the

pen location periodically (every 20ms) until the pen is again raised.

The Palm OS device has primitive sound generation. A square wave
is generated directly from the 68328’s PWM circuitry. There is fre-
quency and duration control but no volume control.

Palm OS Device Reset Switch

The Palm OS device has a reset button for resetting the processor
and forcing a boot-up sequence:

* Simply pressing the reset switch causes a soft reset which
does not destroy any user data.

* Holding down the power button while pressing the reset
switch causes a hard reset which erases all user data follow-
ing a confirmation by the user.

36 Developing Palm OS Applications, Part |

2

Application Control Flow

Palm OS applications are generally single-threaded, event-driven
programs. They may use predefined Ul elements (sometimes re-
ferred to as Ul objects) or they may create their own. All applica-
tions must use the memory and data management facilities
provided by the system and must be considerate of the system and
other applications by periodically allowing system event handlers
access to the event flow.

The flow of control in Palm OS is driven by two different mecha-
nisms, discussed in some detail in this chapter:

e How Events Control an Application discusses the event man-
ager, the main interface between the Palm OS system soft-
ware and an application. It discusses in some detail what an
application does in response to user input, providing code
fragments as examples where needed.

e How Action Codes Control the Application discusses how an
application handles requests for immediate action at its top
level (Pi | ot Mai n). For example, there are action codes for
launching an application, for telling an application to search
its data for a text string, and for notifying an application that
data has been synchronized. Using action codes, an applica-
tion can request information or actions from another applica-
tion.

How Events Control an Application

This section starts with a high-level overview of the stages of a Palm
OS application, then discusses the event loop in some detail.

Note that each event is discussed in some detail in Chapter 4, “Ap-
plication Control Flow.” The event flow for each User Interface re-
source is discussed in Chapter 3, “Palm OS User Interface
Resources.” The event flow for each User Interface object is dis-
cussed in Chapter 5, “Application Control Flow.”

Developing Palm OS Applications, Part | 37

Application Control Flow
How Events Control an Application

Basic Application Stages

When an application receives a the action code
sysAppLauchCommandNor mal Launch (see How Action Codes
Control the Application), it begins with a startup routine, then goes
into an event loop, and finally exits with a stop routine.

* The Startup Routine is the application’s opportunity to per-
form actions which need to happen once, and only once, at
startup. A typical startup routine opens databases, reads
saved state information (such as Ul preferences) and initial-
izes the application’s global data.

* The Event Loop fetches events from the queue and dis-
patches them, taking advantage of default system functional-
ity as appropriate.

* The Stop Routine is the application’s opportunity to perform
cleanup activities before exiting. Typical activities include
closing databases and saving state information.

The following sections look at each of the phases in some detail.
Note that for each phase, Palm OS provides a default behavior that
can help you keep application code at a minimum. If your applica-
tion has special requirements, your application may instead handle
the bulk of the work itself.

The Startup Routine
During the startup routine, an application has to follow these steps:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global vari-
ables that will be referenced throughout the application.

2. Find the application database by creator type. If none exists,
create it and initialize it.

3. Get application-specific preferences and initialize related glo-
bal variables.

4. Initialize any other global variables.

Listing 2.1 shows an example St ar t Appl i cat i on function from
the datebook application.

38 Developing Palm OS Applications, Part |

Application Control Flow
How Events Control an Application

Listing 2.1 StartApplication from Datebook.c

static Wrd Start Application (void)

{

Wrd error = 0;

Err err = O;

U nt node;

Dat eTi neType dat eTi ne;

Dat ebookPr ef er enceType prefs;
Syst enPr ef erencesType sysPrefs;

/] Determne if secret record should be shown.
Pref Get Pref erences (&sysPrefs);
H deSecr et Records = sysPrefs. hi deSecr et Recor ds;

i f (H deSecret Records)
node = dnvbdeReadWite;
el se
node = dnvbdeReadWite | dmvbdeShowSecr et ;

/[l Get the tinme formats fromthe system

pr ef erences.

Ti meFormat = sysPrefs.ti meFornat;

/'l Get date formats from system preferences.
LongDat eFor mat = sysPrefs. | ongDat eFor nat ;
Short Dat eFor mat = sysPrefs. dat eFor mat ;

/Il Get start day of week from system preferences.
Start DayOr Week = sysPrefs. weekSt art Day;

/1l Cet today's date.
Ti nBecondsToDat eTi ne

(Ti mzet Seconds (), &dateTine);
Dat e. year = dateTi nme.year - firstYear,;
Dat e. nont h = dat eTi ne. nont h;
Dat e. day = dat eTi ne. day;

Developing Palm OS Applications, Part| 39

Application Control Flow
How Events Control an Application

/1l Find application's data file. Create one if
/'l none exi sts.
Appt DB DmOpenDat abaseBy TypeCr eat or
(dat ebookDBType, sysFi |l eChat ebook, node);
if (! ApptDB)
{
error = DnCr eat eDat abase (0, dat ebookDBNane,
sysFi | eCDat ebook, dat ebookDBType, false);
if (error) return error;

Appt DB = DmOpenDat abaseByTypeCr eat or
(dat ebookDBType, sysFil eChat ebook, nobde);
if (! ApptDB) return (1);

error = ApptApplnfolnit (ApptDB);
if (error) return error;

}

/'l Read preferences & saved-state information.
if (PrefGet AppPreferences (sysFil eChat ebook,
dat ebookVer si onNum &pr ef s,
si zeof (DatebookPreferenceType)))
{
DaySt art Hour = prefs. dayStart Hour;
DayEndHour = prefs. dayEndHour ;
Al arnPreset = prefs. al arnPreset;
Not eFont = prefs. noteFont;
SaveBackup = prefs. saveBackup;

}

TopVi si bl eAppt = 0;
Current Record = noRecor dSel ect ed;

return (error);

}

40 Developing Palm OS Applications, Part |

Application Control Flow
How Events Control an Application

The Event Loop

When startup is complete, the application enters an event loop. It
typically remains in that event loop until the system tells it to shut
itself down by sending an appSt opEvent (not a action code).

Listing 2.2 Top-level event loop example

static void EventLoop (void)

{
VWrd error;

Event Type event;

do

{
Evt Get Event (&event, evtWit Forever);

if (! SysHandl eEvent (&event))
if (! MenuHandl eEvent (NULL, &event, &error))
if (! ApplicationHandl eEvent (&event))

FrnDi spat chEvent (&event);

}
whil e (event. eType ! = appSt opEvent);

}

In the event loop, the application iterates through these steps (see
Figure 2.1)

1. Fetch an event from the event queue.

2. Call SysHandl eEvent to give the system an opportunity to
handle the event.

The system handles events like power on/ power off, Graffiti
input, tapping silk-screened icons, or pressing buttons. Dur-
ing the call to SysHand| eEvent, the user may also be in-
formed about low-battery warnings or may find and search
another application.

Developing Palm OS Applications, Part | 41

Application Control Flow
How Events Control an Application

Note that in the process of handling an event,

SysHandl eEvent may generate new events and put them
on the queue. For example, the system handles Graffiti input
by translating the pen events to key events. Those, in turn,
are put on the event queue and are eventually handled by the
application.

SysHandl eEvent returns TRUE if the event was completely
handled, that is, no further processing of the event is re-
quired. The application can then pick up the next event from
the queue.

3. If SysHandl eEvent did not completely handle the event, the
application calls MenuHandl eEvent . MenuHandl eEvent
handles two types of events:

— If the user has tapped in the area that invokes a menu,
MenuHandl eEvent brings up the menu.

— If the user had tapped inside a menu to invoke a menu
command, MenuHandl eEvent removes the menu from
the screen and puts the events that result from the com-
mand onto the event queue.

MenuHandl eEvent returns TRUE if the event was com-
pletely handled.

4. If MenuHand| eEvent did not completely handle the event,
the application calls Appl i cat i onHandl eEvent .
Appl i cati onHandl eEvent handles only the
f rmLoadEvent for that event; it loads and activates applica-
tion form resources and sets the event handler for the active
form.

5. If Appl i cat i onHandl eEvent did not completely handle
the event, the application calls Fr nDi spat chEvent .
Fr nDi spat chEvent first sends the event to the application’s
event handler for the active form. This is the event handler
routine that was established in Appl i cat i onHandl eEvent .
Thus the application’s code is given the first opportunity to
process events that pertain to the current form. The applica-
tion’s event handler may completely handle the event and re-
turn TRUE to calls Fr nD spat chEvent . In that case, calls
Fr nDi spat chEvent returns to the application’s event loop.
Otherwise, calls Fr nDi spat chEvent calls
Fr nHandl eEvent to provide the system’s default processing
for the event.

42 Developing Palm OS Applications, Part |

Application Control Flow
How Events Control an Application

For example, in the process of handling an event, an applica-
tion frequently has to first close the current form and then
open another one, as follows:

— The application calls Fr n3ot oFor mto bring up another
form. Fr mGot oFor mqueues a f r 10 oseEvent for the
currently active form, then queues f r ni. oadEvent and
f r mMOpenEvent for the new form.

— When the application gets the f r 10 oseEvent , it closes
and erases the currently active form.

— When the application gets the f r Ml oadEvent, it loads
and then activates the new form. Normally, the form re-
mains active until it is closes. (Note that this wouldn’t
work if you preload all forms, but that’s really discour-
aged. Applications don’t need to be concerned with the
overhead of loading forms, it’s fast enough so they can do
it when they need it.) The application’s event handler for
the new form is also established.

— When the application gets the f r mMOpenEvent , it does
whatever initialization of the form is required, then draws
the form on the display.

After Fr mGot oFor mhas been called, any further events that
come though the main event loop and to

FrnDi spat chEvent are dispatched to the event handler for
the form that is currently active. The event handler knows for
a particular dialog box or form how it should respond to
events for example, opening, closing, and so on.

Fr nHandl eEvent invokes the default UI functionality.
After the system has done all it can to handle the event for
the specified form, the application finally calls the active
form’s own event handling function; for example, in the
datebook application, it may call DayVi ewHand| eEvent or
WeekVi ewHandl eEvent .

Note again how the structure of the event flow allows your applica-
tion to rely on system functionality as much as it wants. If your ap-
plication wants to know whether a button is pressed, it has to only
wait for ct | Sel ect Event . All the details of the event queue are
handled by the system.

Some events are actually requests for the application to do some-
thing. For example, f r OpenEvent . Typically, all the application

Developing Palm OS Applications, Part| 43

Application Control Flow
How Events Control an Application

Listing 2.3

does is draw itself using the functions provided by the system and

then waits for events it can handle to arrive from the queue.

Only the active form should process events.

The Stop Routine

The stop routine should first flush all active records and then close
the applications database and saves those aspects of the current
state that are necessary for startup. Listing 2.3 provides an example

of a St opAppl i cat i on routine from Datebook.c.

Example for StopApplication Routine

static void StopApplication (void)

{

Dat ebookPr ef erenceType prefs;

I/l Wite preferences & saved-state information.

prefs. not eFont = Not eFont;
prefs.dayStart Hour = DayStart Hour;
pr ef s. dayEndHour = DayEndHour ;
prefs.al arnPreset = Al arnPreset;
prefs. saveBackup = SaveBackup;

/Il Wite the state information.

Pr ef Set AppPr ef erences (sysFi | eCDat ebook,
dat ebookVer si onNum &pr ef s,
si zeof (DatebookPreferenceType));

/1 Send a frnBave event to all open forns.
FrnBaveAl | Forms ();

/l dose all the open forns.
FrmQd oseAl | Forns ();

/[l dose the application's data file.
D oseDat abase (Appt DB) ;

44 Developing Palm OS Applications, Part |

Application Control Flow
How Events Control an Application

Developing Palm OS Applications, Part | 45

Ap

plication Control Flow

How Events Control an Application

Figure 2.1

Control Flow in a Typical Application

>

o

|

remain in loop until no .
. - isthere an event?
thereis an event
v ves
SysHandleEvent
process event, y
generate other events Y€S | isthisasystem function?
asnecessary return (e.g. Power-off, graffiti input)
{ no
@enuH andl eEvenD
Handle menu interface, B yes ISThis amenu?
then go on.
} no

| handler for form loaded

load from resources, set event

yes

Q\pplicati onHandIeEveD

Y

Isthis afrmLoadEvent?

1

no

dispatch event to applications<,_/FormDispatchEvent >

handler for form

Y€Es

'

Did application handler

complete event processing?
no

GmHandleEvent >

provide default processing
for event

46 Developing Palm OS Applications, Part |

Application Control Flow
How Action Codes Control the Application

How Action Codes Control the Application

Action codes provide a direct communication mechanism between
the system and an application or between two applications:

* Inter-application communication is implemented through
the action code mechanism. An application can use an action
code to request that another application modify its data or
perform an action. For example, a data collection application
could instruct an email application to queue up a particular
message to be sent.

* The system uses action codes to ask an application to do
something (interrupting other activities if necessary). Exam-
ples are action codes for launching an application, initializing
databases, or hard reset. Another example is the global find.
When the user performs a global find, it would be wasteful to
incur the overhead of a full launch of each application as its
data file is searched. Instead, the system sends an action code
with a special flag to the application has the application per-
form the search without displaying its user interface to other
application overhead.

Action codes may be sent to any application without negative ef-
fects. However, an action code only has an effect if the application
that receives it has been programmed to handle it. When developing
your application, you, handle as many of the standard action codes
as possible. The standard action codes defined by Palm OS are listed
in Table 2.1.

The system delivers action codes to the application at its highest
level (Pi | ot Mai n). Each action code is accompanied by a parameter
block containing the necessary data. The system sometimes uses
flags with an action code that indicate its circumstances, for exam-
ple, whether the Ul is to be displayed. Action codes may be sent
from the system’s top level or from another application’s thread; in
most cases, global variables are not available.

Action Code Example

An application needs to checks for action codes in its main function.
Listing 2.4 shows an example from the datebook application.

Developing Palm OS Applications, Part | 47

Application Control Flow
How Action Codes Control the Application

Listing 2.4 Code Fragment Checking for Action Codes

DWrd PilotMain (Wrd cnd, Ptr cndPBP, Word
| aunchFl ags)
{

Word error;

Bool ean | aunched;

/1 Launch code sent by | auncher or datebook button.
if (cmd == sysAppLaunchCndNor mal Launch)
{
error = StartApplication ();
if (error) return (error);

Fr mGot oFor m (DayVi ew) ;
Event Loop ();
St opAppl i cation ();

}

/1 Launch code sent by text search.
else if (cnmd == sysAppLaunchCndFi nd)
{
Search ((Fi ndParansPtr) cndPBP);

}

/1 This action code is sent when if user taps CGoTo
/1 button in Find Results dialog box (application
/'l may be al ready running)

else if (cnmd == sysAppLaunchCrdGoTo)
{
//Determne if this app is already running
| aunched = | aunchFl ags
sysAppLaunchFl agNewd obal s;
i f (launched)

48 Developing Palm OS Applications, Part |

Application Control Flow
How Action Codes Control the Application

{
[/ Not yet running so start it.

error = StartApplication ();
if (error) return (error);

GoToltem ((GoToParansPtr) cndPBP, | aunched);

Event Loop ();
St opApplication ();
}
el se
// G to the search destination
GoToltem ((GoToParansPtr) cndPBP, | aunched);

}

/1 Launch code sent by sync application to notify
[l application that its database was synced.

else if (cmd == sysAppLaunchCrdSyncNoti fy)
{
SyncNotification ();

}

Responding to Action Codes

When an application receives an action code, it must first check if it
can handle it. For example, only applications that have text data
should respond to an action code requesting a string search. If an
application can’t handle an action code, it exits without failure. Oth-
erwise, it performs the action immediately and returns.

Developing Palm OS Applications, Part | 49

Application Control Flow
How Action Codes Control the Application

Predefined Action Codes

A number of action codes are predefined by the system for handling

certain system tasks, for

example,

* notifying the application when certain system preferences
like date and time have changed

¢ performing global find and goto operations

e notifying the application that its data files have been updated

by a sync operation

The action code parameter is a 16-bit word value. All action codes
with values 0-32767 are reserved for use by the system and for fu-
ture enhancements. Action codes 32768 - 65535 are available for pri-

vate use by applications.

Table 2.1 Palm OS Action Codes

Code

Request

sysAppLaunchCmdNormalLaunch
sysAppLaunchCmdFind
sysAppLaunchCmdGoTo

sysAppLaunchCmdSyncNotify

sysAppLaunchCmdTimeChange
sysAppLaunchCmdSystemReset
sysAppLaunchCmdAlarmTriggered
sysAppLaunchCmdDisplayAlarm
sysAppLaunchCmdCountryChange
sysAppLaunchCmdSyncRequest

Normal launch
Find text string

Launch and go to a particular record and
optionally select the find text

Sent to applications whose databases
changed during HotSync after the sync has
been completed

System time changed

Sent after System hard resets
Schedule next alarm
Display given alarm dialog
Country has changed

HotSync button was pressed

50 Developing Palm OS Applications, Part |

Application Control Flow
How Action Codes Control the Application

Table 2.1

Palm OS Action Codes

Code

Request

sysAppLaunchCmdSaveData

sysAppLaunchCmdInitDatabase

sysAppLaunchCmdSyncCallApplication

Sent to running app before action codes
that cause data search or manipulation,
such as sysAppLaunchCndFi nd.

Initialize database; sent by DesktopLink
server to application whose create ID
matches that of the database created in re-
sponse to the create database request.

Used by DesktopLink Server command
“call application”

Action Code Flags

When the system sends an action code, it may send flags determin-
ing application behavior. Applications should always use zero.

Action Code Parameter Blocks

Some action codes are called in conjunction with a parameter block
structure that provides more information about the request. This
section provides information about available parameter blocks and
the values of their fields for these action codes:

sysAppLaunchCmdSaveData
sysAppLaunchCmdSystemReset

sysAppLaunchCmdInitDatabase

sysAppLaunchCmdSyncCallApplication

sysAppLaunchCmdGoto Command

sysAppLaunchCmdFind

sysAppLaunchCmdSaveData

t ypedef struct {
Bool ean

ui Com ng;

Developing Palm OS Applications, Part| 51

Application Control Flow
How Action Codes Control the Application

} SysAppLaunchCndSaveDat aType;

uiComing True if system dialog is put up
before action code arrives.

sysAppLaunchCmdSystemReset

t ypedef struct {
Bool ean har dReset ;
Bool ean creat eDef aul t DB;
} SysAppLaunchCndSyst enReset Type;

hardReset True if system was hardReset
createDefaultDB If true, application has to create
default database.

sysAppLaunchCmdInitDatabase

typedef struct SysAppLaunchCmdInitDatabaseType {

DmOpenRef dbP;
ULong creator;
ULong type;
Ulnt version;

} SysAppLaunchCndl ni t Dat abaseType;

dbP Database reference.
creator Database creator.
type Database type.
version Database version.

sysAppLaunchCmdSyncCallApplication

t ypedef struct

SysAppLaunchCndSyncCal | Appl i cati onType {
Wrd action;
Vor d par anti ze;

52 Developing Palm OS Applications, Part |

Application Control Flow
How Action Codes Control the Application

Voi dPt r
Byt e

par anP;
r enot eSocket :

Byt e tid;

Bool ean

handl ed;

} SysAppLaunchCndSyncCal | Appl i cati onType;

action
paramSize
paramP
remoteSocket
tid

handled

Call action id (application specific).
Parameter size.

Pointer to parameter.

Remote Socket ID

Command transaction

Must be set to TRUE by the application
if handled.

sysAppLaunchCmdGoto Command

t ypedef struct {
Word searchStr Len;
Word dbCar dNo;

Local I D dbl D;

Wor d recor dNum

Wr d mat chPos;

Wor d mat chFi el dNum
Dwrd mat chCust om

} CGoToPar ansType;

searchStrLen
dbCardNo

dbID
recordNum;
matchPos
matchFieldNum

matchCustom

Length of search string.

Card number of the database
LocalID of the database

Index of record that contain a match
Position in record of the match.
Field number string was found in

Application specific info

Developing Palm OS Applications, Part| 53

Application Control Flow
How Action Codes Control the Application

sysAppLaunchCmdFind

t ypedef struct {

/'l These fields are used by the applications.

Wrd dbAccesMode;

Wrd recor dNum

Bool ean nor e;

Char strAsTyped [maxFi ndStrLen+1];
Char strToFi nd [maxFi ndStrLen+1];

/1l These fields are private to the Find routine
/land shoul d NOT be accessed by applications.

Wrd nunVat ches;

Wrd I i neNunber ;

Bool ean conti nuati on;
Bool ean sear chedCal | er;
Local I D cal | er AppDbl D
Wrd cal | er AppCar dNo;
Local I D appDbl D

Wrd appCar dNo;

Bool ean newSear ch;
DnSear chSt at eType searchSt at e;

Fi ndMat chType mat ch [maxFi nds] ;

} Fi ndPar ansType;

dbAccessMode read mode and maybe show secret
recordNum index of last record that contained a match
more true if more matches to display

strAsTyped [maxFindStrLen+1]
search string as entered

strToFind [maxFindStrLen+1]
search string is lower case

numMatches System use only.

54 Developing Palm OS Applications, Part |

Application Control Flow
How Action Codes Control the Application

lineNumber System use only.
continuation System use only.
searchedCaller System use only.

callerAppDbID System use only.
callerAppCardNo System use only.

appDbID System use only.
appCardNo System use only.
newSearch System use only.
searchState System use only.

match [maxFinds] System use only.

Creating Your Own Action Codes

In addition to the predefined action codes defined in Table 2.1, de-
velopers may create their own action codes to implement specific
functionality. Both the sending and the receiving application must
know about and handle any developer-defined action codes.

Developing Palm OS Applications, Part| 55

Application Control Flow
How Action Codes Control the Application

56 Developing Palm OS Applications, Part |

Palm OS User Interface
Resources

This chapter provides an overview of all Macintosh resources used
by Palm OS, followed by a detailed description of each resource.
The relationship between the Macintosh resources and the struc-
tures provided by Palm OS is discussed in “Palm OS UI Objects”.

Resource Name Ul Name ResEdit
Resource
Menu Bar Resource MBAR Menu bar [Edit Options
Menu Resource MENU Menu lcingo :
(:py C
Paste P
Kezbunrd K
Application Icon Name Resource tAIN Application icon name
Alert Resource Talt Alert
Button Resource tBTN Button
Check Box Resource tCBX Check box
Private:
Private: &
Field Resource tFLD Field

Form Bitmap Resource tFBM Form bitmap

Form Resource tFRM Form

Developing Palm OS Applications, Part | 57

Palm OS User Interface Resources

Resource Name Ul Name ResEdit
Resource

Gadget Resource tGDT Gadget

Graffiti Shift Resource tGSI Graffiti® Shift

Label Resource tLBL Label

List Resource tLST List box

Popup List Resource tPUL Popup list

Popup Trigger Resource tPUT Popup trigger - Work

Push Button Resource tPBN Push button :

Repeating Button Resource tREP Repeating control

Selector Trigger Resource tSLT Selector trigger

String Resource tSTR String

Table Resource tTBL Table

Title Resource tTTL Title

Version Number String tver Version number string

58 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Menu Bar Resource

Menu Bar Resource

Name

Ul Name

Overview

Attributes

Comments

See Also

MBAR (This is a Macintosh resource.)
Menu bar
The menu bar Ul object groups menus. The menu bar shows all

menus, provided there is room for them. Here’s a picture of a two-
item menu bar, with no menu selected:

| Edit Options

of menus Array of N objects.

MenuresID MENU resource ID of the nth menu object.

If you create more menus than the display can handle, the result is a
runtime error. The display can usually handle four menus at most,
depending on the number of characters each menu name contains.

To create a menu, you need both a MENU resource and an MBAR
resource. The tutorial provides a detailed example for creating a
menu.

MENU resource.

Menu Resource

Name

Ul Name

Overview

MENU (This is a Macintosh resource.)
Menu

A menu provides access to commands not available on screen. Tap-
ping the MENU silk-screened icon provides access to the menu
commands.

Each menu can have a Graffiti keystroke equivalent: The user draws
the command stroke and one key to execute a command. For exam-
ple, writing Command-X executes the Cut command.

Developing Palm OS Applications, Part| 59

Palm OS User Interface Resources
Menu Resource

The menu Ul object lets you define the popup menus triggered from
the menu bar. ResEdit provides a graphical interface for specifying a
menu. The following five-command menu has a separator line after
the fourth item and shortcuts for each item:

Undo u
Cut X
Copy L
Faste P
Keyboard K
Attributes Title String of the menu command.

Comments The Enable check box in the ResEdit dialog has no effect on the Sim-
ulator and is ignored. Separator lines and shortcuts appear as in the
figure above. The display cannot handle more than thirteen com-
mands in a menu. If you create a menu with more commands, a
runtime error results.

The tutorial provides a detailed example for creating a menu.

Event Flow for Menu Resource

User Action System Response

Pen enters menu W nEXi t Event to exit previous window.

window. W nEnt er Event to enter menu window.
penDownEvent is also triggered, although the pen has not actu-
ally touched the screen.

User selects a W nExi t Event to exit menu window.
menu item. W nEnt er Event to enable the form the menu spawned.
menuEvent (store ID number of the item in Event Type).

penUpEvent finally occurs.

60 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Menu Resource

Menus and Menu Bars

A menu consists of a menu bar, menu names indicating the avail-
able menus, and the menus themselves with their commands:

* Menu bar. The menu bar at the top of the screen contains the
names of the available menus. Each application has different
sets of menu names; within an application, different views
may have different menus.

* Menu name. Each menu is displayed below the menu name.
— Record—Place Record to the left of Edit (if applicable).
— Edit—Screens that allow editing need an Edit menu.

— Options—Typically the last menu. The About command
is always an Options command.

* Menu. Menus consist of menu commands and optional
shortcuts. Menu commands should not duplicate functional-
ity available via command buttons. Menus justify left with
the active heading of the menu name when invoked. If the
menu does not fit, it is justified to the right border of the
screen.

NOTE: For each menu, provide shortcuts for all commands or for
none at all.

A pen-up on the menu icon displays the menu bar. The first time a
menu is invoked after an application is launched, no menus are dis-
played unless there is only one menu available. Afterwards, on a
pen-down of the digitizer, the menu and menu item of the last com-
mand executed from the menu are displayed (Graffiti command
equivalents are ignored). For example, if the user selects Copy from
the Edit menu, the menu is popped down and the Copy command
is highlighted the next time the menu bar is displayed. This expe-
dites execution of commonly used commands or grouped com-
mands (e.g., Copy/Paste). The last menu heading is not saved if the
user switches to a different view or a different application.

Each view within an application can have a unique menu (i.e., dif-
ferent menu headings and items). There are no grayed out menu
headings or grayed-out menu items. A command not accessible in a
certain mode does not appear at all.

Developing Palm OS Applications, Part| 61

Palm OS User Interface Resources
Application Icon Name Resource

After a menu command is executed, the menu bar is dismissed.

The menu bar is active when the menu headings in it are active.
When not active, the menu bar is not visible.

The vertical active area of menu headings is 2 pixels beyond the as-
cender and 1 pixel below a potential descender of the menu heading
text. The horizontal active area covers half of the distance to the next
menu heading, leaving no gaps between the headings. If the menu
headings aren’t as wide as the menu bar, part of it may be inactive.

The entire area of the menu, excluding the border, is active. Divider
lines and status items on the launcher menu are inactive; that is,
they do not highlight when tapped.

Application Icon Name Resource
Name tAIN
Ul Name Application icon name
Overview This resource associates a name with an application icon. The name

is displayed by the launcher. This name overrides the name of the
application file.

Attributes ~ App icon name Name displayed with the application icon, in
the launcher.

62 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Alert Resource

Alert Resource

Name

Ul Name

Overview

Attributes

Talt

Alert

The alert resource is used to define a modal dialog that displays a
message, an icon, and one or more buttons.

Alert Type

Help Res ID

of Buttons

Default
Button

Title

Message

Button Text

Determines the sound played and the icon dis-
played when the alert is drawn. There are four pos-
sible icons, informationAlert (Alert Number 0),
confirmationAlert (Alert Number 1), warningAlert
(Alert Number 2), and ErrorAlert (Alert Number 3).

Resource ID of a string resource (tSTR) that is the
help text for the alert dialog box.

Number of buttons in the alert form.

Default button for the alert form.

Title of the alert form.

Message displayed by the alert dialog. May contain
N1, N2, N3 as substitution variables to use in con-
junction with Fr nCust omAl ert .

Text of the buttons, determined by an entry in the
resource of each button. The label “1) *****” is a
placeholder for the first button. Select this label and
press Command-K to add a new entry.

Developing Palm OS Applications, Part| 63

Palm OS User Interface Resources

Alert Resource

System Alerts

Types

Informa-
tion

Confirma-
tion

Warning

Error

Icon

(stop
sign)

System alerts are text-only dialog boxes that indicate error mes-
sages, alarms, etc. Alerts typically have only an OK or an OK and
Cancel, and no controls. A small icon should indicate the category of
the dialog box; for example, an exclamation mark for an error mes-
sage. The icon appears on the left side of the dialog. The text is justi-
fied left but placed to the right of the dialog icon.

Definition

Lowest-level warning
for an action that
shouldn’t or can’t be
completed, but doesn’t
generate an error or risk
data loss.

Confirm an action or
suggest options.

Ask if user wishes to
continue a potentially
dangerous action.

Inform user that an at-
tempted action has gen-
erated an error and /or
cannot be completed.

Options
OK

OK,
Cancel

OK,
Cancel

OK

Example

An alarm setting must
be between 1 and 99.

Change settings before
switching applications?
(For example, when
pressing an application
key with an open dialog
box.)

Are you sure you want to
delete this entry?

Disk full.

64 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Button Resource

Button Resource

Name

Ul Structure

Ul Name

Overview

Attributes

tBTN
Cont r ol Type

Button

Abutton is a clickable UI object is often used to trigger events in an

application. A

button displays as a text label surrounded by a rect-

angular frame. The frame has rounded corners. The label may be

regular text or

a glyph from one of the symbol fonts provided with

your development environment (for example, an arrow):

Button ID

Left

Top

Width

Height

Usable

[&k][Cancel]| [Delete... | [Hote |

Developer-defined ID to identify the object.
Valid values: 0 — 9999

Window-relative position of left side of button.
Valid values: 0 - 159

Window-relative position of top of object.
Valid values: 0 - 159

Width of button in pixels. Size the buttons to allow
36 pixels of white space at each end of the label.
Valid values: 0 - 160

Height of the button in pixels. Should be 3 pixels
larger than the font size (for example, height = 12 for
9-point labels).

Valid values: 1 - 160

A nonusable object is not considered part of the ap-
plication interface, and does not draw. Non-usable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)

Developing Palm OS Applications, Part| 65

Palm OS User Interface Resources

Button Resource

Leftanchor

Frame

Non-bold
frame

Font

Label

Controls how the object resizes itself when its text
label is changed. If the attribute is TRUE, the left
bound of the object is fixed; if FALSE, the right
bound is fixed.
Valid values: true (left bound fixed)

false (right bound fixed)

If set to true, a rectangular frame with rounded cor-
ners is drawn around the button. Most buttons have
frames. Buttons whose labels are single symbol char-
acters, such as scroll buttons, don’t have frames.
Valid values: true (framed)

false (not framed)

If set to TRUE, a one-pixel-wide rectangular frame
with rounded corners is drawn around the button. If
set to false, a bold frame (two pixels wide) is drawn
around the button. Nonbold frames are standard.
Valid values: true (one-pixel-wide frame)

false (two-pixel-wide frame)

ID of font used to draw the text label of the button
Valid values: 0 (9-point font)

1 (9-point bold font)

2 (12-point font)

Text displayed inside the button: one line of text, or a
single character from a symbol font to create an in-
crement arrow.

Comments The label is centered inside the button. If the label text is wider than
the button, the whole label is centered and both the right and left
sides are clipped.

Place command buttons at the bottom of table views and dialog
boxes. Leave three pixels between the dialog bottom and buttons.

Increment arrows are a special case; they are buttons that let users
increment the value displayed in a data field.

To create an increment arrow, use an arrow character from the sym-
bol font as a label. Several arrow styles and sizes are available.

66 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Check Box Resource

Event Flow for Button Resource

User Action System Response
Pen goes down on a penDownEvent (store x and y coordinates in Event Type).
button. ct | Ent er Event (store button ID number in Event Type).

Pen is lifted from but- ct| Sel ect Event (store button ID number in Event Type).

ton.

ct| Sel ect Event can be triggered only if a

ct| Ent er Event with the same button ID number has just
occurred.

penUpEvent (store x and y coordinates in Event Type).

Pen is lifted outside Nothing happens.

button.

Check Box Resource

Name

Ul Name

Ul Structure

Overview

tCBX
Check box
Cont r ol Type

A check box is a small, square Ul object that lets users turn some-
thing on or off; for example, an alarm. A check box displays a check
to indicate it's on, and an optional text label to the right of the box.

The figure below shows a checked and an unchecked check box
with a label to the left.

Private: [

Private: &

Developing Palm OS Applications, Part| 67

Palm OS User Interface Resources

Check Box Resource

Attributes Check
Box ID

Left

Top

Width

Height

Usable

Selected

Group

Font

Label

Developer-defined ID to identify the object.
Valid values: 0 — 9999

Window-relative position of left side of object.
Valid values: 0 — 159

Window-relative position of top of object.
Valid values: 0 - 159

Width of the picking area around the check box.
Valid values: 0 - 160

Height of the picking area around the check box.
Valid values: 1- 160

A nonusable object is not considered part of the ap-
plication interface, and does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)

Initial selection state of the checkbox.
Valid values: true (checked)
false (unchecked)

Group ID of a check box that is part of an exclusive
group. Ungrouped (nonexclusive) check boxes have
zero as a group ID.

Valid values: 0 — 65535

ID of the font used to draw the text label.
Valid values: 0 (9-point font)

1 (9-point bold font)

2 (12-point font)

Text displayed to the right of the check box. This text
is part of the activation area. To create a (nonactive)
label on the left of the check box, leave this attribute
blank and create a separate Label resource.

68 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Check Box Resource

Comments Make sure that only one check box in a group is initially checked.

All check boxes are the same size. The bounds determine the toggle
area (the screen area the user needs to press to check or uncheck the
box).

If a label attribute is defined, it’s part of the activation area.

Event Flow for Check Box Resource

User Action System Response

Pen goes down penDownEvent (store x and y coordinates in Event Type).
on check box. ct | Ent er Event (store check box’s ID number in Event Type).

e If the check box is unchecked, a check appears.

e If the check box is already checked, and is grouped, there is
no change in appearance.

e If the check box is already checked, and is ungrouped, the
check disappears.

Pen is lifted from ct | Sel ect Event (store check box’s ID number in Event Type,
check box. switch check box on (1) or off (0) internally). Act | Sel ect Event
can be triggered only if a ct | Ent er Event with the same check
box ID number has just occurred.
penUpEvent (store x and y coordinates in Event Type).

Pen is lifted out- Nothing happens.
side button.

Developing Palm OS Applications, Part| 69

Palm OS User Interface Resources

Field Resource

Field Resource

Name

Ul Name

Ul Structure

Overview

Attributes

tFLD
Field
Fi el dType

The field UI object is for user data entry in an application. It displays
one or more lines of editable text. A field can be underlined, justified
left or right, and selectable or unselectable.

The following is an underlined, left-justified field containing data:

Field ID Developer-defined ID to identify the object.
Valid values: 0 — 9999

Left Window-relative position of left side of object.
Valid values: 0 - 159

Top Window-relative position of top of object.
Valid values: 0 - 159

Width Width of the object in pixels.
Valid values: 0 — 160

Height Height of the object in pixels.
Valid values: 1- 160

Usable A nonusable object is not considered part of an ap-
plication interface and does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)

Editable Noneditable fields don’t accept user input but can be
changed programmatically.
Valid values: true (editable), false (noneditable)

70 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Field Resource

Comments

Under-
lined

Single Line

Dynamic
Size

Left Justi-

fied

Max chars

Font

If set, each line of text is underlined with a gray line.

If set to TRUE, the field doesn’t scroll horizontally
and doesn’t accept Return or Tab characters. Only a
single line of text is displayed. If the user attempts to
enter text beyond this, the system beeps. See Com-
ments for more information on multiline fields.
Valid values: true (single line)

false (multiline)

If TRUE, the height of the field is expanded or com-
pressed as characters are added or removed. Set this
attribute to FALSE if the Single Line attribute is set.
Valid values: true (dynamically resizes)

false (doesn’t dynamically resize)

Text justification. Supported only for fields that have

the Single Line attribute set to TRUE.

Valid values: true (left-justified)—recommended
false (right-justified)

Maximum number of characters the field accepts.
This is a limit on the number of characters a user can
enter, but not on what can be displayed. All fields
can display up to 32767 characters regardless of this
setting.

Valid values: 0 - 32767

ID of the font used to draw the text
Valid values: 0 (9-point font)
1 (9-point bold font)
2 (12-point font)

Text fields can be located anywhere but in menus and in the com-
mand button area.

Multiline text fields expand. An empty field may display one or
more blank lines; for example, records in a To Do list or a text page.

Developing Palm OS Applications, Part| 71

Palm OS User Interface Resources
Form Bitmap Resource

Event Flow for Field Resource

User Action System Response

Pen goes down on a penDownEvent (store x and y coordinates in Event Type).
field. f I dEnt er Event (store the field’s ID number in EventType).
Pen is lifted penUpEvent (store x and y coordinates in Event Type). A

field remains selected until another field is selected or the
form that contains the field is closed.

User enters charac- keyDownEvent (store ASCII value in Event Type).
ters into selected field.

Form Bitmap Resource
Name tFBM
Ul Name Form bitmap

Overview Places predefined bitmaps on a given form. Used for icons in Alert
dialogs for warnings, errors, information, etc.

Attributes X Position Left bounds of bitmap.
Y Position Top bounds of bitmap.
Bitmap RscID ID of a PICT resource containing the graphic.
Usable Set to TRUE if the bitmap should be drawn.

72 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Form Resource

Form Resource

Name tFRM

Ul Name Form

Overview A form is a container for one or more of the following Ul objects:

Bitmap

Button

Check box

Field

Gadget

Graffiti shift state indicator
Help string for tips (if modal)
Label

List

Menu bar

Popup trigger

Push button

Repeating button

Selector trigger

Table

Title

An application may contain several different forms the user can
trigger from buttons or other control UI objects. A form is a con-

tainer for other UI objects. Most Ul objects are displayed only if they

are contained within a form.

Address Entry Details)

Show in List: = Work
Category: w Perzonal
Private: []

[Ik] [{uncel] I:Delete...:l I:N-:-te]

Developing Palm OS Applications, Part| 73

Palm OS User Interface Resources

Form Resource

Attributes

Left

Top

Width

Height

Usable

Modal

Save behind

Form ID

Help Rsc ID

Default But-
ton ID

Window-relative position of left side of object.
Valid values: 0 — 159

Window-relative position of top of object.
Valid values: 0 — 159

Window-relative position of width of the object.
Valid values: 0 — 160

Height of the button in pixels.
Valid values: 1- 160

A nonusable object is not considered part of the ap-
plication interface, and does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)

Indicates if the form is modal. Modal forms ignore
pen events outside their boundaries.

If this field contains a non-zero value, the region
obscured by the form is saved when it is drawn and
restored when it is erased.

Valid values: zero (don’t save), non-zero (save)

Developer-defined ID used to identify the object.
Valid values: 0 — 9999

Contains the resource ID of a string resource (tSTR)
that is the help text from the dialog box. Currently
only modal dialogs have a help resource.

Valid values: 0 — 9999

Defines the ID of the default button. The system
simulates pressing the default button where it dis-
misses the form automatically; for example, when it
switches to another application.

74 Developing Palm OS Applications, Part |

Palm OS User Interface Resources

Form Resource

Comments

Object ID

Object Type

Resource ID of the form.
Valid values: 0 — 9999

The resource ID of one or more Ul objects.
Valid values: tFBM - Bitmap

tBTN - Button

tCBX - Check box

tFLD - Field

tGDT - Gadget

TGSI - Graffiti shift state indicator
tLBL - Label

tLST - List

tPUT - Popup trigger
tPBN - Push button
tREP - Repeating button
tSLT - Selector trigger
tTBL - Table

tTTL - Title

The total display is 160 pixels by 160 pixels. If you want your whole
form to be seen, make sure it fits within the display area.

There is an entry in the form resource for each object contained in
the form. An entry consists of a resource ID and resource type. The
label “1) *****” is a placeholder for the first entry. Select this label
and press Command-K to add a choice to the list.

Here are some general design guidelines:

e Each form has a title that displays the name or view of the

application (or both.)

¢ Scroll indicators appear and disappear dynamically, depend-
ing on the size of the object. Place them to the right of com-

mand buttons.

* Modal dialogs always occupy the full width of the screen and
are justified to the bottom of the screen. They hide the com-
mand buttons of the base application but don’t obscure the
title bar of the base application if possible. There should be a
minimum of three pixels between the top of the modal dialog
title bar and the bottom of the application title bar. If the dia-

Developing Palm OS Applications, Part| 75

Palm OS User Interface Resources
Form Resource

log is too large to accommodate this, the entire application
title bar should be obscured.

* Screen command buttons should always be at the bottom of
the screen.

* Dialog command buttons appear four pixels above the bot-
tom of the dialog box frame (two-pixel default ring is three
pixels above the bottom, and the baseline of the text within
the buttons should be aligned).

e Command buttons should be centered so that the spaces be-
tween the buttons are twice the width of the spaces between
the edges and the border. (See diagram below.) If possible, all
buttons should be the same width.

4 N 7 N 4 N\
A | B A B c A[B ﬁ D
One button Two buttons Three buttons
Disance A =B DistanceB=2x A =2xC DistanceB=C=2xA=2xD

Event Flow When a form is opened, a f r nOpenEvent is triggered and the
form’s ID is stored. Awi nEnt er Event is triggered whenever a
form is opened and a wi nExi t Event is triggered whenever a form
is closed.

76 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Gadget Resource

Gadget Resource

Name

Ul Name

Overview

Attributes

tGDT

Gadget

A gadget object lets developers implement a custom UI gadget. The
gadget resource contains basic information about the custom gadget
which is useful to the gadget writer for drawing and processing

user input.

Gadget ID
Left

Top
Width
Height

Usable

Developer-defined ID used to identify the object.

Window-relative position of left side of object.
Valid values: 0 — 159

Window-relative position of top of object.
Valid values: 0 - 159

Window-relative position of width of the object.
Valid values: 0 - 160

Height of the gadget in pixels.
Valid values: 1- 160

A nonusable object is not considered part of the ap-
plication interface, and does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)

Developing Palm OS Applications, Part| 77

Palm OS User Interface Resources
Graffiti Shift Resource

Graffiti Shift Resource

Name

Ul Name

Overview

Attributes

tGSI
Graffiti® Shift

Indicates the window- (form) relative position of the Graffiti shift
state indicator. The different states are punctuation, symbol, upper-
case shift, and uppercase lock. These should appear at the bottom-
right of every form that has an editable text field.

X pos: Left bounds of text, relative to the form.

y pos: Top bounds of text, relative to the form.

Label Resource

Name

Ul Name

Overview

Comments

Attributes

tLBL
Label

Alabel is used to display noneditable text or labels on a form (dia-
log box or full-screen).

Pressing return in a label wraps the text to the next line.

Label ID Developer-defined ID to identify the object.
Valid values: 0 — 9999

Left Window-relative position of left side of object.
Valid values: 0 — 159

Top Window-relative position of top of object.
Valid values: 0 — 159

78 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
List Resource

Usable

Font ID

Text

List Resource

Name

Ul Name

Ul Structure

Overview

Attributes

tLST

List box

Li st Type

A nonusable object is not considered part of an appli-
cation interface, and does not draw. Nonusable objects
can programmatically be set to usable.

Valid values: true (usable), false (nonusable)

ID of the font used to draw the text.
Valid values: 0 (9-point font)

1 (9-point bold font)

2 (12-point font)

Text of the label.

Alist box is a UI object you can use to provide a box with a list of
choices to the user. The list is scrollable if there are more choices
than the size of the list box allows.

Alist appears as a vertical list of choices surrounded by a rectangu-
lar frame. The current selection of the list is inverted. Arrows for
scrolling the list appear in the right margin if necessary.

Lists may also appear as popup lists when used with popup trig-
gers. See Popup List Resource and Popup Trigger Resource.

List ID

Left

Top

Developer-defined ID to identify the object.
Valid values: 0 — 9999

Window-relative position of left side of object.
Valid values: 0 — 159

Window-relative position of top of object.
Valid values: 0 — 159

Developing Palm OS Applications, Part| 79

Palm OS User Interface Resources

List Resource

Comments

Width Width of the list.
Valid values: 0 — 160

Usable A nonusable object is not considered part the applica-
tion interface, and does not draw. Nonusable objects
can programmatically be set usable.

Valid values: true (usable), false (nonusable)

FontID ID of the font used to draw the text.
Valid values: 0 (9-point font)
1 (9-point bold font)
2 (12-point font)

Visible Height of the list box, in items (choices). For example,
items if the list has six items but only four fit, specify four.
Items Items in the list. There is an entry in the resource for

each item. The label “1) *****” is the placeholder for
the first entry. Select this label and press Command-K
to create the first item in the list.

Errors may occur if the number of visible items is greater than the
actual number of items. An item’s text is not clipped against the list
box’s borders. Set a list box to not usable if it’s linked to a popup
trigger.

Use a list to let users choose between items of data; use a menu to
activate a command. If a list becomes too tall to fit below the trigger,
it is justified up. If it becomes to large for the screen, it scrolls.

Event Flow for List Resource

User Action

Pen goes down
on a list box.

Pen is lifted from
the list box.

System Response

penDownEvent (store x and y coordinates in Event Type).
| st Ent er Event (store list ID and selected item in Event Type).

| st Sel ect Event is triggered (store button’s ID number and
number of selected item in EventType).
penUpEvent (store x and y coordinates in EventType).

80 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Popup List Resource

Popup List Resource

Name

Ul Name

Overview

Attributes

Comments

Event Flow

tPUL
Popup list

A popup list links a popup trigger to a list box. The popup list itself
is not visible.

Control ID Developer-defined ID of a popup trigger object.
Valid values: 0 — 9999

List ID Developer-defined id of a list object.
Valid values: 0 — 9999

To create a popup list and its trigger, you need to also create a
Popup Trigger Resource (tPUT) and a List Resource (tLST resource).

Note that this popup resource behaves differently from resources on
the Macintosh.

See Event Flow for Popup Trigger Resource.

Popup Trigger Resource

Resource

Ul name

Ul structure

Overview

tPUT
Popup Trigger
Control Type

The popup trigger shows the selection of a list. The user can press
the popup trigger to pop up the list and change the selection.

A popup trigger displays a text label and a triangle to the left of the
label that indicates the object is a popup trigger.

When the user selects a popup trigger, a list of items pops up.

Developing Palm OS Applications, Part| 81

Palm OS User Interface Resources

Popup Trigger Resource

Attributes Popup
Trigger ID
Left
Top
Width

Height

Usable

Left
anchor

Font ID

Label

w Work

Developer-defined ID used to identify the button.
Valid values: 0 - 9999

Window-relative position of left side of button.
Valid values: 0 - 159

Window-relative position of top of button.
Valid values: 0 — 159

Width of the button’s picking area in pixels.
Valid values: 1 -160

Height of the button’s picking area in pixels.
Valid values: 1 -160

A nonusable object is not considered part of the ap-
plication interface, and it does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable)

false (non-usable)

Controls how the object resizes itself when its text
label is changed.
Valid values: true (left bound fixed)

false (right bound fixed)

ID of font used to draw text label:

Valid values: 0 (9-point font)—Recommended
1 (9-point bold font)
2 (12-point font)

Text displayed in the popup trigger (right of arrow).

Comments: See also tPUL and tLST.

82 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Push Button Resource

Event Flow for Popup Trigger Resource

User Action
Pen goes down on
popup trigger.

Pen is lifted from
popup trigger.

Popup list pops
up.

Pen goes down on
item in popup list.

Pen is lifted from
popup list.

System Response

penDownEvent (store x and y coordinates in Event Type).
ct| Ent er Event (store popup trigger ID number in Event Type).

ctl Sel ect Event (store popup trigger ID number in

Event Type). Act| Sel ect Event can be triggered only if a
ct| Ent er Event with the same popup trigger ID number has
just occurred.

wi nExi t Event (pass control to a popup list object).

wi_nEnt er Event
penUpEvent (a penDownEvent to pop up the popup list).

penDownEvent occurs.

| st Sel ect Event (store the popup list ID and the selected item
number in Event Type).

W nExi t Event causes popup list to disappear; control passes
back to the popup trigger.

Wi nEnt er Event occurs.

popSel ect Event is triggered if an item was selected in the
popup list (store popup trigger ID, the popup list ID, and the item
number selected in Event Type).

penUpEvent occurs.

Push Button Resource

Name

Ul Name

Ul Structure

Overview

tPBN

Push button

Cont r ol Type

Push buttons allow users to select an option from a group of items.

The choices should have few characters; if they are long, check
boxes are preferable.

Developing Palm OS Applications, Part| 83

Palm OS User Interface Resources

Push Button Resource

Attributes

Push buttons display a text label surrounded by a 1-pixel-wide rect-
angular frame. They appear in a horizontal or vertical row with no
pixels between the buttons. The buttons share a common border so
there appears to be a one pixel line between two controls. The cur-
rent selection is highlighted.

Priovity: jl 2 |2 [4([5]
Sort by: Raallyel

The List By dialog of the Address Book and the Details dialog of the
To Do List contain examples of rows of push buttons.

Push but- Developer-defined ID used to identify the button.
ton ID Valid values: 0 — 9999

Left Window-relative position of left side of button.
Valid values: 0 — 159

Top Window-relative position of top of button.
Valid values: 0 — 159

Width Width of the button in pixels. Should be size of label
plus two pixels at each end.
Valid values: 1 - 160

Height Height of the button in pixels. Should be font size
plus two pixels.
Valid values: 1 -160

Usable A nonusable object is not considered part of the appli-
cation interface, and it does not draw. Nonusable ob-
jects can programmatically be set to usable. Always
mark all buttons in a group usable or nonusable to-
gether.

Valid values: true (usable)
false (nonusable)

84 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Push Button Resource

Comment

Left Controls how the object resizes itself when its text
anchor label is changed.
Valid values: true (left bound fixed)
false (right bound fixed)

Group Group ID of a push button that is part of an exclusive
group. Only one push button in an exclusive group
may be depressed at a time. Ungrouped (non-exclu-
sive) push buttons have zero as a group ID.

Valid values: 0 — 65535

FontID ID of the font used to draw the text label of the push
button.
Valid values: 0 (9-point font) —recommended
1 (9-point bold font)
2 (12-point font)

Label Text displayed inside the push button.

To create a row of push buttons, create a number of individual push

button resources with the same height and align them by specifying

the same top position for each button.

Event Flow for Push Button Resource

User Action

Pen goes down on
push button.

Pen is lifted from
push button.

System Response

penDownEvent (store x and y coordinates in Event Type).

ctl Ent er Event (store push button ID number in Event Type).
Push button is highlighted.

If push button is grouped and highlighted, no change.

If push button is ungrouped and highlighted, it becomes
unhighlighted.

ct | Sel ect Event (store button ID number and its current state;
on = 1; off = 0).

ct Sel ect Event can be triggered only if a ct | Ent er Event with
the same push button ID number just occurred.

penUpEvent (store the x and y coordinates).

Developing Palm OS Applications, Part| 85

Palm OS User Interface Resources

Repeating Button Resource

Repeating Button Resource

Name tREP

Ul Name Repeat control

Overview The repeat control object is identical to the button object in its ap-
pearance. The repeat control object is used for buttons that need to
be triggered continuously by holding the pen down on them.

Attributes Button ID
Left
Top
Width
Height

Usable

Left an-
chor

Frame

Developer-defined ID used to identify the button.
Valid values: 0 — 9999

Window-relative position of left side of button.
Valid values: 0 - 159

Window-relative position of top of button.
Valid values: 0 — 159

Width of the button in pixels.
Valid values: 1 -160

Height of the button in pixels.
Valid values: 1 -160

A nonusable object is not considered part of the ap-
plication interface, and it does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable)

false (nonusable)

Controls how the object resizes itself when its text
label is changed.
Valid values: true (left bound fixed)

false (right bound fixed)

If set to TRUE, a rectangular frame with rounded cor-
ners is drawn around the button.
Valid values: true (framed)

false (not framed)

86 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Repeating Button Resource

Comments

Nonbold Determines the width of the rectangular frame drawn
frame around the object.
Valid values: true (1-pixel-wide frame)
false (2-pixel-wide frame)

Font ID ID of the font used to draw the text label. Use a single
character from one of the Symbol fonts to create in-
crement arrows.

Valid values: 0 (9-point font)
1 (9-point bold font)
2 (12-point font)

Label Text displayed inside the button.

The attributes match those of the Button Resource (tBTN); the be-
havior differs.

You can also use repeating buttons to create increment arrows. See
Button Resource for more information.

Event Flow for Repeating Button Resource

User Action

A repeating button is similar in appearance to a button but it gener-
ates different events. A button generates a ct | Ent er Event when it
is pressed and a ct | Sel ect event when it is released. A repeating
button generates a ct | Ent er Event when it is pressed and a

ct | Repeat Event as long as it remains pressed. Here’s a more de-
tailed discussion of the events:

System Response

Pen goes downona penDownEvent (store x and y coordinates in Event Type).

repeating button.

Pen remains on
repeating button.

Pen is dragged off

ct | Ent er Event (store button’s ID number in Event Type).

For every given amount of time the pen is down on the repeat
control object, a ct | Repeat Event is generated.

No additional ct | Repeat eEvent occurs.

the repeating button.

Developing Palm OS Applications, Part| 87

Palm OS User Interface Resources
Selector Trigger Resource

User Action System Response

Pen is dragged back ct | Repeat Event begins to occur again.
onto the button.

Pen is lifted. penUpEvent (store x and y coordinates in Event Type)

Selector Trigger Resource
Name tSLT
Ul Name Selector Trigger
Ul Structure Cont r ol Type

Overview Users can tap a selector trigger to pop up a dialog that lets them se-
lect an item. The selected item becomes the label of the selector trig-
ger. For example, a selector trigger for time pops up a time selector.
The selected time is entered into the selector trigger.

A selector trigger displays a text label surrounded by a gray rectan-
gular frame, as follows:

Attributes Selector Developer-defined ID used to identify the object.
Trigger ID Valid values: 0 — 9999

Left Window-relative position of the left side of the object.
Valid values: 0 - 159

Top Window-relative position of top of object.
Valid values: 0 — 159

Width Width of the object in pixels.
Valid values: 1- 160

88 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Selector Trigger Resource

Height Height of the object in pixels. Height extends two
pixels above and one pixel below the 9-point plain
font. Height is one pixel above command buttons to
accommodate the gray frame.

Valid values: 1- 160

Usable A nonusable object is not considered part of the ap-
plication interface, and it does not draw. Nonusable
objects can programmatically be set to usable.

Valid values: true (usable)
false (nonusable)

Left Controls how the object resizes itself when its text
anchor label is changed. If TRUE, the left bound of the object
is fixed, if FALSE the right bound is fixed.
Valid values: true (left bound fixed)
false (right bound fixed.)

Font ID ID of the font used to draw the text label.
Valid values: 0 (9-point font)—Recommended
1 (9-point bold font)
2 (12-point font)

Event Flow for Selector Trigger Resource

User Action

Pen goes down on
a selector trigger.

Pen is lifted from
the selector trigger.

System Response

penDownEvent (store x and y coordinates in Event Type).
ct| Ent er Event (store selector trigger ID number in Event -

Type).

ctl Sel ect Event (store selector trigger ID number in

Event Type). Act| Sel ect Event can only be triggered if a

ct | Ent er Event with the same selector trigger ID number has
just occurred.

f rnOpenEvent followed by a wi nExi t Event, control is passed
to a form object. When control is passed back to the selector trig-
ger, aw nEnt er Event and a penUpEvent occur.

Developing Palm OS Applications, Part| 89

Palm OS User Interface Resources

String Resource

String Resource

Name

Ul Name

Overview

Attributes

Comments

tSTR
String

Stores data strings used by the program. String resources may be en-
tered as text strings or as a series of hexadecimal characters.

String The text string to be stored (in decimal ASCII).

Data The text string to be stored (in hexadecimal ASCII).

The string resource uses either the string or data. If both are entered,
they are concatenated.

Table Resource

Name

Ul Name

Overview

Attributes

tTBL
Table

The table object allows the developer to organize a collection of ob-
jects on the display. For example, a table may contain a column of la-
bels that correspond to a column of fields.

Table ID Developer defined ID used to identify the object.
Valid values: 0 — 9999

Left Window-relative position of the left side of the object.
Valid values: 0 — 159

Top Window-relative position of top of object.
Valid values: 0 — 159

Width Width of the object in pixels.
Valid values: 1- 160

90 Developing Palm OS Applications, Part |

Palm OS User Interface Resources
Title Resource

Height Height of the object in pixels.
Valid values: 1-160

Rows Number of rows in the table.
Columns Number of columns in the table.

Column Width of the nth column.
width

Comments Since tables are scrollable, they may be larger than the display.

Title Resource
Name tTTL
Ul Name Title
Overview This resource lets you place a title at the top of a form (dialog box or
view). If the form is modal, the title is drawn centered at the top of

the form, if nonmodal the title is drawn left-aligned. A title is drawn
within the bounds of the form, not above the form’s bounds.

The figure below shows a form with a title.

Address Entry Details

Attributes Title Title string displayed.

Comments The title must be one line; it uses about 13 pixels of the top of the
form.

Developing Palm OS Applications, Part| 91

Palm OS User Interface Resources
Version Number String

Version Number String

Name tver
Overview Specifies the version number display by the “About Dialog Box.”

Attributes Version string. This consists of a major version number and a minor
version number separated by a decimal point.

Supported Fonts

The following fonts are supported:

FontID Name

0 stdFont

1 boldFont

2 largeFont

3 symbolFont

4 checkboxFont

92 Developing Palm OS Applications, Part |

Palm OS Events

appStopEvent

When the system wants to launch a different application than the
one currently running, the event manager sends this event to re-
quest the current application to terminate. In response, an applica-
tion has to exit its event loop, close any open files and forms, and
exit. If an application does not respond to this event by exiting, the
system can’t start the other application.

ctlIEnterEvent

The control routine & | Handl eEvent sends this event when it re-
ceives a penDownEvent within the bounds of a control. The follow-
ing data is passed with the event:

controllD Developer-defined ID of the control.

pControl Pointer to a control structure (Cont r ol Type).

ctlIExitEvent

The control routine Ct | Handl eEvent sends this event. When

C | Handl eEvent receives a ct | Ent er Event , it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of a control, a ct | Sel ect Event is added to the event
queue; if not, a cl t Exi t Event is added to the event queue.

The following data is passed with the event:

controllD Developer-defined ID of the control.

pControl Pointer to a control structure (Cont r ol Type).

Developing Palm OS Applications, Part | 93

Palm OS Events
ctIRepeatEvent

ctIRepeatEvent

The control routine Ct | Handl eEvent sends this event. When

Ct | Handl eEvent receives a ct | Ent er Event in a Repeat control
(tREP), it sends a ct | Repeat Event . When Ct | Handl eEvent re-
ceives a ct | Repeat Event in a repeat control, it sends another
ct| Repeat Event if the pen remains down within the bounds of
the control for 1/2 second beyond the last ct | Repeat Event .

The following data is passed with the event:

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (Cont r ol Type).

time System ticks count when the event is added to
the queue.

ctlSelectEvent

The control routine C | Handl eEvent sends this event. When

C | Handl eEvent receives a ct | Ent er Event , it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of the
same control it went down in, a cl t Sel ect Event is added to the
event queue; if not, a ct | Exi t Event is added to the event queue.

The following data is passed with the event:

controllD Developer-defined ID of the control.

pControl Pointer to a control structure (Cont r ol Type).

on TRUE when the control is depressed; otherwise
FALSE.

94 Developing Palm OS Applications, Part |

Palm OS Events
daySelectEvent

daySelectEvent

The DayHandl eEvent routine, which handles events in the day se-
lector object, handles this event. When the day selector object dis-
plays a calendar month, the user can select a day by tapping on it.

This event is sent when the pen touches and is lifted from a day
number.

The following data is passed with the event:

pSelector Pointer to a day selector structure
(DaySel ect or Type).

selection Not used.
useThisDate Set to TRUE to automatically use the selected
date.

fldChangedEvent

The field routine Fl dHandl eEvent sends this event when the text
of a field has been scrolled as a result of drag-selecting. When

FI dHandl eEvent receives a f | dEnt er Event, it positions the in-
sertion point and tracks the pen until it’s lifted. Text is selected
(highlighted) appropriately as the pen is dragged.

The following data is passed with the event:

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (Fi el dType).

Developing Palm OS Applications, Part| 95

Palm OS Events
fldEnterEvent

fldEnterEvent

The field routine FIl dHandl eEvent sends this event when the field
receives a penDownEvent within the bounds of a field. The follow-
ing data is passed with the event:

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (Fi el dType).

fldHeightChangedEvent

The field routine FI dHand| eEvent sends this event. The field API
supports a feature that allows a field to dynamically resize its visible
height as text is added or removed from it. Functions in the field API
send a f | dHei ght ChangedEvent to change the height of a field.
Applications don’t usually send or handle this event.

The following data is passed with the event:

fieldID Developer-defined ID of the field.
pField Pointer to a field structure (Fi el dType).
newHeight New visible height of the field, in number of lines.

currentPos Current position of the insertion point.

frmCloseEvent

The form routines Fr mGot oFor mand Fr n0 oseAl | For ns send
this event. Fr mGot oFor msends a f r 0 oseEvent to the currently
active form; Fr ml oseAl | For s sends a f r n0 oseEvent to all
forms an application has loaded into memory. If an application does
not intercept this event, the routine Fr nHandl eEvent erases the
specified form and releases any memory allocated for it.

The following data is passed with the event:

formID Developer-defined ID of the form.

96 Developing Palm OS Applications, Part |

Palm OS Events
frmLoadEvent

frmLoadEvent

The form routines Fr not oFor mand Fr nPopupFor msend this
event. It is a request that the application load a form into memory.

The application is responsible for handling this event.

The following data is passed with the event:

formID Developer-defined ID of the form.

frmOpenEvent

The form routines Fr mGot oFor mand Fr nPopupFor msend this
event. It is a request that the application initialize and draw a form.

The application is responsible for handling this event.

The following data is passed with the event:

formID Developer-defined ID of the form.

frmSaveEvent

The form routine Fr nSaveAl | For s sends this event. It is a request
that the application save any data stored in a form.

The application is responsible for handling this event.

No data is passed with this event.

Developing Palm OS Applications, Part| 97

Palm OS Events
frmUpdateEvent

frmUpdateEvent

The form routine Fr mpdat eFor m or in some cases the routine

Fr nEr aseFor m sends this event when it needs to redraw the re-
gion obscured by the form being erased. Generally, the region ob-
scured by a form is saved and restored by the form routines without
application intervention. However, in cases where the system is run-
ning low on memory, the form’s routine may not save obscured re-
gions itself and therefore must ask applications to redraw the
regions themselves.

An application can also use this event to update a form, usually
when changes made to one form need to be reflected in another
form.

The following data is passed with the event:

formID Developer-defined ID of the form.

updateCode The reason for the update request.
Fr nEr aseFor msets this code to zero. Applica-
tion developers can define their own
updat eCode. The updat eCode is passed as a
parameter to Fr mijpdat eFor m

98 Developing Palm OS Applications, Part |

Palm OS Events
keyDownEvent

keyDownEvent

This event is sent by the system when the user enters a Graffiti char-
acter, presses one of the buttons below the display, or taps one of the
icons in the icon area (for example, the Find icon).

The following data is passed with the event:

chr ASCII code of character, or zero if the key is a
virtual key code (for example, the Find key).
keyCode Virtual key code; for example, the Find key.
modifiers One of the following;:
shiftKeyMask True if Graffiti is in case-shift
mode.
capsLockMask True if Graffiti is in cap-shift mode.
numLockMask True if Graffiti is in numeric-shift
mode.

commandKeyMask True if the Graffiti glyph was the
menu command glyph.

optionKeyMask Not implemented. Reserved.
controlKeyMask Not implemented. Reserved.

autoRepeatKeyMask True if generated due to auto-
repeat.

doubleTapKeyMask Not implemented. Reserved.

poweredOnKeyMask True if the key press caused the
system to be powered on.

Developing Palm OS Applications, Part| 99

Palm OS Events
IstEnterEvent

IstEnterEvent

The List routine Lst Handl eEvent sends this event when it receives
a penDownEvent within the bounds of a list object.

The following data is passed with the event:

listID Developer-defined ID of the list.
pList Pointer to a list structure (Li st Type).

selection Item number (zero-based) of the new selection.

IstExitEvent

The List routine Lst Handl eEvent sends this event. When

Lst Handl eEvent receives a | st Ent er Event, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
| st Sel ect Event is added to the event queue; if not, a

| st Exi t Event is added to the event queue.

The following data is passed with the event:

listID Developer-defined ID of the list.

pList Pointer to a list structure (Li st Type).

100 Developing Palm OS Applications, Part |

Palm OS Events
IstSelectEvent

IstSelectEvent

The List routine Lst Handl eEvent sends this event. When

Lst Handl eEvent receives a | st Ent er Event, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
| st Sel ect Event is added to the event queue; if not, a

| st Exi t Event is added to the event queue.

The following data is passed with the event:

listID Developer-defined ID of the list.
pList Pointer to a list structure (Li st Type).
selection Item number (zero-based) of the list selection.

menuEkvent

The menu routine MenuHand| eEvent sends this event:

e when the user selects an item from a pull-down menu or

* when the user writes the menu the Graffiti Command short-
cut followed by an available command, for example, Com-
mand-C for copy

The following data is passed with the event:

itemID Item ID of the selected menu command, which is the
Menu ID assigned to the MENU resource in ResEdit,
plus the position of the command in the pull-down
menu. For example, for an Edit menu with the
Menu ID 300 that contains the commands Undo,
Cut, Copy, and Paste, the Item ID of the Copy com-
mand is 302.

Developing Palm OS Applications, Part| 101

Palm OS Events
nilEvent

nilEvent

The event manager sends this event when there are no events in the
event queue. This happens only if the routine Evt Get Event is
passed a time out value (a value other then evt Wi t For ever, -1). If
Evt Get Event is unable to return an event in the specified time, it
returns a ni | Event. Ani | Event is useful for animation, polling,
and similar situations.

penDownEvent

The event manager sends this event when the pen first touches the
digitizer.

The following data is passed with the event:

penDown Always true.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

penMoveEvent

The event manager sends this event when the pen is moved on the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penMyveEvent is
generated.

The following data is passed with the event:

penDown Always true.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

102 Developing Palm OS Applications, Part |

Palm OS Events
penUpEvent

penUpEvent

The event manager sends this event when the pen is lifted from the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penUpEvent is generated.

The following data is passed with the event:

penDown Always false.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

start Display-relative start point of the stroke.

end Display-relative end point of the stroke.

popSelectEvent

The form routine Fr nHandl eEvent sends this event when the user
selects an item in a popup list.

The following data is passed with the event:

controlID Developer-defined ID of the resource.

pControl Pointer to the control structure (Cont r ol Type)
of the popup trigger object.

listID Developer-defined ID of the popup list object.

listP Pointer to the list structure (Li st Type) of the
popup list object.

selection Item number (zero-based) of the new list
selection.

priorSelection Item number (zero-based) of the prior list
selection.

Developing Palm OS Applications, Part| 103

Palm OS Events
tblEnterEvent

tblEnterEvent

The table routine Thl Handl eEvent sends this event when it re-
ceives a penDownEvent within the bounds of an active item in a
table object.

The following data is passed with the event:

tableID Developer-defined ID of the table.
pTable Pointer to a table structure (Tabl eType).
row Row of the item.

column Column of the item.

tblEXItEvent

The table routine Tbl Handl eEvent sends this event. When

Tbl Handl eEvent receives a t bl Ent er Event, it tracks the pen
until it is lifted from the display. If the pen is lifted within the
bounds of the same item it went down in, a t bl Sel ect Event is
added to the event queue; if not, a t bl Exi t Event is added to the
event queue.

The following data is passed with the event:

TablelD Developer-defined ID of the table.

pTable Pointer to a table structure (Tabl eType).
row Row of the item.
column Column of the item.

104 Developing Palm OS Applications, Part |

Palm OS Events
tblSelectEvent

tblSelectEvent

The table routine Tbl Handl eEvent sends this event. When

Tbl Handl eEvent receives a t bl Ent er Event, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of the same item it went down in, at bl Sel ect Event is
added to the event queue; if not, at bl Exi t Event is added to the
event queue.

The following data is passed with the event:

TableID Developer-defined ID of the table.
pTable Pointer to a table structure (Tabl eType).
row Row of the item.

column Column of the item.

Developing Palm OS Applications, Part| 105

Palm OS Events
winEnterEvent

winEnterEvent

The event manager sends this event when a window becomes the
active window. This can happen in two ways: a call to

W nSet Act i veW ndowis issued (Fr nSet Act i veFor mcalls this
routine), or the user taps within the bounds of a window that is vis-
ible, but not active.

All forms are windows but not all windows are forms, for example
the menu bar is a window but not a form.

The following data is passed with the event:

enterWindow Pointer to the window we are entering. If the
window is a form, this is a pointer to a
For nType structure; if not, it is a pointer to a
W ndowTy pe structure.

exitWindow Pointer to the window we are exiting, if there is
currently an active window, or zero if there is no
active window. If the window is a form, this is a
pointer to a For nType structure; if not, it is a
pointer to a W ndowType structure.

WIinExitEvent

This event is sent by the event manager when a window is deacti-
vated. A window is deactivated when another window becomes the
active window (see Wi nEnt er Event).

The following data is passed with the event:

enterWindow Pointer to the window we are entering. If the
window is a form then this is a pointer to a
For nType structure; if not, it is a pointer to a
W ndowTy pe structure.

exitWindow Pointer to the window we are exiting. If the win-
dow is a form then this is a pointer to a
For nType structure; if not, it is a pointer to a
W ndowTy pe structure.

106 Developing Palm OS Applications, Part |

5

CD Palm OS Ul Objects

A Palm OS Ul object is a C structure that is linked with one or more
items on the screen. By changing field values of the C structure, an
application can manipulate its user interface. Note that Palm UI ob-
jects are just structures, not the more elaborate objects found in
some systems. This is useful because a C structure is more compact
than other objects could be.

This chapter helps you develop your application’s user interface by
providing information about each object’s structure, associated
events, associated Ul resource files, and all API calls available for
manipulating the structure. It discusses these topics:

® Control Objects

¢ Field Objects

* Form Objects

* List Object

* Menu Objects

¢ Date and Time UI Objects
o Insertion Point Object

¢ Table Objects
* Window Obijects

Control Objects

This section provides the following information about control
objects:

* Control Object Overview

* Control Object Events

® Structure of a Control

* Associated Resources

o Control Functions

Developing Palm OS Applications, Part | 107

Palm OS Ul Objects
Control Objects

Control Object Overview

Control objects are objects you can add to your forms to allow for
user interaction. There are six types of control objects:

* Buttons display a text label in a box. The default style for a
button is a text string centered within a rounded rectangle.
Touching a button with the pen highlights the button until
the pen is released or dragged outside the bounds of the but-
ton. Buttons have rounded corners unless a rectangular
frame is specified. A button without a frame inverts a
rounded rectangular region when pressed.

e A popup trigger displays a text label followed by a graphic
element (always on the right) that signifies the control ini-
tiates a popup list. If the text label changes, the width of the
control expands or contracts to the width of the new label
plus the graphic element.

* A selector trigger displays a text label surrounded by a gray
rectangular frame. If the text label changes, the width of the
control expands or contracts to the width of the new label.

* A repeat control looks like a button. In contrast to buttons,
however, users can repeatedly select repeat controls if they
don’t lift the pen when the control has been selected. The ob-
ject is selected repeatedly until the pen is lifted.

* Push buttons look like buttons but the frame always has
square corners. Touching a push button with the pen inverts
the bounds. If the pen is released within the bounds, the but-
ton remains inverted.

e Check boxes display a setting, either on (checked) or off (un-
checked). Touching a check box with the pen toggles the set-
ting. The check box appears as a square, which contains a
check mark if the check box’s setting is on. A check box can
have a text label attached to it; selecting the label also toggles
the check box.

Push buttons and check boxes can be arranged into exclusive
groups; one and only one control in a group can be on at a time.

108 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Control Objects

Control Object Events

Control objects generate four types of events: ct | Ent er Event,
ctl Exi t Event, ct| Repeat Event, and ct| Sel ect Event . All
these events are generated by the control event handler

(G 1 Handl eEvent).

When &t | Handl eEvent receives a penDownEvent with the pen
position in the bounds of the control object, it adds a
ct| Ent er Event to the event queue.

When Ct | Handl eEvent receives a ct | Ent er Event, it inverts the
control and tracks the pen until the pen comes up or until the pen is
dragged outside the bounds of the control.

e If the pen comes up in the bounds of the control, a
ct| Sel ect Event is added to the event queue.

e If the pen is dragged outside the bounds of the control, the

control reverts to its original visual state and a
ct| Exi t Event is added to the event queue.

When Ct | Handl eEvent receives a ct | Ent er Event, for a repeat
control, it sends a ct | Repeat Event . When a repeat control receives
a ct| Repeat Event, it tracks the pen for a period of time and then
sends another ct | Repeat Event if the pen is still within the bounds
of the control.

When Ct | Handl eEvent receives a ct | Exi t Event, it tracks the
pen until the pen comes up or is dragged inside the bounds of the
control. If the pen is dragged into the control, a ct | Ent er Event is
added to the event queue. If the pen is released outside the control,
no event is posted.

All events posted by the control handler contain the ID of the con-
trol and a pointer to the control data structure.

Developing Palm OS Applications, Part| 109

Palm OS Ul Objects

Control Objects

Structure of a Control

t ypedef struct {

wor d id;
Char Pt r t ext;
Rect angl eType bounds;

Control AttrType attr;
Control Styl eType style;
Font I D font;
byt e group;
} Control Type;

t ypedef Control Type* Control Ptr;

t ypedef struct {
Byt e usabl e
Byt e enabl ed
Byte visible
Byte on

Byte | eft Anchor
Byte frane :
} Control AttrType;

WRrRPrRPRPPR

enum control Styles {buttonCl|, pushButtonCl,
checkboxCi |, popupTriggerCl,
selectorTriggerdt, repeatingButtonCl};
t ypedef enum control Styl es Control Styl eType;

enum but t onFranes {noButt onFrane,
st andar dBut t onFr anme, bol dButt onFr ane,
rect angl eBut t onFr ane};

t ypedef enum buttonFranes ButtonFraneType;

110 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Control Objects

Fields of a ControlType Structure

The i d field holds the symbolic ID of the control that was specified
by the application developer. By convention, these should match the
Macintosh resource IDs, but this is not mandatory.

The bounds field contains the bounds of the control, in window-
relative coordinates. The control’s text label is clipped to the con-
trol’s bounds. The control’s frame is drawn around (outside) the
bounds of the control.

The t ext field is a pointer to the control’s label; if it's NULL the
control has no label. Only buttons, push buttons, and text boxes
have text labels.

The at t r field contains the control’s attributes. The at t r field is a
bit field that contains the following members: usabl e, enabl ed,
vi si bl e, on, | eft Anchor, and f r ane.

* A control that does not have the usabl e attribute set is not
considered to be part of the interface of the current applica-
tion, and it does not appear on screen.

* A control that does not have the enabl e attribute set appears
“grayed out,” and does not respond to the pen. This is
strongly discouraged because it’s a poor use of screen real
estate.

e The vi si bl e attribute is set and cleared internally when the
control is drawn and erased.

e Thel ef t Anchor attribute is used by controls that expand
and shrink their width when their label is changed. If the at-
tribute is set, the left bound of the control is fixed.

* The f r ane field specifies the type of frame drawn around the
button controls. Only button controls use this attribute; for all
other types of controls the Cont r ol Styl e determines the
frame.

The st yl e field holds the control’s style: button, push button, check
box, popup trigger, popup selector, or repeating button. (See the
Control Styl eType enum listed under Structure of a Control.)

The f ont field specifies the font to use to draw the control’s label.

The gr oup field contains the group ID of a push button or a check
box that is part of an exclusive group. The control routines do not
automatically turn one control off when another is hit. It is up to the

Developing Palm OS Applications, Part| 111

Palm OS Ul Objects
Control Objects

application or a higher-level object, like a dialog box, to manage
this.

Associated Resources
Different resources are associated with different controls as follows:
¢ Button—Button Resource (tBTN)

Popup trigger— Popup Tri gger Resour ce (tPUT)
Selector trigger—Selector Trigger Resource (tSLT)

* Repeat control—Repeating Button Resource (tREP)
Push button—Push Button Resource (tPBN)
Check box—Check Box Resource (tCBX)

Control Functions

e G| DrawControl
e Gl EraseControl
¢ Ol GetlLabel

¢ Ol GetVal ue

¢ C | Handl eEvent
¢« Ol H deControl
e CGlH tControl
e C | Enabl ed

¢ O Set Enabl ed
¢ Ol Set Label

¢« Ol SetUsabl e
¢ Ol Set Val ue

e C | ShowCont r ol

112 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Field Objects

Field Objects

This section provides the following information about field objects:

¢ Field Object Overview
* Field Object Events
o Structure of a Field

® Associated Resources

* Field Functions

Field Object Overview
A field object displays one or more lines of editable text, supporting
these features:

 Proportional fonts (only one font per field)

* Drag-selection

¢ Scrolling for multiline fields

¢ Cut, copy, and paste

* Left and right text justification

¢ Tab stops

e Editable/noneditable attribute

e Expandable field height (the height of the field expands as
more text is entered)

e Underlined text (each line of the field is underlined.)

e Maximum character limit (the field stops accepting charac-
ters when the maximum is reached)

e Special keys (Graffiti strokes) to support cut, copy, and paste

e Insertion point positioning with pen (the insertion point is
positioned by touching the pen between characters)

The field object does not support overstrike input mode; scroll bars;
horizontal scrolling for single line fields; word selection; character
filters (for example, only numeric characters accepted); numeric for-
matting; or special keys for page up, page down, left word, right
word, home, end, left margin, right margin, and backspace.

Developing Palm OS Applications, Part| 113

Palm OS Ul Objects

Field Objects

Field Object Events

Events in field objects are handled by Fl dHandl eEvent .
Fl dHandl eEvent handles events of type penDownEvent ,
f1 dEnt er Event, and keyDownEvent .

When Fl dHandl eEvent receives a penDownEvent with the pen
position within the bounds of the field, itadds a f | dEnt er Event to
the event queue.

When FI dHandl eEvent receives a f | dEnt er Event, it sets the in-
sertion point position to the position of the pen and tracks the pen
until it is released. Drag-selection and drag-scrolling are supported.

A keyDownEvent with the following special characters is handled
by FI dHandl eEvent :

* up arrow—Move insertion point up a line.

e down arrow—Move insertion point down a line; the inser-
tion point doesn’t move beyond the last line that contains
text.

* left arrow—Move insertion point one character position to
the left; when the left margin is reached move to the end of
the previous line.

* right arrow—Move insertion point one character position to
the right; when the right margin is reached move to the start
of the next line.

e cut key—Cut the current selection to the text clipboard.
* copy key—Copy the current selection to the text clipboard.

* paste key—Insert clipboard text into the field at insertion
point.

114 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Field Objects

Structure of a Field

t ypedef struct {

Wor d i d;

Rect angl eType rect;

Fi el dAttr Type attr;
CharPtr t ext;

Voi dHand t ext Handl e;
Li nel nfoPtr i nes;

Wor d t ext Len;

Wor d t ext Bl ockSi ze;
Wor d maxChar s;
Wor d sel Fi r st Pos;
Wor d sel Last Pos;
Wor d i nsPt XPos;
Wor d i nsPt YPos;
Font| D fontl D

} FieldType;

t ypedef Fi el dType* Fiel dPtr;
t ypedef struct {
Wrd usabl e 1
Word visible 1
Wrd editable 1
Wrd singl eLi ne 1
Wrd hasFocus 1
Wrd dynam cSize :1;
1
1
2
2

Word i nsPtVisible
Wrd dirty

Word underl i ned
Word justification:
} FieldAttrType;

t ypedef struct {
Wrd start;
Wrd | engt h;
} LinelnfoType;

Developing Palm OS Applications, Part| 115

Palm OS Ul Objects
Field Objects

t ypedef Linel nfoType* LinelnfoPtr;

Fields of a Field Structure

The i d field holds an ID value specified by the application devel-
oper. This ID value is included as part of the event data of
fl dEnt er Event .

The r ect field contains the position and size of the field object.

Theat tr field contains the field object’s attributes. The at t r field is
a bits field that contains the following members: usabl e, vi si bl e,
edi t abl e, si ngl eLi ne, hasFocus, dynam cSi ze,

insPtVisible dirty underlined, andjustification.

* A field object that does not have the usabl e attribute set is
not considered part of the current interface of the application,
and it doesn’t appear on screen.

e The vi si bl e attribute is set or cleared internally when the
field object is drawn or erased.

e A field object that does not have its edi t abl e attribute set
does not accept Graffiti input or edit commands and the in-
sertion point cannot be positioned with the pen.

e If the si ngl eLi ne attribute is set, the height of the si ngl e-
Li ne field doesn’t expand to accommodate more text.

e The hasFocus attribute is set internally when the field has
the current focus. The blinking insertion point appears in the
field that has the current focus.

e If the dynam cSi ze attribute is set, the height of the field ex-
pands as characters are entered into the field.

e If the i nsPt Vi si bl e attribute is set, the insertion point is
scrolled into view. This attribute is set and cleared internally.

e If afield hasits di r t y attribute set, the user has modified the
field.

e [f a field has its under | i ned attribute set each line of the
field, including blank lines, is underlined.

e Thej usti ficati on attribute specifies the text alignment
(left or right justification only; center justification is not sup-
ported).

116 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Field Objects

The t ext field holds a pointer to the null-terminated string that is
displayed by the field object.

The t ext Handl e field contains the handle to the stored text.

The | i nes field holds a pointer to an array of Li nel nf oType struc-
tures. There is one entry in this array for each visible line of the text.
The Li nel nf oType structure contains the character position, in the
field’s text string, of the first character displayed by a line and the
number of characters displayed.

The t ext Len field holds the current number of characters in the
string displayed by the field object, the null-terminator is excluded.

The t ext Bl ockSi ze field holds the allocated size of the memory
block that holds the field object’s text string.

The maxChar s field specifies the maximum number of characters
the field object accepts.

The sel Fi r st Pos field is the starting character position of the cur-
rent selection.

The sel Last Pos field is the ending character position of the cur-
rent selection. When sel Fi r st Pos equals sel Last Pos, there is
no selection.

The i nsPt XPos contains the column position of the insertion point.

The i nsPt YPos contains the display line where the insertion point
is positioned.

The first display line is zero.

Associated Resources

The Field Resource (tFLD) represents a field on screen.

Developing Palm OS Applications, Part| 117

Palm OS Ul Objects
Field Objects

Field Functions

Fl dCal cFi el dHei ght
Fl dConpact Text

FI dCopy

Fl dCut

Fl dDel et e

FldDirty

Fl dDr awFi el d

Fl dEr aseFi el d

Fl dFr eeMenor y

Fl dGet Attri but es

FI dGet Bounds

Fl dGet Font

Fl dGet | nsPt Posi tion
Fl dGet MaxChar s

Fl dGet Scrol | Posi tion
Fl dGet Sel ecti on

Fl dGet Text Al | ocat edSi ze
Fl dGet Text Handl e

Fl dGet Text Hei ght

Fl dGet Text Lengt h

Fl dGet Text Pt r

Fl dGet Vi si bl eLi nes
FIl d& abFocus

Fl dHandl eEvent

Fl dl nsert

Fl dvakeFul | yVi si bl e
Fl dPast e

Fl dRecal cul at eFi el d
FI dRel easeFocus

Fl dScrol | abl e
FldScrol |l Field

Fl dSendChangeNot i fi cati on

118 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Form Objects

FI dSendHei ght ChangeNot i fi cati on
Fl dSet Attri but es

FI dSet Bounds
FldSetDirty

Fl dSet Font

Fl dSet Font

Fl dSet | nsPt Posi ti on

Fl dSet MaxChar s

Fl dSet Scrol | Posi tion

Fl dSet Sel ecti on

Fl dSet Text

Fl dSet Text Al | ocat edSi ze
FI dSet Text Handl e

Fl dSet Text Pt r

Fl dSet Usabl e

Fl dundo

Fl dWor dW ap

Form Objects

This section provides the following information about form objects:

* Form Object Overview

o Structure of a Form

* Associated Resources

¢ Form Functions

Form Object Overview

A form object is used as a container for all other Ul objects. A form is
a window and everything contained within it. Events in form ob-
jects are handled by the Fr nHandl eEvent routine.

When FI dHandl eEvent receives a penDownEvent with the pen
position within the bounds of the form object, it checks the list of ob-
jects contained by the form to determine if the pen is within the
bounds of one of the objects. If it is, the appropriate handler is called

Developing Palm OS Applications, Part| 119

Palm OS Ul Objects

Form Objects

to handle the event, for example, if the pen is in a control,
Q| Handl eEvent is called.

When Fr nHandl eEvent receives a keyDownEvent, it passes the
event to the handler for the object that has the focus. If no object has
the focus, the event is ignored.

When FI dHandl eEvent receives a ct | Ent er Event, it checks if
the control is in an exclusive control group. If it is, it deselects the
currently selected control of the group and passes the event to a
pointer to the object the event occured in to &t | Handl eEvent . The
object pointer is obtained from the event data.

When FI dHandl eEvent receives a ct | Repeat Event, it passes the
event and a pointer to the object the event occured in to the appro-
priate handler. The object pointer is obtained from the event data.

When Fl dHandl eEvent receives a ct | Sel ect Event, it checks if
the control is a popupTriggerCtl. If it is, the list associate with the
popup trigger is displayed until the user makes a selection or
touches the pen outside the bounds of the list. If a selection is made,
apopSel ect Event is added to the event queue.

When FlI dHandl eEvent receives a popSel ect Event, it sets the
label of the popup trigger to the current selection of the popup list.

When Fl dHandl eEvent receives a| st Ent er Event or

t bl Ent er Event , it passes the event and a pointer to the object the
event occurred in to the appropriate handler. The object pointer is
obtained from the event data.

When Fl dHandl eEvent receives a f | dEnt er Event or

f | dHei ght ChangedEvent, it checks if a field object or a table ob-
ject has the focus and passes the event to the appropriate handler.
The table object is also a container object, which may contain a field
object. If Tbl Handl eEvent receives a field event, it passes the event
to the field object contained within it.

When Fl dHandl eEvent receives a f r nd oseEvent, it erases the
form and releases any memory allocated for it.

When Fl dHandl eEvent receives a f r nlpdat eEvent, it redraws
the form.

When FI dHandl eEvent receives a nenuEvent, it checks if the
menu command is one of the system edit menu commands. The sys-

120 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Form Objects

tem provides a standard edit menu which contains the commands
Undo, Cut, Copy, Paste, Select All, and Keyboard.
FI dHandl eEvent responds to these commands.

Structure of a Form

t ypedef struct {

W ndowType wi ndow,

Word form d;
FormAttr Type attr;

W nHandl e bi t sBehi ndFor m
FrmEvent Handl erPtr handl er;

Word f ocus;

Wrd def aul t But t on;
Word hel pRscl d;
Wrd nmenuRscl d;
Word nuntbj ect s;
For noj Li st Type* obj ect s;

} FornType;

t ypedef Fornmlype * FornPtr;

t ypedef struct {
Word usabl e
Wrd enabl ed
Wrd visible
Wrd dirty

Wbrd saveBehi nd
Word graffitiShift :
Wrd reserved
} FormAttr Type;

PRPRRPRPPPP

t ypedef struct {

For nChj ect Ki nd obj ect Type;
For nChj ect Type obj ect;

} FormObj Li st Type;

Developing Palm OS Applications, Part| 121

Palm OS Ul Objects
Form Objects

t ypedef union {

void * ptr;

Fi el dType* field;
Contr ol Type* control;
Li st Type* list;
Tabl eType* t abl e;
For nBi t mapType* bi t map;
For nLabel Type * | abel ;
FornTi t | eType* title;
For nPopupType* popup;
Fornaffiti StateType* grfState;
For nGadget Type* gadget ;

} For n(bj ect Type;

enum f or nChj ect s {
frnfFi el dOoj,
frmCont rol Qoj
froLi st Qoj,
frmrabl eQoj
frnBi t mapQoj
frmLi neQoj ,
frnfFrameQoj ,
frmRect angl e(bj ,
frmLabel Qoj,
frnlitl eQoj,

fr mPopupQj ,
frmxaffiti StateQoj,
Fr nGadget Qoj };

t ypedef enum fornCbj ects For nhj ect Ki nd;
typedef struct {

Wrd usable :1; I/l Set if part of ui
} Fornthj Attr Type;

122 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Form Objects

t ypedef struct {
FormCbj Attr Type attr;
Poi nt Type pos;
Wrd rsclD;
} FornBi t mapType;

t ypedef struct {

For mCbj Attr Type attr;
Poi nt Type poi nt 1;
Poi nt Type poi nt 2;
} Fornli neType;

t ypedef struct {

Wrd id;
FornCoj Attr Type attr;

Rect angl eType rect;

Wrd frameType;
} For nFraneType;

typedef struct {
FornCoj Attr Type attr;
Rect angl eType rect;
} FornRect angl eType;

t ypedef struct {

Wrd id;

Poi nt Type pos;
FormCbj Attr Type attr;
Font| D fontl D
char * t ext;

} FornlLabel Type;

t ypedef struct {
Rect angl eType rect;
char * t ext;
} Forniitl eType;

Developing Palm OS Applications, Part| 123

Palm OS Ul Objects
Form Objects

t ypedef struct {

unsi gned short control I D
unsi gned short listlD;

} For nPopupType;

t ypedef struct{
Poi nt er Type pos;
}Frnaffiti StateType;

t ypedef struct{

Wrd id;
FormCbj Attr Type attr;
Rect angl eType rect;
Voi dPt r dat e;
} For nzadget Type;

Fields of Form Objects

The wi ndowfield is the structure of the window object that corre-
sponds to the form.

The f or M d field contains the ID number of the form specified by
the application developer. This ID value is part of the event data of
f r mOpenEvent . The ID should match the form’s Macintosh re-
source ID.

The at tr field contains form object’s attributes. The at t r field is a
bit field that contains the members: usabl e, enabl e, vi si bl e,
di rty, saveBehi nd, and r eser ved.

e Ifusabl e is set TRUE, the form is considered part of the user
interface.

e The enabl e attribute specifies whether or not the user can
interact with the form.

e If vi si bl e is set, the form is drawn.

e Thedirty attribute is set if the form has been modified in
any way. Modifications include the changing of a field or
check box (not currently supported).

¢ The saveBehi nd attribute is set if the bits behind the form
are to be saved when the form is drawn.

124 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Form Objects

The bi t sBehi ndFor m field is used to save all the bits behind the
form so the screen can be properly refreshed when the form is
closed.

The f ocus field contains the index of a field or table object within
the form that contains the focus. Any keyDownEvent is passed to
the object that has the focus.

The handl er field contains the routine called when the form needs
to handle an event, typically set by the application in the
Appl i cat i onHandl eEvent function.

The def aul t But t on field contains the index of the object defined
as the default button. This value is used by the routine
FrnDoDi al og

The hel pRscl d field contains the resource ID number of the help
resource. The help resource is of type tSTR.

The MenuRscl d field contains the ID number of a menu bar to use if
the form is a menu, or zero if the form is not a menu.

The nunmbj ect s field specifies the number of objects contained
within the form.

The obj ect s field contains a pointer to the array of objects con-
tained within the form.

Associated Resource

The Form Resource (tFRM) is used to represent forms on screen.

Form Functions
FrmAl ert

Fr nd oseAl | For s
Fr nCopyLabel
FrnCopyTitle

Fr nCust onAl ert

Fr nDel et eForm

Fr nDi spat chEvent
Fr mDoDi al og

Fr nDr awFor m

Developing Palm OS Applications, Part| 125

Palm OS Ul Objects
Form Objects

Fr nEr aseForm

Fr nGet Acti veForm

Fr nGet Acti veFornm D

Fr nGet Cont r ol G oupSel ecti on
Fr nGet Cont r ol Val ue

Fr nGet Fi r st For m

Fr nGet Focus

Fr net For nBounds

Fr nGet Form d

Fr nzet For nPt r

Fr mGet Gadget Dat a

Fr nGet Label

Fr mGet Nunber O (bj ect s
Fr mGet Obj ect Bounds
Frntet Gbjectld

Fr nGet Obj ect | ndex

Fr mGet Gbj ect Posi t on
FrmGet Obj ect Pt r

Fr mGet Qbj ect Type
FrnetTitle

Fr net User Mbdi fi edStat e
Fr nGet W ndowHand!| e

Fr (30t oFor m

Fr nHandl eEvent

FrnHel p

Fr nH de(bj ect

Frm nit Form

Fr nPopupFor m

Fr nRet ur nToFor m

Fr nSaveAl | For ns

Fr nBet Acti veForm

Fr nSet Cat egor yLabel

Fr nSet Cont r ol G oupSel ecti on

126 Developing Palm OS Applications, Part |

Palm OS Ul Objects
List Object

Fr nH de(hj ect

Frm nit Form

Fr nPopupFor m

Fr nRet ur nToFor m

Fr nSaveAl | For ns

Fr nSet Acti veForm

Fr nSet Cat egor yLabel

Fr nSet Cont r ol G oupSel ecti on
Fr nBSet Cont r ol Val ue

Fr nBet Event Handl er

Fr nBet Focus

Fr nSet Gadget Dat a

Fr nSet Not User Modi fi ed
Fr nSet Obj ect Posi t on
FrnbetTitle

Fr nShowtbj ect

Fr miJpdat eScrol l ers

Fr mJpdat eFor m

FrnVi sibl e

List Object

This section provides information about list objects by discussing
these topics:

o List Object Overview
¢ List Object Events
® Structure of a List

* Associated Resources

e List Functions

Developing Palm OS Applications, Part| 127

Palm OS Ul Objects

List Object

List Object Overview

The list object appears as a vertical list of choices in a box. The cur-
rent selection of the list is inverted. If there are more choices than
can be displayed, the system draws small arrows (scroll indicators)
in the right margin next to the first and last visible choice.

When the pen comes down and up on a scroll indicator, the list is
scrolled. When the user scrolls down, the last visible item becomes
the first visible item, if there are enough items to fill the list. If not,
the list is scrolled so that the last item of the list appears at the bot-
tom of the list. The reverse is true for scrolling up. Scrolling does not
change the current selection.

Bringing the pen down on a list item unhighlights the current selec-
tion and highlights the item under the pen. Dragging the pen
through the list highlights the item under the pen. Dragging the pen
above or below the list causes the list to scroll if it contains more
choices than are visible.

When the pen is released over an item, that item becomes the cur-
rent selection. When the pen is dragged outside the list, the item
that was highlighted before the penDownEvent is highlighted again
if it’s visible. If it’s not, no item is highlighted.

List Object Events

The list object generates two types of event structures:
| st Ent er Event and | st Sel ect Event . Both events are generated
by the list event-handler function Lst Handl eEvent .

When Lst Handl eEvent receives a penDownEvent, it adds a
| st Ent er Event to the event queue if the pen position is within the
bounds of the list.

When Lst Handl eEvent receives a | st Ent er Event, it tracks the
pen until it’s released. If the pen is released on a list choice, a new
selection is made (the data structure is modified) and a

| st Sel ect Event is added to the event queue. If the pen is released
outside the list, the selection is unchanged and no event is posted.

Al st Ent er Event contains the following data:

e list ID
* a pointer to the list object

128 Developing Palm OS Applications, Part |

Palm OS Ul Objects
List Object

e the item the pen is on

Al st Sel ect Event contains the following data:
e list ID
* a pointer to the list object
e the item selected

Structure of a List

t ypedef struct {

Wrd id;

Rect angl eType bounds;

Li stAttrType attr;

Char Ptr* i tensText;
Wrd num t ens;
Word currentltem
Wrd topltem
Font I D font;

W nHandl e popupW n;

Li st DrawbDat aFuncPtr draw t enCal | back;
} ListType;

t ypedef struct {
unsi gned usabl e 1
unsi gned enabl ed 1
unsigned visible :1;
unsi gned poppedUp :1
unsi gned reserved :4
} ListAttrType;

List Object Fields

The i d field holds an ID value, specified by the application devel-
oper. This ID value is part of the event data of | st Ent er Event and
| st Sel ect Event.

The bounds field contains the bounds of the list, relative to the
window.

Developing Palm OS Applications, Part| 129

Palm OS Ul Objects
List Object

The at t r field contains the list’s attributes. The at t r field is a bit
field that contains the following members: usabl e, enabl e,
Vi si bl e, and poppedUp:

¢ A list that does not have the usabl e attribute set is not con-

sidered part of the current interface of the application, and it
doesn’t appear on screen.

¢ The enabl e attribute is set if users can interact with the list.

e Thevi si bl e attribute is set or cleared internally when the
list is drawn or erased.

e The poppedUp attribute is set if the choices are displayed in a
popup window. This attribute is set and cleared internally.

Thei t emsText field holds a pointer to an array of pointers to the
text of the choices.

The f ont field holds the ID of the font used to draw all list text
strings.

The popupW n is the handle of the window created when a list is
displayed if the poppedUp attribute is set.

The dr awl t ensCal | back is the function used to draw an item in
the list. If null, the default drawing routine is used instead.
voi d Li st Drawbat aFuncType

(Unt item\Num

Rect angl ePtr bounds,

CharPtr *itensText)

The num t ens field contains the number of choices in the list.

The cur r ent | t emfield holds the currently selected list choice (0 =
first choice).

The t opl t emfield holds the first choice displayed in the list.

Associated Resources

The resources tLST (List Resource), tPUL (Popup List Resource),
and tPUT (Popup Trigger Resource) are used together to represent
an active list.

130 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Menu Objects

List Functions

e | stDrawli st

Lst Er aselLi st

Lst Get NunberOf I t ens
Lst Get Sel ecti on

Lst Get Sel ecti onText
Lst Handl eEvent

Lst Makel t enVi si bl e
Lst PopuplLi st

Lst Set Dr awFunct i on
Lst Set Hei ght

Lst Set Li st Choi ces
Lst Set Posi tion

Lst Set Sel ecti on

Lst Set Topl tem

Lst Set Posi tion

Menu Objects

This section provides information about menu objects by discussing
these topics:

* Menu Object Overview

¢ Menu Events

® Associated Resources

¢ Menu Functions

Menu Object Overview

A menu bar is displayed when the user taps a menu icon. The menu
bar, a horizontally oriented list of menu titles, appears at the top of

the screen in its own window, above all the application’s windows.

Pressing a menu title highlights the title and “pulls down” the menu
below the title.

Developing Palm OS Applications, Part| 131

Palm OS Ul Objects
Menu Objects

When the user drags the pen through the menu, the command
under the pen is highlighted.

e If the pen is released over a menu item, that item is selected,
and the menu bar and menu disappear.

e If the pen is released outside both the menu bar and the
menu, both disappear and no selection is made.

e If the pen is released in a menu title, the menu bar and the
menu remain displayed until a selection is made from the
menu.

e If the pen is tapped outside the menu and the menu bar, both
are dismissed.

A menu has the following features:

¢ [tem separators; lines to group menu items.

» Keyboard shortcuts; the shortcut labels are right justified in
menu items.

¢ A menu remembers its last selection, the next time a menu is
displayed the prior selection appears highlighted.

¢ The bits behind the menu bar and the menus are saved and
restored by the menu routines.

e When the menu is visible, the insertion point is turned off.

e Selecting a separator with the pen dismisses the menu, but
no event is posted.

Menu Events

Menu events are handled by the routine MenuHandl eEvent , which
handles events of type penDownEvent and keyDownEvent .

When a menu item is chosen, the menu event handler adds a
menuEvent that identifies the chosen item to the event queue.

132 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Menu Objects

Structure of a Menu

t ypedef struct {

W nHandl e bar W n;

W nHandl e bi t sBehi nd,;

W nHandl e savedActi veW n;
W nHandl e bi t sBehi ndSt at us;
MenuBar Attr Type attr;

SWor d cur Menu;

SWor d curltem

| ong comandTi ck;

SWr d numvenus;

MenuPul | DownPt r nenus;
} MenuBar Type;

t ypedef MenuBar Type * MenuBarPtr;

t ypedef struct {

Word visible -
Wrd commandPendi ng : 1;
Word i nsPt Enabl ed 01

} MenuBar Attr Type;

t ypedef struct {

W nHandl e menuWw n;
Rect angl eType bounds;

W nHandl e bi t sBehi nd;
Rect angl eType titl eBounds;
Char Ptr title;

Wrd num t ens;
Menul t enfType *itens;

} MenuPul | DownType;

t ypedef MenuPul | DownType * MenuPul | DownPtr ;

Developing Palm OS Applications, Part| 133

Palm OS Ul Objects

Menu Objects

t ypedef struct {
Word id;

char comand;
CharPtr itenttr;
} Menul t enType;

Menu Object Fields

The bar W n field is the handle for the window that contains the
menu bar.

The bi t sBehi nd field holds a handle of a window that contains the
region obscured by the menu bar.

The savedAct i veW n field stores the currently active window be-
hind the menu.

The bi t sBehi ndSt at us field stores the bits behind the status mes-
sage so that when the message display terminates, the bits can be re-
stored.

The at t r field contains the menu bar’s attributes. The at t r field is
a bit field that contains the following members: vi si bl e,
commandPendi ng, and i nsPt Enabl ed.

e If vi si bl e is set, the menu bar is drawn.
e commandPendi ng is set if the next key is a command.

* i nsPt Enabl e is set if the insertion point was on when the
menu was drawn.

The cur Menu field holds the menu number of the currently visible
menu; the menus are numbered sequentially, starting with zero.
This value is preserved when the menu bar is dismissed; the next
time the menu is displayed, the previously visible pull-down menu
can also be redisplayed. A value of -1 indicates that there is no cur-
rent pull-down menu.

The cur | t emfield holds the item number of the currently high-
lighted menu item. The items in each menu are numbered sequen-
tially, starting with zero.

The comandTi ck field is used to store the tick count at which the
status message should be erased.

134 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Menu Objects

The numMvenus field holds the number of pull-down menus on the
menu bar.

The nenus field is a pointer to an array of MenuPul | DownType
structures. The MenuPul | DownType structure defines a pull-down
menu.

Menu Pull-Down Fields

The menuW n field is the handle for the window that contains the
menu.

The bounds field holds the position and size (in pixels) of the pull-
down menu.

The bi t sBehi nd field holds a handle of a window that contains the
region obscured by the menu.

Theti t| e field holds a pointer to the menu title (null-terminated).

The num t ens field holds the number of items in a menu (separa-
tors count as items).

The i t ens field is a pointer to an array of Menul t enTType struc-
tures. A Menul t enType structure defines a menu item.
Menu Item Fields

The i d field holds an ID value specified by the application devel-
oper. This ID value is included as part of the event data of a
menukvent .

The command field holds the shortcut key.

Theitenstr field holds a pointer to the text display for a menu
item. The shortcut key description is included in this string. The
item label and the shortcut key description are delimited with a tab
character.

Associated Resources

The resources MBAR (menu bar) and MENU (menu) are used
jointly to represent a menu object on screen.

Developing Palm OS Applications, Part| 135

Palm OS Ul Objects
Date and Time Ul Objects

Menu Functions

¢ MenuD spose
MenuDr awienu
MenuEr aseSt at us
MenuCet Act i veMenu
MenuHandl eEvent
Menul ni t

MenuSet Act i veMenu

Date and Time Ul Objects

The Palm OS UI provides two system resources for accepting date
and time input values. These resources are dialog boxes that contain
UI gadgetry for entering dates and times. The Palm OS UI also pro-
vides routines to manage the interaction with these resources.

Date and Time Functions

Currently defined date and time functions Sel ect Day and
Sel ect Ti ne

Insertion Point Object

The insertion point is a blinking indicator that shows where text is
inserted when users write Graffiti characters or paste clipboard text.

In general, an application does not need to be concerned with the in-
sertion point; the Palm OS Ul manages the insertion point.

Insertion Point Functions
¢ I nsPt Enabl e

| nsPt Enabl ed

| nsPt Get Hei ght

| nsPt Get Locat i on

| nsPt Set Hei ght

| nsPt Set Locat i on

136 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Table Objects

Table Objects

The table object is used to organize several types of UI objects. The
number of rows and the number of columns must be specified for
each table object. A Ul object can be placed inside a “square” of a ta-
ble. Tables often consist of rows or columns of the same object. For
example, a table might have one column of labels and another col-
umn of fields. Tables can only be scrolled vertically.

This section provides information about table objects by discussing
these topics:

o Table Events
o Structure of a Table

® Associated Resource

o Table Functions

Table Events

The table object generates the event t bl Sel ect Event . This event
contains:

e the table’s ID number

¢ the row of the table selected

¢ the column of the table that has been selected

When t bl Sel ect Event is sent to a table, the table generates an
event to handle any possible events within the item’s Ul object.

Structure of aTable

t ypedef struct {

Word id;

Rect angl eType bounds;

Tabl eAtt r Type attr;

Wor d numCol ums;
Word nunRows;

Wor d current Row,
Word current Col um;
Wr d t opRow;

Tabl eCol umAttr Type * columAttrs;

Developing Palm OS Applications, Part| 137

Palm OS Ul Objects
Table Objects

Tabl eRowAt t r Type * rowAttrs;
Tabl el tenPtr i tens;

Fi el dType currentFi el d;
} Tabl eType;

t ypedef Tabl eType * Tabl ePtr;

t ypedef struct {

Word vi si bl e: 1;
Word edi tabl e: 1;
Wrd edi ting: 1;
Wor d sel ect ed: 1;

} Tabl eAttr Type;

typedef struct {
Tabl el tentt yl eTypei t enilype;

FontI D fontl D [/font for draw ng text
Wrd i nt Val ue;
CharPtr ptr;

} Tabl el t enType;
typedef Tabl elteniType * TableltenPtr;

typedef struct {

Wor d wi dt h; /1 in pixels
Bool ean usabl e;
Wor d spaci ng;

Tabl eDr aw t emFuncPt r drawCal | back;

Tabl eLoadDat aFuncPt r | oadDat aCal | back;
Tabel SaveDat aFuncPt r SaveDat aCal | back;
} Tabl eCol umAttr Type;

t ypedef struct {

Word id;

Wrd hei ght ; /1 row height in pixels
Dwor d dat a;

Bool ean usabl e;

Bool ean sel ect abl e;

Bool ean invalid; // true if redraw needed

} Tabl eRowAt tr Type;

138 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Table Objects

Fields of aTable Structure
The i d field holds the ID value the application developer specified.
The bounds field contains the position and size of the table object.

The at t r field contains the table object’s attributes. The at t r field
is a bit field that contains the following members: vi si bl e,
edi t abl e, edi ti ng, and sel ect ed.

e If a table is set to vi si bl e, it is drawn on the screen.
e Atableis edit abl e if a user can modity it.

e If the table is in edit mode, edi t i ng is set on.

e If the current item is selected, sel ect ed is set on.

The nunCol umms field specifies the number of columns in the table
object.

The nunRows field specifies the number of rows in the table object.
The cur r ent Rowfield contains the row of the table set to current.

The cur r ent Col unn field contains the column of the table set to
current.

The t opRowfield contains the first row in the table object.

The col utMAt t r s field contains the column’s attributes, such as its
width, its usability, and how to draw itself.

The r owAt t r s field contains the row’s attributes, such as its ID,
height, and whether or not it is usable, selectable, or invalid.

Thei t ens field contains the item’s attributes, such as the item type,
font ID, an integer value, and a character pointer.

The cur rent Fi el d field is the field object that is currently being
edited.

Associated Resource

The Table Resource (tTBL) represents a table on screen.

Developing Palm OS Applications, Part| 139

Palm OS Ul Objects
Table Objects

Table Functions

¢ Tbl DrawTabl e

e Tbl Editing

e Tbl EraseTabl e

¢ Tbl Fi ndRowDat a

¢ Tbl Fi ndRow D

¢ Tbl Get Bounds

¢ Tbl Get Col utMmSpaci ng
¢ Tbl Get Col umW dt h

e Thl GetCQurrentField
e Tbl Get |t enBounds

e Tbl Getltem nt

¢ Tbl Get Last Usabl eRow
¢ Tbl Get Nunber & Rows
¢ Tbl Get RowDat a

¢ Tbl Get RowHei ght

e Tbl Get Row D

e Tbl Get Sel ecti on

¢ Tbl G- abFocus

¢ Tbl Handl eEvent

¢ Tbl I nsert Row

e Tbl Mar kRow nval i d

e Tbl MarkTabl el nval i d
¢ Tbl Redr awTabl e

¢ Tbl Rel easeFocus

¢ Tbl RenbveRow

¢ Tbl RowSel ect abl e

¢ Tbl RowlUsabl e

e Tbhl Selectltem

¢ Tbl Set Col umSpaci ng
¢ Tbl Set Col umUsabl e
¢ Tbl Set Col umW dt h

¢ Tbl Set Cust onDr awPr ocedur e

140 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Window Objects

e Tbl Setltenint

e Thl SetltenPtr

e Thl Setltenttyl e

¢ Tbl Set LoadDat aPr ocedur e
¢ Tbl Set RowDat a

¢ Tbl Set RowHei ght

¢ Tbl Set Row D

e Tbhl Row nvalid

¢ Tbl Set RowSel ect abl e

¢ Tbl Set RowUsabl e

¢ Tbl Set SaveDat aPr ocedur e
¢ Tbl Unhi ghl i ght Sel ecti on

Window Objects

A window defines a drawing region. This region may be on the dis-
play or a memory buffer (and offscreen window). Offscreen win-
dows are useful for saving and restoring regions of the display that
are obscured by other UI objects. All forms are windows, but not all
windows are forms.

The window object is the portion of the form object that determines
how the form’s window looks and behaves. A window object con-
tains viewing coordinates of the window and clipping bounds.

This section provides information about windows by discussing
these topics:

* Window Events

® Structure of a Window

* Window Functions

Window Events

When a window becomes active, a Wi nEnt er Event takes place.
When the window is deactivated, a wi nExi t Event occurs. The

W nEnt er Event usually follows right after awi nExi t Event ; an
old window is deactivated just before a new window is deactivated.

Developing Palm OS Applications, Part| 141

Palm OS Ul Objects

Window Objects

Structure of aWindow

t ypedef struct WnTypeStruct {

Wrd di spl ayW dt h;
Word di spl ayHei ght ;
Voi dPt r di spl ayAddr;

W ndowFl agsType w ndowFl ags;
Rect angl eType wi ndowBounds;
AbsRect Type cl i ppi ngBounds;
Poi nt Type viewrigin;
FraneBi t sType franeType;

G aphicStatePtr gst at e;

struct WnTypeStruct* next W ndow,
} W ndowType;

t ypedef W ndowType * WnPtr;

t ypedef WnPtr W nHandl e;

Fields of aWindow Structure

The di spl ayW dt h field contains the width, in pixels, of the dis-
play memory buffer (video RAM) for onscreen windows and the
width of a memory buffer for offscreen windows.

The di spl ayHei ght field contains the height, in pixels, of the de-
vice display.

The di spl ayAddr field is a pointer to the window’s display mem-
ory buffer.

The wi ndowF| ags field contains the window’s following attributes:
format, of f screen, nodal , f ocusabl e, enabl ed, vi si bl e,
di al og, and conpr essed.

142 Developing Palm OS Applications, Part |

Palm OS Ul Objects

Window Objects

The flags are defined as follows:

Attribute Setto 0 Setto 1l

format screen mode generic mode

off screen on screen off screen

modal modeless window modal window

focusable non-focusable focusable

enabled disabled enabled

visible invisible visible

dialog nondialog dialog

compressed uncompressed compressed

The wi ndowBounds field contains the bounds of the window.

The cl i ppi ngBounds field contains the bounds for clipping any
drawing within the window.

The vi ewCr i gi n field is the window’s origin point on the display.

The f r ameType field specifies the frame’s corner diameter, width of
shadow, and width of frame.

The gst at e field specifies the state of the graphic mode, pattern
mode, font, and underline mode.

The next W ndowfield is a pointer to the next window in a linked
list of windows.

Developing Palm OS Applications, Part| 143

Palm OS Ul Objects
Window Objects

Window Functions

* W nAddW ndow

« Wnd i pRectangl e

¢ WnCopyRect angl e

e WnG eat e fscreenW ndow
¢ WnCreat eW ndow

¢ WnDel et eW ndow

¢ WnD sabl eW ndow

¢ WnDi spl ayToW ndowPt

* WnDrawBi t map

¢ WnDrawChars

¢ WnDrawG aylLi ne

+ WnDrawG ayRect angl eFr ane

¢ WnDraw nvert edChars
¢ WnDrawLi ne

* WnDrawRect angl e

« WnDr awRect angl eFr ane
¢ W nDr awW ndowFr ane

¢ W nDr awW ndowFr ane

¢ W nEnabl eW ndow

¢ WnEraseChars

¢ WnEraselLine

¢ WnEraseRect angl eFr ane
¢ WnEraseW ndow

e WnFillLine

e WnFillRectangl e

¢ WnCet Acti veW ndow

e WnCGetdip

¢ WnCet D spl ayExt ent

e WnCet D spl ayW ndow
¢ W nGet Dr awW ndow

¢ WnGCet Fi rst Wndow

¢ WnCet FranesRect angl e

144 Developing Palm OS Applications, Part |

Palm OS Ul Objects
Window Objects

¢« WnCetPattern

* W nCet WndowBounds

o W nCet W ndowExt ent

¢ W nGet WndowFr aneRect

¢ W nGet W ndowPoi nt er

e WnlnitializeWndow

e Wnlnvert Chars

« WnlnvertlLine

* WnlnvertRectangl e

¢ Wnlnvert Rect angl eFrane

« W nhModal

¢ W nRenbveW ndow

e WnResetd ip

* WnRestoreBits

e WnSaveBits

¢ WnScrol |l Rectangl e
¢ WnSet Acti veW ndow
e WnSetdip

¢ W nSet Dr awW ndow

* WnSetPattern

¢ WnSet Underl i neMbde
¢ WnW ndowToDi spl ayPt

Developing Palm OS Applications, Part| 145

Palm OS Ul Objects
Window Objects

146 Developing Palm OS Applications, Part |

6

Using Palm OS Managers

In contrast to desktop computer operating systems, Palm OS con-
sists of only one library. This library, however, contains several man-
agers, which are groups of functions that work together to
implement certain functionality. As a rule, all functions that belong
to one manager use the same three-letter prefix and work together
to implement a certain aspect of functionality.

In this chapter, you learn about all Palm OS managers that aren’t di-
rectly responsible for memory management:

The System Manager is responsible for the basic operation of
the system. Discussion of the system manager includes infor-
mation on System Boot and Reset, Power Management, The
Microkernel, and Application Support.

The Feature Manager provides information about the system
software version, and what optional system features and
third party extensions are installed. An application can also
use the feature manager to keep track of its own data.

The String Manager is a set of string manipulation functions
available to applications. Use these routines instead of the
standard C routines.

The Time Manager provides real-time clock functions and
system tick functions.

The System Event Manager provides an interface to the low-
level pen and key event queues, translates taps on silk-
screened icons into key events, sends pen strokes in the Graf-
fiti area to the Graffiti recognizer, and puts the system into
low-power doze mode when there is no user activity.

The Pen Manager provides an interface to the digitizer hard-
ware and converts input from the digitizer into pen coordi-
nates. Most applications never need to call the pen manager
directly because any pen activity is automatically returned to
the application in the form of events.

The Key Manager provides an interface to the hardware but-
tons on the Palm OS device. It converts hardware button

Developing Palm OS Applications, Part | 147

Using Palm OS Managers

The System Manager

presses into key events and implements auto-repeat of the
buttons. Most applications never need to call the key man-
ager directly except to change the key repeat rate or poll the
current state of the keys.

The Graffiti Manager provides an interface to the Graffiti rec-
ognizer. The recognizer converts pen strokes into key events
which are fed to an application through the event manager.
Most applications never need to call the Graffiti manager di-
rectly because the event manager calls it automatically when-
ever it detects pen strokes in the Graffiti area of the digitizer.

The Alarm Manager provides support for setting real-time
alarms to perform some periodic activity or display a
reminder.

The Alert Manager lets applications implement modal dialog
boxes that display an alert dialog or prompt the user for a re-
sponse to a question.

The Sound Manager lets applications and system modules
control sound manager settings and play custom and pre-
defined system sounds.

The Error Manager can be used by applications or system
software for displaying unexpected run-time errors, such as
those that typically show up during program development. It
is not anticipated that final production versions of applica-
tions or system software will use the error manager.

The System Manager

The Palm OS system manager is responsible for the general opera-
tion of the system, including boot-up, power-up, launching applica-
tions, library management, monitoring the battery, multitasking,
timing, and semaphore support. Applications need to be concerned
with very few system manager API functions. Most of what the sys-
tem manager does is transparent to applications and is explained
here as background information only.

148 Developing Palm OS Applications, Part |

Using Palm OS Managers
The System Manager

In this section, you learn about the following aspects of the system
manager:

* System Boot and Reset provides information about the differ-
ent reset operations.

e Power Management describes the three different power
modes and provides guidelines for application developers.

* The Microkernel briefly describes the basic task management
provided by the system.

* Application Support discusses event processing and interap-
plication communication from the system’s point of view.

* Using the System Manager provides an overview of the API
available for accessing the functionality described in the
other sections. Links to the actual function descriptions are
included.

¢ System Manager Functions lists all system manager func-
tions available to applications for easy access.

System Boot and Reset

The system manager provides support for booting the Palm OS de-
vice. Booting occurs only when the user presses the reset switch on
the device (see Pal m OS Devi ce Reset Swi t ch.) Palm OS differs
from a traditional desktop system in that it is never really turned off.
Power is constantly supplied to essential subsystems and the on/ off
key is merely a way of bringing the device in or out of low-power
mode (see Palm OS Power Modes). The obvious effect of pressing
the on/off key is that the LCD turns on or off. When the user presses
the power key to turn the device off it disables the LCD, which
makes it appear as if power to the entire unit is turned off. In fact,
the memory system, real-time clock, and interrupt generation cir-
cuitry are still running, though they are consuming little current.

In this first version of Palm OS, there is only one user interface ap-
plication running at a time. The User Interface Application Shell
(UIAS) is responsible for managing the current user-interface appli-
cation. The UIAS launches the current user-interface application as a
subroutine and does not get control back until that application
quits. When control returns to the UIAS, it immediately launches
the next application as another subroutine. See The Microkernel for
more information.

Developing Palm OS Applications, Part| 149

Using Palm OS Managers
The System Manager

Power Management

This section looks at Palm OS power management, discussing Palm
OS Power Modes and Guidelines for Application Developers

See Power Management Calls for an overview of the APL

Palm OS Power Modes

At any time, the Palm OS device is in one of three power modes:
sleep, doze, or running. The system manager controls transitions be-
tween different power modes and provides an API for controlling
some aspects of the power management.

* Sleep mode. If the unit appears to be off, it is actually in sleep
mode and is consuming as little current as possible. At this
rate, a unit could sit for almost a year on a single set of batter-
ies without losing the contents of memory. To enter sleep
mode, the system puts as many peripherals as possible into
low-power mode and sets up the hardware so that an inter-
rupt from any hard key or the real-time clock wakes up the
system. When the system gets one of these interrupts while
in sleep mode, it quickly checks that the battery is strong
enough to complete the wake-up and then takes each of the
peripherals, for example the LCD, serial port, and timers, out
of low-power mode.

The system reenters sleep mode when the user presses the
on/off key again, when the system has been idle for the min-
imum auto-off time, or when the battery level reaches a criti-
cally low level.

* Doze mode. In doze mode, the processor is halted, but all pe-
ripherals including the LCD are powered up. The system can
come out of doze mode much faster than it can come out of
sleep mode since none of the peripherals need to be woken
up. In fact, it takes no longer to come out of doze mode than
to process an interrupt. Usually, when the system appears on,
it is actually in doze mode and goes into running mode only
for short periods of time to process an interrupt or respond to
user input like a pen tap or key press.

e Running mode. Running means that the processor is execut-
ing instructions and all peripherals are powered up. A typical
application puts the system into running mode only about
5% of the time.

150 Developing Palm OS Applications, Part |

Using Palm OS Managers
The System Manager

Guidelines for Application Developers

Normally, applications don’t need to be aware of power manage-
ment except for a few simple guidelines. When an application calls
Evt Get Event to ask the system for the next event to process, the
system automatically puts itself into doze mode until there is an
event to process. As long as an application uses Evt Get Event,
power management occurs automatically. If there has been no user
input for the amount of time determined by the current setting of
the auto-off preference, the system automatically enters sleep mode
without intervention from the application.

Applications should avoid providing their own delay loops. In-
stead, they should use SysTaskDel ay, which puts the system into
doze mode during the delay to conserve as much power as possible.
Or, if an application needs to perform periodic work, it can pass a
time out to Evt Get Event ; this forces the unit to wake up out of
doze mode and to return to the application when the time out ex-
pires, even if there is no event to process. Using these mechanisms
provides the longest possible battery life.

The Microkernel

Palm OS has a preemptive multitasking kernel which provides basic
task management.

Most applications don’t need the microkernel services because they
are handled automatically by the system. This functionality is pro-
vided mainly for internal use by the system software or for certain
special purpose applications.

The User Interface Application Shell (UIAS) is responsible for man-
aging the current user-interface application. Because memory avail-
able to the system is limited, only one user-interface application
runs at any time. The UIAS launches the current user-interface ap-
plication as a subroutine and does not get control back until that ap-
plication quits. When control returns to the UIAS, it immediately
launches the next application as another subroutine.

Usually, the UIAS is the only task running. Occasionally though, an
application launches another task as a part of its normal operation.
One example of this is the Sync application, which launches a sec-
ond task to handle the serial communication with the desktop. By

Developing Palm OS Applications, Part| 151

Using Palm OS Managers

The System Manager

creating a second task dedicated to the serial communication and
giving this task a lower priority than the main user-interface task,
the Sync application can provide optimal performance over the se-
rial port without sacrificing response time to the user-interface con-
trols.

Normally, there is no user interaction during a syng, so that the se-
rial communication task gets all of the processor’s time. But if the
user does tap on the screen, for example, to cancel the syng, the user-
interface task immediately processes the tap, since it has a higher
priority. Alternatively, the Sync application could have been written
to use just one task but then it would have to periodically poll for
user input during the serial communication, which would hamper
performance and user interface response time.

Application Support

The system manager provides application support in several func-
tional areas. The following aspects of application support are dis-
cussed in this section:

e Launching and Clean-Up

e Event Processing

* Inter-Application Communication

Launching and Clean-Up

Usually, applications on the Palm OS device are launched when the
user presses one of the buttons on the case or selects an application

icon from the application launcher screen. Alternatively, an applica-
tion can programmatically launch another application using the sys-
tem manager function SysApplLaunch.

When the current user-interface application quits, the system man-
ager cleans up by deleting any chunks in the dynamic heap(s) that
the application left around and closing any databases left open.
Note, however, that applications should perform this kind of
cleanup themselves.

Event Processing

The system manager provides the infrastructure for event genera-
tion and also contains the support for handling most system-related

152 Developing Palm OS Applications, Part |

Using Palm OS Managers
The System Manager

events. Hardware activity, such as taps on the digitizer and key
presses, is interpreted by interrupt handlers of the system manager
and converted into events that are eventually sent to the application
through the Evt Get Event call. In addition, many events returned
by Evt Get Event are system-related events which can be processed
by the system manager call SysHandl eEvent .

Events in Palm OS include hardware- and software-generated
events. Hardware-generated events are those caused directly by
user interaction with the device, such as tapping on the screen with
the pen, or pressing a hardware button. Software-generated events
are generated by the system software as a side effect of a user inter-
action. These include events such as the quit event that causes an
application to exit, or keyboard events generated by the Graffiti rec-
ognizer. Software-generated events can even be defined and gener-
ated by an application for its own use.

When an application calls Evt Get Event , the event manager checks
a number of system-event data structures and returns an event
record to the application with information about the highest-prior-
ity event that needs processing. Events in Palm OS are stored in one
of three event queues: a key queue, a pen queue, or a software event
queue. The event queues are circular buffers containing event
records stored in a first in, first out (FIFO) sequence.

Hardware-related events are typically posted by interrupt routines
and include pen-downs, pen-ups (optionally including stroke data),
and hard button presses. All pen-generated events are stored in the
pen queue and all hard button press events are stored in the key
queue. Software events are typically posted as the result of a system
call and include application-quit events, window enter and exit
events, user-interface control events, etc. These types of events are
stored in the software event queue.

When Evt Get Event is called by the application, it first checks
whether any events are in the software event queue and returns the
topmost event if so. If the software event queue is empty, it checks
the key and pen queues. The result is that all software events gener-
ated by a particular hardware event are processed before the next
hardware event is processed. For example, a pen-down hardware
event may trigger the system software to generate window exit and
window enter software events. Both events are then pulled from the

Developing Palm OS Applications, Part| 153

Using Palm OS Managers

The System Manager

software event queue and processed before the next hardware event
is processed.

Some event types returned by Evt Get Event are not actually posted
into the event queue, but are artificially generated by Evt Get Event
when all event queues are empty. One example is the pen-moved
event, which is returned if no other events are in the queues and the
pen has moved since the last time Evt Get Event was called. In this
way, the application is notified of low-priority events such as pen
movements without cluttering the event queue with them.

Hardware-generated events include pen-down, pen-up, and hard
button presses. These types of events are posted into their appropri-
ate event queue by interrupt routines. The interrupt routine for han-
dling keyboard presses immediately enqueues the keyboard event
into the key queue and sets up a periodic interrupt routine to watch
for auto-repeat and key debouncing.

Software events include window enter and exit events, application
quit events, and user-interface object events like control enter, con-
trol exit, etc. These events are typically generated as a side effect of a
hardware-generated event like a pen-down. Software can, however,
also generate key events, usually as a result of recognizing a Graffiti
stroke or a tap on a silk-screened icon.

Software-generated events are posted into the appropriate event
queue, but are not typically posted at interrupt time. Many of these
events are inserted into the event queue by the various user-inter-
face managers. Others, like key events, are posted by

SysHandl eEvent after recognizing a Graffiti stroke or a tap on a
silk-screened icon.

In a typical application, SysHandl eEvent is called immediately
after Evt Get Event . If Evt Get Event returns a pen-up event in the
Graffiti writing area, SysHand| eEvent calls the Graffiti recognizer
with the pen stroke information obtained from the pen queue and
uses the results of the Graffiti recognizer to post one or more key-
board events into the key queue. A similar process occurs for pen-
up events detected over a silk-screened icon. SysHandl eEvent
converts the pen-up to a keyboard event with a virtual key code rep-
resenting the silk-screened icon.

154 Developing Palm OS Applications, Part |

Using Palm OS Managers
The System Manager

Inter-Application Communication

The system manager provides the API for inter-application commu-
nication. This API permits any application or system routine to send
an action code to any other application and get results back. An ap-
plication that wishes to work with the global find, for example,
must support the find action code.

Sending an action code to another application is like calling a spe-
cific subroutine in that application: the application responding to
the action code is responsible for determining what to do given the
action code constant passed on the stack as a parameter. Predefined
action codes are listed in Table 2.1 on page 50 and can be found in
SytemMgr.h. All the parameters for an action code are passed in a
single parameter block and the results are returned in the same pa-
rameter block. How Action Codes Control the Application describes
action codes in more detail.

Using the System Manager

This section provides information about the system manager rou-
tines available for the different services, discussing these topics:

e System Reset Calls

e Power Management Calls

* Application Utilities

System Reset Calls

Applications can call SysReset to reset the device. This call does a
soft reset and has the same effect as pressing the reset switch on the
unit. Normally, applications should not use this call. One example
of where this function is used is the Sync application. When the user
copies an extension onto the Palm OS device, the Sync application
automatically resets the device after the sync is completed to allow
the extension to install itself.

A similar, but even more dangerous call is SysCol dBoot which
performs a hard reset that clears all user storage RAM on the device,
destroying all user data.

Developing Palm OS Applications, Part| 155

Using Palm OS Managers

The System Manager

Power Management Calls

The system calls SysS| eep to put itself immediately into low-
power sleep mode. Normally, the system puts itself to sleep when
there has been no user activity for the minimum auto-off time or
when the user presses the power key.

The SysSet Aut o f Ti ne routine changes the auto-off time value.
This routine is normally used by the system only during boot, and
by the Preferences application. The Preferences application saves
the user preference for the auto-off time in a preferences database
and the system initializes the auto-off time to the value saved in the
preferences database during boot. While the auto-off feature can be
disabled entirely by calling SysSet Aut o f Ti e with a time out
of 0, doing this depletes the battery.

The current battery level and other information can be obtained
through the SysBat t er yl nf o routine. This call returns informa-
tion about the battery, including the current battery voltage in hun-
dredths of a volt, the warning thresholds for the low-battery alerts,
the battery type, and whether or not external power is applied to the
unit. This call can also change the battery warning thresholds and
battery type.

Application Utilities

The SysHandl eEvent call allows applications to correctly respond
to system events like key presses, Graffiti strokes, low-battery warn-
ings, and taps on silk-screened icons. This routine should be called
from every application’s event loop, usually before the application
even looks at the event. If an application needs to override any part
of the default system behavior, it could selectively filter out events
before calling SysHandl eEvent .

An application can force a switch to another user-interface applica-
tion by calling SysUl AppSwi t ch. This routine notifies the system
which application to launch next and feeds an application-quit
event into the event queue. If and when the current application re-
sponds to the quit event and returns, the system launches the new
application.

The routine SysCur AppDat abase can be used to get the card num-
ber and database ID of the currently running user-interface applica-
tion. Note that if your application code is being called to process an

156 Developing Palm OS Applications, Part |

Using Palm OS Managers
The System Manager

action code, it essentially is being called as a subroutine from the
current user-interface application and this routine does not return
your application’s database ID but the database ID of the applica-
tion that initiated the action code.

The routine SysApplLaunch is a general-purpose launch facility for
launching any resource database with executable code in it. It has
numerous options, including whether or not to launch the database
as a separate task or not, whether to allocate a globals world, and
whether or not to give the database its own stack. This routine is
also used to send action codes to applications (by telling it to use the
caller’s stack, no globals world, and not a separate task). Usually,
applications use it only for sending action codes to other user-inter-
face applications. An alternative, simpler method of sending action
codes is the SysBr oadcast Act i onCode call. This routine automat-
ically finds all other user-interface applications and calls
SysAppLaunch to send the action code to each of them.

System Manager Functions

The following system manager functions are available for applica-
tion use:

¢ SysReset
e SysBatterylnfo

¢ SysSet Aut o f Ti ne

¢ SysHandl eEvent

* SysU AppSwi t ch

e SysCur AppDat abase

¢ SysBroadcast Acti onCode
e SysApplLaunch

Developing Palm OS Applications, Part| 157

Using Palm OS Managers

The Feature Manager

The Feature Manager

The feature manager can be used by applications to determine what
the system environment is like. It provides information about the
system software version, what optional system features are in-
stalled, and what third party extensions are installed. In addition, it
can be used privately by an application for keeping track of its own
data.

This section introduces the feature manager by discussing these
topics:

e Feature Manager Overview

o Using the Feature Manager

® Feature Manager Functions

Feature Manager Overview

A feature is a 32-bit value that has special meaning to both the fea-
ture publisher and to users of that feature. Features can be pub-
lished by the system or by applications. Each feature is identified by
a feature creator and a feature number. The feature creator is usually
the database creator type of the application that publishes the fea-
ture. The feature number is any 16-bit value used to distinguish be-
tween different features of a particular creator. Once a feature is
published, it remains present until it is explicitly deleted. A feature
published by an application sticks around even after the application
quits.

One example is the feature the system publishes that contains a 32-
bit representation of the system version. This is a feature with a fea-
ture creator of “psys” and a feature number of 1. The first version of
the Palm OS system software has a value of 0x01003001 in this fea-
ture. Any application can find out the system version by looking for
this feature.

When an application adds or removes capabilities from the base sys-
tem, it can create features to test for the presence or absence of those
capabilities. This allows an application to be compatible with multi-
ple versions of the system by refining its behavior depending on
which capabilities are present or not. Future hardware platforms

158 Developing Palm OS Applications, Part |

Using Palm OS Managers
The Feature Manager

may lack some capabilities present in the first platform, so checking
the system version feature is important.

Applications may find the feature manager useful for their own pri-
vate use. For example, an application may want to publish a feature
that contains a pointer to some private data it needs for processing
action codes. Because an application’s global data is not generally
available while it processes action codes, using the feature manager
is usually the easiest way for an application to get to its data.

Using the Feature Manager

To check whether a particular feature is present, call Ft r Get and
pass it the feature creator and feature number. If the feature exists,
Ft r Get returns the 32-bit value of the feature. If the feature does not
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call
Ft r Set and pass the feature creator and number, and the 32-bit
value of the feature. A published feature remains available until it is
explicitly removed by a call to Et r Unr egi st er or until the system
resets; simply quitting an application does not remove a feature
published by that application.

Features are split into two groups: ROM-based and RAM-based.
ROM-based features are stored in a separate table in ROM and can
never be removed; only system-defined features are in this table. All
features installed at run-time are in the RAM table.

Ft r Get Byl ndex accepts a parameter that specifies whether to
search the ROM- or RAM-table.

Call Ft r Unr egi st er to remove RAM-based features created at
run-time by calling Ft r Set .

You can get a complete list of all published features by calling

Ft r Get Byl ndex repeatedly. Passing an index value starting at 0 to
Ft r Get Byl ndex and incrementing repeatedly by 1 eventually re-
turns all available features.

Developing Palm OS Applications, Part| 159

Using Palm OS Managers
The String Manager

Feature Manager Functions

The following feature manager functions are for application use:
Ft r Get

Ft r Set

Ftr Unr egi st er

Ft r Get Byl ndex

The String Manager

The string manager provides a set of string manipulation functions.
The string manager API is closely modeled after the standard C
string-manipulation functions like st r cpy, str cat, etc.

Applications should use the functions built into the string manager
instead of the standard C functions, because doing so makes the ap-
plication smaller. When your application uses the string manager
functions, the actual code that implements the function is not linked
into your application but is already part of the operating system.
When you use the standard C functions, however, the code for each
function you use is linked into your application and results in a big-
ger executable. In addition, many standard C function don’t work
on the Palm OS device at all because the OS doesn’t provide all basic
system functions (such as mal | oc) and doesn’t support the subrou-
tine calls used by most standard C functions.

The following functions are available for application use:
e StrCopy

o StrCat

e Strlen

e StrConpare

e StrCasel essConpare
e StrTolLower

e StrlToA

e StrlToH

e StrChr

e StrStr

o StrATol

160 Developing Palm OS Applications, Part |

Using Palm OS Managers
The Time Manager

The Time Manager

This section first provides an overview of the date and time man-
ager (called time manager in this chapter) and then discusses these
topics:

¢ Using Real-Time Clock Functions

o Using System Ticks Functions

* Time Manager Function Summary

The time manager provides access to both the 1-second and 0.01-
second timing resources on the Palm OS device.

* The -second timer keeps track of the real-time clock (date and
time), even when the unit is in sleep mode.

* The 0.01-second timer, also referred to as the system ticks,
can be used for finer timing tasks. This timer is not updated
when the unit is in sleep mode and is reset to 0 each time the
unit resets.

The basic time-manager API provides support for setting and get-
ting the real-time clock in seconds and for getting the current system
ticks value (but not for setting it). The system manager provides
more advanced functionality for setting up a timer task which exe-
cutes periodically or in a given number of system ticks.

Using Real-Time Clock Functions

The real-time clock functions of the time manager include

Ti nBet Seconds and Ti nGet Seconds. Real time on the Palm OS
device is measured in seconds from midnight, Jan 1, 1904. Call

Ti nBecondsToDat eTi ne and Ti nDat eTi neToSeconds to con-
vert between seconds and a structure specifying year, month, day,
hour, minute, and second.

Developing Palm OS Applications, Part| 161

Using Palm OS Managers

The Time Manager

Using System Ticks Functions

The Palm OS device maintains a tick count that starts at 0 when the
device is reset. This tick increments

* 100 times per second when running on the Palm OS device

e 60 times per second when running on the Macintosh under
the simulator

For tick-based timing purposes, applications should use the macro
sysTi cksPer Second, which is conditionally compiled for differ-
ent platforms.

Use the function Ti nGet Ti cks to read the current tick count.

Although the Ti nCet Ti cks function could be used in a loop to im-
plement a delay, it is recommended that applications use the
SysTaskDel ay function instead. The SysTaskDel ay function au-
tomatically puts the unit into low-power mode during the delay.
Using Ti nGet Ti cks in a loop consumes much more current.

Time Manager Structures

The time manager uses these structures to store information:

t ypedef struct{

Swor d second;

Swor d m nut e;

Swor d hour ;

Swor d day;

Swor d nont h;

Swor d year;

Swor d weekDay; /I Days since Sunday (0 to 6)
} Dat eTi neType;

t ypedef DateTi neType* DateTi nePTr;

typedef struct {
Byt e hour s;
Byt e m nut es;
} Ti meType;

162 Developing Palm OS Applications, Part |

Using Palm OS Managers

The Time Manager
typedef TimeType * TinmePtr;
t ypedef struct{
Wrd year :7; /lyears since 1904 (Mac format)
Wrd nmonth :4;
Wrd day . 5;
} Dat eType;

t ypedef DateType * DatePtr;

Time Manager Function Summary

¢ Dat eAdj ust
e Dat eDaysToDat e

* Dat eSecondsToDat e

e Dat eToAscCi |

e Dat eToDays

¢ Dat eToDONDMFor mat

e Daydf Mont h

 DayO ek

e Daysl nhMonth

e Ti mAdj ust

¢ Ti nDat eTi neToSeconds
¢ Ti mGet Seconds

o TinCetTicks

¢ Ti nBecondsToDat eTi ne
¢ Ti nBet Seconds

e TinmeToAsci |

Developing Palm OS Applications, Part| 163

Using Palm OS Managers
The System Event Manager

The System Event Manager

The system event manager manages the low-level pen and key
event queues, translates taps on silk-screened icons into key events,
sends pen strokes in the Graffiti area to the Graffiti recognizer, and
puts the system into low-power doze mode when there is no user
activity. Most applications have no need to call the system event
manager directly because most of the functionality they need comes
from the higher-level event manager or is automatically handled by
the system.

Applications that do use the system event manager directly might
do so to enqueue key events into the key queue, or to retrieve each
of the pen points that comprise a pen stroke from the pen queue.
This section provides information about the system event manager
by discussing these topics:

¢ Event Translation: Pen Strokes to Keyv Events

* Pen Queue Management
Auto-Off Control
System Event Manager Function Summary

Event Translation: Pen Strokes to Key Events

One of the higher-level functions provided by the system event
manager is converting pen strokes on the digitizer to key events. For
example, the system event manager sends any stroke in the Graffiti
area of the digitizer automatically to the Graffiti recognizer for con-
version to a key event. Taps on silk-screened icons, such as the ap-
plication launcher, Menu button, and Find button, are also
intercepted by the system event manager and converted into the ap-
propriate key events.

The basic process of converting a pen stroke to key event involves:

e getting all the pen points that comprise the stroke out of the
pen queue

e converting the stroke into the matching key event

* enqueuing that key event into the key queue

Eventually, the key event is returned to the application as a normal
result of calling Evt Get Event .

164 Developing Palm OS Applications, Part |

Using Palm OS Managers
The System Event Manager

Most applications rely on the default behavior of the system event
manager, which is to take all strokes in the predefined Graffiti area
of the digitizer and convert them into key events, to convert all taps
on the silk-screened icons to the default key events, and to pass all
other strokes on to the application for processing.

Pen Queue Management

The pen queue is a preallocated area of system memory used for
capturing the most recent pen strokes on the digitizer. It is a circular
queue with a first-in, first-out method of storing and retrieving pen
points. Points are usually enqueued by a low-level interrupt routine
and dequeued by the system event manager or application.

When the user first brings the pen down on the digitizer, the system
stores a pen-down sequence in the pen queue and starts the stroke
capture. Periodically, additional points are stored into the pen
queue. When the user lifts the pen, the system stores a pen-up se-
quence in the pen queue and turns off pen capture.

The system event manager provides an API for initializing and
flushing the pen queue and for queuing and dequeueing points.
There is some state information stored in the queue itself: to de-
queue a stroke, the caller must first make a call to dequeue the
stroke information (Evt DequeuePensSt r okel nf 0) before the
points for the stroke can be dequeued. Once the last point is de-
queued, another Evt DequeuePenSt r okel nf o call must be made
to get the next stroke.

Applications usually needn’t call Evt DequePenSt r okel nf o be-
cause the event manager calls this function automatically when it
detects a complete pen stroke in the pen queue. After calling

Evt DequePensSt r okel nf o, the system event manager stores the
stroke bounds into the event record and returns the pen-up event to
the application. The application is then free to dequeue the stroke
points from the pen queue, or to ignore them altogether. If the
points for that stroke are not dequeued by the time Evt Get Event is
called again, the system event manager automatically flushes them.

Developing Palm OS Applications, Part| 165

Using Palm OS Managers
The System Event Manager

Key Queue Management

The key queue is an area of system memory preallocated for captur-
ing key events. Key events come from one of two occurrences: as a
direct result of the user pressing one of the buttons on the case or as
a side effect of the user drawing a Graffiti stroke on the digitizer
which is converted in software to a key event.

When a hardware button is pressed, an interrupt routine enqueues
the appropriate key event into the key queue, temporarily disables
further hardware button interrupts, and sets up a timer task to run
every 10ms. This timer task is used to debounce the hardware but-
ton and to support auto-repeat of the key if the user happens to hold
it down for an extended period of time. If this timer task sees that
the key is released for at least a minimum amount of time, it then re-
enables the hardware button interrupts.

When a pen stroke is detected in the Graffiti area of the digitizer, the
system manager calls the Graffiti recognizer, which then removes
the stroke from the pen queue, converts the stroke into one or more
key events, and finally enqueues these key events into the key
queue. Similarly, when a pen stroke is detected on one of the silk-
screened icons, the system event manager converts the stroke into
the appropriate key event and enqueues it into the key queue.

The system event manager provides an API for initializing and
flushing the key queue and for enqueuing and dequeuing key
events. Usually, applications have no need to dequeue key events
since the event manager does this automatically if it detects a key in
the queue and returns a kKeyDownEvent to the application through
the Evt Get Event call.

Auto-Off Control

Because the system event manager manages the hardware events
like pen taps and hardware button presses, it is responsible for re-
setting the auto-off timer on the device. Every time a hardware
event is detected, the auto-off timer is automatically reset to 0. If an
application needs to reset the auto-off timer manually, it can do so
through the system event manager call Evt Reset Aut oOf f Ti mer .

166 Developing Palm OS Applications, Part |

Using Palm OS Managers
The Pen Manager

System Event Manager Function Summary

The following functions are part of the developer API to the system
event manager:

Evt AddEvent ToQueue

Evt CopyEvent

Evt DequeuePenPoi nt

Evt DequeuePenSt r okel nf o
Evt Enabl eG affiti

Evt EnqueueKey

Evt Fl ushKeyQueue

Evt Fl ushNext PenSt r oke
Evt Fl ushPenQueue

Evt Get Event

Evt Get Pen

Evt KeyQueueEnpt y

Evt KeyQueueSi ze

Evt KeyQueueEnpt y

Evt Get PenBt nLi st

Evt PenQueueSi ze

Evt ProcessSof t KeySt r oke
Evt Reset Aut oOF f Ti ner

Evt Wakeup

The Pen Manager

The pen manager manages the digitizer hardware and converts
input from the digitizer into pen coordinates. Most applications
never need to call the pen manager directly because any pen activity
is automatically returned to the application in the form of events.

Pen coordinates are stored in the pen queue as raw, uncalibrated
coordinates. When the system event manager routine for removing
pen coordinates from the pen queue is called, it converts the pen
coordinate into screen coordinates before returning.

Developing Palm OS Applications, Part| 167

Using Palm OS Managers
The Key Manager

The Preferences application provides a user interface for calibrating
the digitizer. It uses the pen manager API to set up the calibration
which is then saved into the Preferences database. The pen manager
assumes that the digitizer is linear in both the x and y directions; the
calibration is therefore a simple matter of adding an offset and scal-
ing the x and y coordinates appropriately.

Pen Manager Functions
¢ PenReset Cali bration
e PenCalibrate

The Key Manager

The key manager manages the hardware buttons on the Palm OS
device. It converts hardware button presses into key events and im-
plements auto-repeat of the buttons. Most applications never need
to call the key manager directly except to change the key repeat rate
or to poll the current state of the keys. The event manager is the
main interface to the keys since it returns a keyDownEvent to an ap-
plication whenever a button is pressed.

Normally, applications are notified of key presses through the event
manager. Whenever a hardware button is pressed, the application
receives an event through the event manager with the appropriate
key code stored in the event record. The state of the hardware but-
tons can also be queried by applications at any time through the
KeyCurrent St at e function call.

The key manager also provides functions for changing the auto-re-
peat rate of the hardware buttons. This might be useful to game ap-
plications that want to use the hardware buttons for control. The
current key repeat rates are stored in the key manager globals and
should be restored before the application exits.

Key Manager Functions

* KeyRat es
* KeyCurrent State

168 Developing Palm OS Applications, Part |

Using Palm OS Managers
The Graffiti Manager

The Graffiti Manager

The Graffiti manager provides an API to the Graffiti recognizer in
Palm OS. This recognizer converts pen strokes into key events,
which are then fed to an application through the event manager.
Most applications never need to call the Graffiti manager directly
because it is automatically called by the event manager whenever it
detects pen strokes in the Graffiti area of the digitizer.

Special purpose applications, such as a Graffiti tutorial, may want to
call the Graffiti manager directly to recognize strokes in other areas
of the screen or to customize the Graffiti behavior.

The Graffiti manager provides a high-level call used by the event
manager for converting pen strokes into key events. This call,

G f ProcessSt r oke, removes pen points from the pen queue, rec-
ognizes the stroke, and puts one or more key events into the key
queue. This call automatically handles Graffiti ShortCuts and calls
the user interface as appropriate to display shift indicators in the
current window.

An application can call G f Pr ocessSt r oke when it gets a
penUpEvent from the event manager if it wants to recognize
strokes entered into its application area (in addition to the Graffiti
area).

Other high-level calls provided by the Graffiti manager include rou-
tines for getting and setting the current Graffiti shift state (caps lock
on/off, temporary shift state, etc.) and for notifying Graffiti when
the user selects a different field. Graffiti needs to be notified when a
field change occurs so that it can cancel out of any partially entered
shortcut and clear its temporary shift state if it's showing a poten-
tially accented character.

The remainder of Graffiti manager API routines are for special pur-
pose use. They are basically all the entry points into the Graffiti rec-
ognizer engine and are usually called only by G f Pr ocessSt r oke.
This includes calls to add pen points to the Graffiti recognizer’s
stroke buffer, to convert the stroke buffer into a Graffiti glyph ID,
and to map a glyph into a string of one or more key strokes.

Other routines provide access to the Graffiti ShortCuts database.
This is a separate database owned and maintained by the Graffiti
manager that contains all of the shortcuts. This database is opened

Developing Palm OS Applications, Part| 169

Using Palm OS Managers
The Graffiti Manager

by the Graffiti manager when it initializes and stays open even after
applications quit. The only way to modify this database is through
the Graffiti manager APL. It provides calls for getting a list of all
shortcuts, and for adding, editing, and removing shortcuts. The
ShortCuts screen of the Preferences application provides a user-in-
terface for modifying this database.

Graffiti Manager Function Summary

e« GfProcessStroke
e GfCGetState

e GfSetState

¢« GfFlushPoints

¢ & f AddPoi nt

e GflnitState

e GfdeanState

« 0 fMatch

¢« G fGetMcro

¢ G f Get AndExpandMacr o
e GfFilterPoints

e GfCGetNunPoints

¢ G f Get Point

¢ G fFindBranch

¢ G fMatchd yph

e GfGetd yphMappi ng
¢ G f Get Macr oNane

e GfDel eteMacro

« G fAddMacro

170 Developing Palm OS Applications, Part |

Using Palm OS Managers
The Alarm Manager

The Alarm Manager

The Palm OS alarm manager provides support for setting real-time
alarms, for performing some periodic activity, or for displaying a re-
minder. This section helps you use the alarm manager by discussing
these topics:

* Alarm Manager Overview
e Using the Alarm Manager

Alarm Manager Overview

The alarm manager works closely with the time manager to handle
real-time alarms such as those set by the DateBook for meeting re-
minders. The alarm manager does not actually provide reminder di-
alog boxes or play the alarm sound. Instead, it sends the
sysAppLaunchCdAl ar nifr i gger ed action code to the applica-
tion to display the dialog and play the sound.

The alarm manager handles alarms by application; it can queue up
only one active alarm for a given application. When the alarm goes
off, the sysAppLaunchCndAl ar mTr i gger ed action code notifies
the application. At this time, it can set the next alarm, play a short
sound, or perform some maintenance activity. Triggered alarms are
queued up until the action code can be sent to the creator. However,
if the alarm table becomes full, the oldest entry in the table that has
been both triggered and notified is deleted to make room for a new
alarm.

The alarm manager orders all pending alarms, and programs the
time manager (via the Ti nSet Al ar msystem function) to generate
an interrupt for the alarm that should go off the soonest. When this
interrupt occurs, the time manager calls the alarm manager’s

Al MAl ar nCal | back system function, which notes the interrupt by
setting the “triggered” flag in the Alarm globals and calling

Evt Wakeup to wake up the event manager in case it was asleep.

The event manager calls the Al nDi spl ayAl ar msystem function
between events. Al nDi spl ayAl ar mchecks the t ri gger ed flag
and returns immediately if no alarm had been triggered. If an alarm
had been triggered, Al nDi spl ayAl ar mnotifies all applications to
set an alarm for that alarm time via the alarm triggered action code,
and then calls each in turn to display its alarm. If a new alarm time

Developing Palm OS Applications, Part| 171

Using Palm OS Managers
The Alarm Manager

is triggered while an older alarm is displayed, all applications with
alarms scheduled for that time are notified, but the display cycle is
postponed until all earlier alarms finish displaying.

Using the Alarm Manager

To set an alarm for a given application, call Al nfSet Al ar m If an un-
triggered alarm already exists for this application, it is replaced with
the new setting. The caller must pass the following;:

* The storage card number and Local ID of the application (this
information is used to dispatch alarm manager notifications
to the application, and as the primary key for the alarm entry
in the alarm table).

* Caller-specific reference value (this can be any 32-bit value
which is passed to the application with all alarm manager
notifications pertaining to this alarm).

e Alarm date and time expressed in seconds since 1/1/1904
(see Ti nDat eTi neToSeconds and other Date/ Time func-
tions). If the alarm date and time parameter is zero, the cur-
rent active alarm for the application, if any, is cancelled.

When the active alarm is triggered, the alarm manager calls the ap-
plication with the sysAppLaunchCndAl ar nilr i gger ed action
code. If your application needs to display a reminder or other form
of U, use the sysAppLaunchCndDi spl ayAl ar maction code,
which is generated next.

To retrieve the current active alarm setting for an application, call
Al nCet Al ar m passing the storage card number and Local ID of the
application. In addition, pass a pointer to the memory location for
returning the caller-specific reference value which was passed when
setting the alarm with Al nSet Al ar m Al nSet Al ar mreturns the
alarm date and time expressed in seconds since 1/1/1904. The re-
turn value is zero if no active alarm exists for the application.

Alarm Manager Function Summary
e AlnCGet Al arm
e AlnBet Alarm

172 Developing Palm OS Applications, Part |

Using Palm OS Managers
The Alert Manager

The Alert Manager

The alert manager provides a simple way for an application to im-
plement modal dialog boxes that display an alert message or
prompt the user for a response to a question.

Given a resource ID that defines an alert, the alert manager creates
and displays a modal dialog box. When the user taps one of the but-
tons in the dialog, the alert manager disposes of the dialog box and
returns to the caller the item number of the button the user tapped.

There are four types of alerts:

Question

Warning
Notification
e Error

The alert type determines which icon is drawn in the alert window
and the sound that plays when the alert is displayed.

The Alert Resource

When the alert manager is invoked, it is passed an alert resource
(see Alert Resource) that contains the following information:

* The rectangle that specifies the size and position of the alert
window.

* The alert type (question, warning, notification, or error).

* The null-terminated text string; that is, the message the alert
displays.
* The text labels for one or more buttons.

Alert Manager Functions
e FrnmAl ert
e FrnCust omAl ert

Developing Palm OS Applications, Part| 173

Using Palm OS Managers
The Sound Manager

The Sound Manager

The Palm OS sound manager lets applications and system modules
play custom and predefined system sounds and control sound man-
ager settings.

The sound manager provides an extendable API for playing custom
sounds, system sounds, and for controlling default sound settings.
Although the API accommodates multichannel design, only a single
sound channel is currently supported. Current custom sound sup-
port permits the user to specify the frequency, duration, and ampli-
tude of the sound. Currently supported system sounds are
Information, Warning, Error, Start-up, Alarm, Confirmation, and
Click. The user (typically the Preferences application) can control
the alarm, system, and master sound amplitudes.

Using the Sound Manager

To execute a sound manager command, call ShdDoCOnd and pass the
sound channel pointer (presently, only null is supported and maps
to the shared channel), a pointer to a structure of ShndCommandType,
and a flag indicating whether the command should be performed
asynchronously (not yet implemented; all commands execute syn-
chronously).

To play a default system sound, such as a click or an error beep, call
SndPl aySyst enfSound, passing the system sound id. For the com-
plete list of system sound IDs, see SoundMgr.h.

Sound Manager Function Summary

¢ SndDoCGmd

¢ SndCet Def aul t Vol une
¢ SndPl| aySyst enSound
¢ SndSet Def aul t Vol une

174 Developing Palm OS Applications, Part |

Using Palm OS Managers
The Error Manager

The Error Manager

The error manager can be used by applications or system software
for displaying unexpected run-time errors such as those that typi-
cally show up during program development. Final versions of ap-
plications or system software won’t use the error manager. The error
manager API consists of a set of functions for displaying an alert
with an error message, file name, and the line number where the
error occurred. If a debugger is connected, it is entered when the
error occurs.

The error manager also provides a “try and catch” mechanism that
applications can use for handling such run-time errors as out of
memory conditions, user input errors, etc. This mechanism is
closely modeled after the try/catch functionality of the recent ANSI
C specification.

Displaying Development Errors

The error manager provides some compiler macros which can be
used in source code. These macros display a fatal alert dialog on the
screen and provide buttons to reset the device or enter the debugger
after the error is displayed. There are three macros: Err D spl ay,
ErrFatal Di splayl f, and Err NonFat al Di spl ayl f.

Er r Di spl ay always displays the error message on the screen,

Err Fat al Di spl ayl f and Err NonFat al D spl ayl f display the
error message only if their first argument is TRUE.

The error manager uses the compiler define
ERROR_CHECK_LEVEL to control the level of error messages dis-
played. You can set the value of the compiler define to control which
level of error checking and display is compiled into the application.
Three levels of error checking are supported: full, partial, and none.

e Setting the value of the compiler define to
ERROR_CHECK_NONE (0) does not compile in any calls.

e Setting the value to ERROR_CHECK_PARTIAL (1) compiles
in only the Err DO spl ay and Err Fat al Di spl ayl f calls.

e Setting the value to ERROR_CHECK_FULL (2) compiles in
all three calls.

During development, it makes sense to set full error checking for
early development, partial error checking during alpha and beta test

Developing Palm OS Applications, Part| 175

Using Palm OS Managers

The Error Manager

periods, and no error checking for the final product. At partial error
checking, only fatal errors are displayed; error conditions which are
only possible are ignored under the assumption that the application
developer is already aware of the condition and designed the soft-
ware to operate that way.

The Try and Catch Mechanism

The “try and catch” mechanism of the error manager is closely mod-
eled after the ANSI C try and catch standard. The error manager is
aware of the machine state of the Palm OS device and is thus written
to correctly save and restore its state. (The built-in try and catch of
the compiler can’t be used because of machine dependence.)

Try and catch is basically a “neater” way of implementing a GoTo if
an error occurs. A typical way of handling errors in the middle of a
routine is to go to the end of the routine as soon as an error occurs
and then have some general purpose clean-up code at the end of
every routine. Errors in nested routines are even trickier because the
result code from every subroutine call must be checked before con-
tinuing.

When you set up a try/catch you are providing the compiler with a
place to jump to when an error occurs. You can go to that error han-
dling routine at any time by calling Er r Thr ow. When it sees the

Er r Thr owcall, the compiler performs a got o to your error han-
dling code. The greatest advantage to calling Er r Thr ow however, is
for handling errors in nested subroutine calls.

Even if Er r Thr ow is called from a nested subroutine, execution im-
mediately goes to the same error handling code in the higher-level

call. The compiler and run-time environment automatically strip off
the stack frames that were pushed onto the stack during the nesting
process and go to the error handling section of the higher-level call.
You no longer have to check for result codes after calling every sub-
routine; this greatly simplifies your source code and reduces its size.

176 Developing Palm OS Applications, Part |

Using Palm OS Managers
The Error Manager

Using the Error Manager

Calls to the error manager to display errors are actually compiler
macros that are conditionally compiled into your program. Most of
the calls take a Boolean parameter, which should be set to TRUE to
display the error, and a pointer to a text message to display if the
condition is true. Typically, the Boolean parameter is an in-line ex-
pression that evaluates to true if there is an error condition. As a re-
sult, both the expression that evaluates the error condition and the
message text are left out of the compiled code when error checking
is turned off. You can call Err Fat al b spl ayl f or Err D spl ay,
but using Er r Fat al Di spl ayl f makes your source code look
neater.

For example, assume your source code looks like this:

result = DoSonet hi ng();
ErrFatal Displaylf (result < 0, “unexpected
result from DoSonet hi ng”);

With error checking turned on, this code displays an error alert dia-
log if the result from DoSorret hi ng() is less than 0. Besides the
error message itself, this alert also shows the file name and line
number of the source code that called the error manager. With error
checking turned off, both the expression evaluationerr < 0 and
the error message text are left out of the compiled code.

The same net result can be achieved by the following code:

result = DoSonet hing();
#i f ERROR CHECK LEVEL != ERROR _CHECK_ NONE
if (result < 0)
ErrDi splay (“unexpected result from
DoSonet hi ng”) ;
#endi f

But this solution is longer and requires more work than simply call-
ing Err Fat al Di spl ayl f . It also makes the source code harder to
follow.

Developing Palm OS Applications, Part| 177

Using Palm OS Managers

The Error Manager

Using the Try and Catch Mechanism

The following example illustrates the possible layout for a a typical
routine using the error manager’s try and catch mechanism:

ErrTry {

p = MenPt r New(1000);

if (!'p) ErrThrow errNoMenory);
Mentet (p, 1000, 0);

Creat eTabl e(p);

Print Tabl e(p);

}

ErrCatch(err) {

/'l Recover or cleanup after a failure in the
/1l above Try block."err" is an int
[l identifying the reason for the failure.

/1 You may call ErrThrow() if you want to
/1 junp out to the next Catch bl ock.

/] The code in this Catch bl ock does not
/'l execute if the above Try bl ock conpletes
/1 without a Throw

if (err == errNoMenory)

ErrD splay("Qut of Menory");
el se

ErrD spl ay(" Sonme other error");
} Err EndCat ch
/1l You must structure your code exactly as
[/ above. You can’t have an ErrTry w thout an
[l ErrCatch { } ErrEndCatch, or vice versa.

Any call to Er r Thr owwithin the Er r Tr y block results in control
passing immediately to the Er r Cat ch block. Even if the subroutine
Cr eat eTabl e called Er r Thr ow, control would pass directly to the

178 Developing Palm OS Applications, Part |

Using Palm OS Managers
The Error Manager

Er r Cat ch block. If the Er r Tr y block completes without calling
Er r Thr ow the Er r Cat ch block is not executed.

You can nest multiple Er r Tr y blocks. For example, if you wanted to
do some cleanup at the end of Cr eat eTabl e in case of error, you
could put Err Try /Err Cat ch blocks in Cr eat eTabl e, clean up in
the Er r Cat ch block there first, and then call Er r Thr owto jump to
the top-level Er r Cat ch.

Error Manager Function Summary

e ErrDi spl ay
Err D spl ayFi | eLi neMsg

Err Fatal D spl ayl f
Err NonFat al Di spl ayl f
Err Thr ow

Developing Palm OS Applications, Part| 179

Using Palm OS Managers
The Error Manager

180 Developing Palm OS Applications, Part |

v

Control, Field, and Insertion
Point Functions

Control Functions

Purpose

Prototype
Parameters
Result
Comments

See Also

Purpose

Prototype
Parameters

Comments

CtlDrawControl

Draw a control object (and the text in it) on screen. The control is
drawn only if its usabl e attribute is TRUE.

void Gl DrawControl (Control Ptr Control P)
ControlP Pointer to the control object to draw.
Returns nothing.

Sets the vi si bl e attribute to TRUE.

Q| Set Usabl e, Ct | ShowCont r ol

CtlEraseControl

Erase a usable and visible control object and its frame from the
screen.

void Q| EraseControl (Control Ptr Control P)
ControlP Pointer to control object to erase.

Sets the vi si bl e attribute to FALSE.

Developing Palm OS Applications, Part| 181

Control, Field, and Insertion Point Functions

Control Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype
Parameters
Result

See Also

CtlGetLabel

Return a character pointer to a control’s text label.
CharPtr C| GetLabel (Control Ptr Control P)
ControlP Pointer to control object.

Returns a pointer to a null-terminated string.

Ct | Set Label

CtlGetValue

Return the current value (on or off) of the specified control. This
function is valid only for push buttons and check boxes. The return
value is undefined for other control types.

short QI GetValue (Control Ptr Control P)
ControlP Pointer to a control object.

Returns the current value of the control; 0 = off, 1 = on.

Q| Set Val ue

182 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Control Functions

Purpose

Prototype

Parameters

Result

Comments

CtlIHandleEvent

Handle event in the specified control object.

Bool ean O | Handl eEvent (Control Ptr Control P,
Event Ptr Event P)

ControlP Pointer to control object.

EventP Pointer to an Event Type structure.

Returns TRUE if an event is handled by this function. Events that
are handled are:
* penDownEvent if the pen is within the bounds of the control

e ctl Ent er Event and ct | Exi t Event, if the control ID
in the event data matches the control’s ID.

The control object’s usabl e, enabl ed, and vi si bl e attributes
must be TRUE. This routine handles three type of events:
penDownEvent, ct| Ent er Event, and ct | Repeat Event .

When this routine receives a penDownEvent , it checks if the pen
position is within the bounds of the control object. If it is, a
ctl Ent er Event is added to the event queue and the routine exits.

When this routine receives a ct | Ent er Event, the control object is
inverted.

When this routine receives a ct | Ent er Event or

ct | Repeat Event, it checks that the control ID in the passed event
record matches the ID of the specified control. If they match, this
routine tracks the pen until it comes up or until it leaves the ob-
ject’s bounds. When that happens, ct | Sel ect Event is sent to the
event queue if the pen came up in the bounds of the control. If the
pen exits the bounds, a ct | Exi t Event is sent to the event queue.

Developing Palm OS Applications, Part| 183

Control, Field, and Insertion Point Functions

Control Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype
Parameters
Result

Comments

CtlIHideControl

Set a control’s usabl e attribute to FALSE and erase the control
from the screen. This function calls Ct | Er aseContr ol .

void I H deControl (Control Ptr Control P)

ControlP Pointer to the control object to hide.

Returns nothing.

A control that is not usable doesn’t draw and doesn’t respond to
the pen.

Sets the vi si bl e and the usabl e attributes to FALSE.

Ct | ShowCont r ol

CtIHitControl

Simulate tapping a control. This function adds a ct | Sel ect Event

to the event queue.
void GIHtControl (Control Ptr Control P)
ControlP Pointer to a control object.
Returns nothing.

Useful for testing.

184 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Control Functions

Purpose

Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

See Also

CtlEnabled

Return TRUE if the control is enabled. Disabled controls do not re-

spond to the pen.

Bool ean Q| Enabl ed (Control Ptr Control P)
ControlP Pointer to control object.

Returns TRUE if enabled, FALSE if not.

C | Set Enabl ed

CtlSetEnabled

Set a control as enabled or disabled. Disabled controls do not re-
spond to the pen.

void QI SetEnabl ed (Control Ptr Control P,
Bool ean enabl e)

ControlP Pointer to a control object.
enable TRUE to set enabled, FALSE to set not enabled.

Returns nothing.

Ct | Enabl ed

Developing Palm OS Applications, Part |

185

Control, Field, and Insertion Point Functions

Control Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

CtlSetLabel

Set the current label for the specified control object. If the control

object currently has its usabl e and vi si bl e attributes set to

TRUE, redraw it with the new label.

void QI SetLabel (Control Ptr Control P,
Char Ptr newlLabel)

ControlP Pointer to a control object.

Pointer to the new text label.
Must be a null-terminated string.

newLabel

Returns nothing.

This function resizes the width of the control to the size of the new
label.

The pointer passed to this function is stored in the control’s data
structure; the control does not make a copy of the string passed.

G | Get Label

CtlSetUsable

Set a control usable or not usable.

void I SetUsable (Control Ptr Control P,
Bool ean usabl e)

ControlP Pointer to a control object.

usable TRUE to set usable, FALSE to set not usable.
Returns nothing.

Does not usually update the control.

C | EraseControl, Cl DrawCont r ol

186 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Control Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

CtlSetValue

Set the current value (on or off) of the specified control. If the con-
trol is visible, it is visually updated.

void Ol SetValue (Control Ptr Control P,
short newval ue)

ControlP Pointer to a control object.

newValue 0 = off, non-zero = on.
Returns nothing.

Does not usually update the control.

This function works only with push buttons and check boxes.
Other controls ignore calls to this function.

Q| Get Val ue

CtlIShowControl

Set a control’s usabl e attribute to TRUE and draw the control on
the screen. This function calls Ct | Dr awCont r ol .

void &I ShowControl (Control Ptr Control P)

ControlP Pointer to a control object.

Returns nothing.

If the control is already usable, this function is the functional equiv-
alent of & | DrawControl .

Sets the vi si bl e and the usabl e attributes to TRUE.

C | H deControl

Developing Palm OS Applications, Part| 187

Control, Field, and Insertion Point Functions

Field UI Functions

Field Ul Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype
Parameters
Result

Comments

FldCalcFieldHeight

Determine the height of a field for a string.

Wird Fl dCal cFi el dHei ght (CharPtr chars,
Word nmaxW dt h)

chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Returns total number of lines needed to draw the string passed.

FlIdCompactText

Compact the memory block that contains the text of the field to re-
lease any unused space.

voi d Fl dConpact Text (FieldPtr fld)
fld Pointer to a field object (Fi el dType data structure).
Returns nothing.

As characters are added to the text of a field, the block that con-
tains the text is grown. The block is expanded in chunks so that it
doesn’t have to expand each time a character is added. This results
in some unused space in the text block.

Needs to be called by applications on field objects which edit data
records in place before the field is unlocked, or at any other time
when a compact field is desirable; for example, when the form is
being closed.

188 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

FIdCopy

Copy the current selection to the text clipboard.

voi d Fl dCopy (FieldPtr fld)

fld Pointer to a field object (Fi el dType data structure).
Returns nothing.

This function leaves the current selection highlighted.
This functions replaces anything previously in the text clipboard.

If there is no selection, this function does nothing.

Fl dCut, Fl dPast e

FldCut

Copy the current selection to the text clipboard, delete the selection
from the field, and redraw the field.

void FldCQut (FieldPtr fld)
fld Pointer to a field object (Fi el dType data structure).
Returns nothing.

Anything previously in the text clipboard is replaced by this func-
tion.

If there is no selection, this function does nothing.

Fl dCopy, Fl dPast e

Developing Palm OS Applications, Part| 189

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype
Parameters

Result

See Also

FldDelete

Delete the specified range of characters from the field and redraw
the field.
void FldDelete (FieldPtr fld, Wrd start, Wrd end)

fld Pointer to the field object to delete from.
start Starting character position.

end Ending character position.
Returns nothing.

Fl dl nsert

FIdDirty

Return true if the field has been modified by the user since the text
value was set (Fl dSet Text).

Bool ean FldDirty (FieldPtr fld)
fld Pointer to a field object (Fi el dType data structure)

Returns TRUE if the field has been modified by the user, FALSE if
the field has not been modified.

FldSetDirty

190 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

FldDrawField

Draw the text of the field. The field’s usabl e attribute must be
TRUE or the field won’t be drawn.

voi d Fl dDrawrField (FieldPtr fld)
fld Pointer to a field object (Fi el dType data structure).
Returns nothing.

This function does not erase the area behind the field before
drawing.

If the field has the focus, the blinking insertion point is displayed
in the field.

FIl dEr aseFi el d

FIdEraseField

Erase the text of a field and turn off the insertion point if it’s in the
tield.

voi d Fl dEraseField (FieldPtr fld)
fld Pointer to a field object (Fi el dType data structure).
Returns nothing.

The function does not modify the contents of the field.

If the field has the focus, the blinking insertion point is turned off.

FI dDr awFi el d

Developing Palm OS Applications, Part| 191

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype
Parameters
Result

Comments

Purpose

Prototype

Parameters

Result

See Also

FIdFreeMemory

Release the memory allocated to the text of a field and the word-
wrapping information.

voi d Fl dFreeFi el dMenory (Fiel dPtr fld)

fld Pointer to a field object (Fi el dType data structure).
Returns nothing.

This function releases the memory allocated to hold the text of a
field (the memory block pointed to by the t ext member of the
Fi el dType data structure) and the memory allocated to hold the

display lines information (the memory block pointed to by the
| i nes member in the Fi el dType data structure).

This function does not affect the display of the field.

FldGetAttributes
Return the attributes of a field.

FieldPtr fld,
FieldAttrPtr attrP)

void FldGetAttributes (

fld Pointer to a Fi el dType structure.
attrP Pointer to Fi el dAt t r Type, see Field.h.

Returns nothing.

FIl dSet Attri but es

192 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

FldGetBounds
Return the current bounds of a field.
voi d Fl dGetBounds (FieldPtr fld, RectanglePtr rect)

fld Pointer to a field object (Fi el dType data structure).

rect Pointer to a Rect angl eType structure.

Returns the field’s bounds in the Rect angl eType structure refer-
ence by bounds.

Returns the r ect field of the Fi el dType structure.

Fl dSet Bounds

FldGetFont

Return the ID of the font used to draw the text of a field.
Font 1 D Fl dGet Font (FieldPtr fld)

fld Pointer to a field object (Fi el dType data structure).
Returns the ID of the font.

Fl dSet Font

Developing Palm OS Applications, Part| 193

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters

Result

See Also

FldGetIinsPtPosition

Return the string position of the insertion point.

Wrd Fl dGetlInsPtPosition (FieldPtr fld)

fld Pointer to a field object (Fi el dType data structure).
Returns the character position of insertion point.

The insertion point position number is to the left of the string posi-
tion number. In multiline fields, line feeds are counted as part of
the string and the position number after the line feed is the begin-

ning of the next line.

Fl dSet | nsPt Posi ti on

FldGetMaxChars

Return the maximum number of characters the field accepts.
Wrd Fl dGet MaxChars (Fiel dPtr fld)

fld Pointer to a field object (Fi el dType data structure).

Returns the maximum number of characters the user is allowed to
enter.

Fl dSet MaxChar s

194 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose

Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

FldGetScrollPosition

Return the string position of the first character in the first line of a
tield.

Wrd Fl dGet Scrol | Position (FieldPtr fld)
fld Pointer to a field object (Fi el dType data structure).
Returns the character position of first visible character.

FIl dSet Scrol | Posi ti on

FldGetSelection

Return the current selection of a field.

void Fl dGet Sel ection (FieldPtr fld,
WordPtr startPosition,
Wr dPtr endPosi tion)

fld Pointer to a field object (Fi el dType data structure).

startPosition Pointer to start-character position of selected range
of characters.

endPosition Pointer to end-character position of selected range
of characters.

Returns the start and end position in st ar t Posi t i on and
endPosi tion.

The first character in a field is at position zero.

If the user has selected the first five characters of a field,
st ar t Posi ti on will contain the value 0 and endPosi ti on the
value 5.

Fl dSet Sel ecti on

Developing Palm OS Applications, Part| 195

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

FldGetTextAllocatedSize

Return the number of characters allocated to hold the field’s text
string. Don’t confuse this number with the length of the text string.

Word Fl dGet Text Al | ocat edSi ze (Fiel dPtr fld)
fld Pointer to a field object.
Returns the number of characters allocated for the field’s text.

Fl dSet Text Al | ocat edSi ze

FldGetTextHandle

Return a handle to the block that contains the text string of a field.
Handl e Fl dGet Text Handl e (Fi el dPtr fld)

fld Pointer to a field object (Fi el dType data structure).
Returns the handle of the text string of a field; 0 is a possible value.

If 0 is returned, no handle has been allocated for the field pointer.

Fl dSet Text Handl e, FI dGet Text Pt r

196 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose
Prototype
Parameters
Result
Comments

See Also

Purpose
Prototype
Parameters

Result

Purpose
Prototype
Parameters

Result

See Also

FIdGetTextHeight

Return the number of lines of text that the specified field has.
Word Fl dGet Text Hei ght (FieldPtr fld)

fld Pointer to a field object (Fi el dType data structure).
Returns the number of lines with text.

Empty lines are not counted.

Fl dCal cFi el dHei ght

FldGetTextLength

Return the length of the text string of a field object.

Wrd Fl dGet Text Length (FieldPtr fld)

fld Pointer to a field object (Fi el dType data structure).

Returns the length of a field’s text string.

FldGetTextPtr

Return a pointer to the text string of a field or null.
CharPtr FldGetTextPtr (FieldPtr fld)

fld Pointer to a field object (Fi el dType data structure).

Returns a pointer to the text string of a field; NULL is a possible
value.

Fl dSet Text Ptr, Fl dGet Text Handl e

Developing Palm OS Applications, Part| 197

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype
Parameters

Result

Purpose

Prototype
Parameters
Result
Comments

See Also

FldGetVisibleLines

Return the number of lines that can be displayed within the visible
bounds of the field.

Wrd Fl dGetVisibleLines (FieldPtr fld)
fld Pointer to a field object (Fi el dType data structure).

Returns the number of lines.

FldGrabFocus

Turn the insertion point on (if the specified field is visible) and po-
sition the blinking insertion point in the field.

voi d Fl dG abFocus (FieldPtr fld)

fld Pointer to a field object (Fi el dType data structure).
Returns nothing.

This function sets the field attribute hasFocus to TRUE.

FI dRel easeFocus

198 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose

Prototype

Parameters

Result

Comments

FIdHandleEvent

Handles the following events: keyDownEvent , penDownEvent,
and f | dEnt er Event . The field’s edi t abl e and usabl e attributes
must be set to TRUE.

Bool ean Fl dHandl eEvent (FieldPtr fld,
EventPtr Event P)

fld Pointer to a field object (Fi el dType data structure).
EventP Pointer to an event (Event Type data structure).

Returns TRUE if the event was handled.
When a keyDownEvent occurs, the keystroke appears in the field

if it is a printable character or manipulates the insertion point if it
is a “movement” character. The field is automatically updated.

When a penDownEvent occurs, an “editable” field sends a
f1 dEnt er Event to the event queue.

When a f | dEnt er Event occurs, the field grabs the focus and the
insertion point is placed in the specified position.

If the event alters the contents of the field, this function visually up-
dates the field.

This function does not handle any events if the field is not editable.

Developing Palm OS Applications, Part| 199

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype
Parameters
Result

Comments

Caveats

FldInsert

Replace the current selection with the string passed.

FieldpPtr fld,
CharPtr insertChars,
Wird insertlLen)

Bool ean Fl dlnsert (

fld Pointer to the field object to insert to.
insertChars Text string to be inserted.

insertLen Length of the text string to be inserted.

Returns TRUE if the string was successfully inserted, otherwise
FALSE.

If there is no current selection, the string passed is inserted at the
position of the insertion point.

Fl dPast e, Fl dDel et e, FIl dCut , FI dCopy

FldMakeFullyVisible

Cause a dynamically resizable field to expand its height to make its
text fully visible.

Bool ean Fl dMakeFul | yVisible (Fiel dpPtr fld)
fld Pointer to a field object.
Returns TRUE if the field was not fully visible, otherwise FALSE.

If the field’s height changes, this function sends a
f | dHei ght ChangedEvent via the event queue.

If the field is in a table, the table resizes it; otherwise, it is not re-
sized.

200 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

FldPaste

Replace the current selection in the field with the contents of the
text clipboard.

void Fl dPaste (FieldPtr fld)
fld Pointer to a field object (Fi el dType data structure).
Returns nothing

This insertion point is positioned after the last character inserted
and the field is scrolled, if necessary, so the insertion point is vis-
ible.

If there is no current selection, the clipboard text is inserted at the
position of the insertion point. If there is no text in the clipboard,
do not delete the current selection.

Fl dl nsert, Fl dDel et e, FI dCut, FI dCopy

FIdRecalculateField

Update the structure that contains the word-wrapping information
for each visible line.

void Fl dRecal cul ateField (FieldPtr fld,
Bool ean redraw)

fld Pointer to a field object (Fi el dType data structure).

redraw If TRUE, redraws the field.

Returns nothing.

If necessary this function reallocates the memory block that con-
tains the displayed lines information, the block pointed to by the
| i nes member in the Fi el dType data structure.

Call this function if the field data structure is modified in a way
that invalidates the visual appearance of the field.

Developing Palm OS Applications, Part| 201

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype
Parameters
Result
Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

FIdReleaseFocus

Turn the blinking insertion point off if the field is visible and has
the current focus; reset the Graffiti state; and reset the undo state.

voi d Fl dRel easeFocus (FieldPtr fld)

fld Pointer to a field object (Fi el dType data structure).
Returns nothing.

This function sets the field attribute hasFocus to FALSE.

FIl d& abFocus

FldScrollable
Return TRUE if the field is scrollable in the direction specified.

FieldPtr fld,
D rectionType direction)

Bool ean Fl dScrol | abl e (

fld Pointer to a field object (Fi el dType data structure).

direction “up” or “down.”
Returns TRUE if the field is scrollable, FALSE otherwise.

Fl dScrollField

202 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

FldScrollField

Purpose Scroll a field up or down by the number of lines specified.

Prototype void FldScrollField (FieldPtr fld,
Wrd |inesToScroll,
D rectionType direction)

Parameters fld Pointer to a field object (Fi el dType data structure).
linesToScroll Number of lines to scroll.

direction “up” or “down.”
Result Returns nothing.

Comments Can’t scroll right or left.

The field object is redrawn if its scrolled.

See Also Fl dScrol |l abl e

FldSendChangeNotification

Purpose Send afl dChangedEvent via the event queue.

Prototype void Fl dSendChangeNotification (FieldPtr fld)
Parameters fld Pointer to a field object.

Result Returns nothing.

Developing Palm OS Applications, Part| 203

Control, Field, and Insertion Point Functions
Field Ul Functions

FldSendHeightChangeNotification

Purpose Send afl dHei ght ChangedEvent via the event queue.

Prototype voi d Fl dSendHei ght ChangeNoti fi cati on
(FieldPtr fld,
Wrd pos,
Short nunili nes)

Parameters fld Pointer to a field object.
pos Character position of the insertion point.

numLines New number of lines in the field.

Result Returns nothing.

FldSetAttributes

Purpose Set the attributes of a field.

Prototype void FldSetAttributes (FieldPtr fld,
FieldAttrPtr attrP)

Parameters fld Pointer to a Fi el dType structure.
attrP Pointer to the attributes.

Result Returns nothing.

See Also Fl dGet Attributes

204 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose
Prototype

Parameters

Result

Comments

Caveats

See Also

Purpose
Prototype

Parameters

Result

See Also

FldSetBounds

Change the position and or size of a field.

voi d Fl dSet Bounds (FieldPtr fld, RectanglePtr rect)

fld

rect

Pointer to a field object (Fi el dType data structure).

Pointer to a Rect angl eType structure that contains the new
bounds of the display.

Returns nothing.

If the field is visible, the field is redrawn within its new bounds.

The memory block that contains the word-wrapping information
will be resized if the number of visible lines is changed.

The insertion point is assumed to be off when this routine is called.

Don’t change the width of the object while it is visible.

Fl dGet Bounds

FldSetDirty

Set whether the field has been modified.

void FldSetDirty (FieldPtr fld, Boolean dirty)

fld

dirty

Pointer to a field object.
TRUE if the text is modified.

Returns nothing.

FldDirty

Developing Palm OS Applications, Part| 205

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype

Parameters

Result

Comments

See Also

FldSetFont

Set the font of the field, update the word-wrapping information
and draw the field if the field is visible.

void FldSet Font (FieldPtr fld, FontlD fontlD)

fld Pointer to a field object (Fi el dType data structure).

fontID ID of new font.
Returns nothing.

Fl dGet Font

FldSetInsPtPosition
Set the location of the insertion point for a given string position.
void FldSetInsPtPosition (FieldPtr fld, Wrd pos)

fld Pointer to a field object (Fi el dType data structure).

pos Character position of insertion point.
Returns nothing.

If the position is beyond the visible text, the insertion point is dis-
abled.

FI dGet | nsPt Posi ti on

206 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

FldSetMaxChars
Set the maximum number of characters the field accepts.
void Fl dSet MaxChars (FieldPtr fld, Wrd maxChars)

fid Pointer to a field object (Fi el dType data structure).

maxChars ~ Maximum number of characters the user may enter.
Returns nothing.

Line feed characters are included when the number of characters is
determined.

Fl dGet MaxChar s

FldSetScrollPosition

Set the string position of the first character in the first line of a
field. Redraw the field if necessary.

void Fl dSet Scrol | Position (FieldPtr fld, Wrd pos)

fld Pointer to a field object (Fi el dType data structure).

pos Character position of first visible character.
Returns nothing.

FI dGet Scrol | Posi tion

Developing Palm OS Applications, Part| 207

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype

Parameters

Result

Comments

FldSetSelection

Set the current selection in a field and highlight the selection if the
tield is visible.

void Fl dSet Sel ection (FieldPtr fld,
Wrd startPosition,
Wrd endPosi tion)

fld Pointer to a field object (Fi el dType data structure)

startPosition Starting character position of the character range

to highlight.

endPosition End character position of the character range
to highlight.

Returns nothing.

This function does not affect the display; the highlight is not re-
drawn until the field is redrawn.

To cancel a selection, set both st art Posi ti on and endPosi ti on
to the same value.

If st art Posi ti on equals endPosi t i on, the current selection is
unhighlighted.

208 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

FldSetText

Set the text value of the field, update the word-wrapping informa-
tion, and place the insertion point after the last visible character.

void FldSet Text (FieldPtr fld,
Voi dHand t ext Handl e,

Wrd of fset,
Wrd size)
fld Pointer to a field object (Fi el dType data structure).
textHandle Handle of a block containing a null-terminated text
string.
offset Offset from start of block to start of the text string.
size Allocated size of text string, not the string length.

Returns nothing.

The pointer passed is stored in the field’s structure; in other words
this function does not make a copy of the string passed.

If a size of zero is passed, the size is computed as the block size,
less the offset passed. If more text is set than there is room for in
memory, an error occurs.

WARNING: This routine does not free the memory block that
holds the current text value.

Fl dSet Text Pt r, Fl dSet Text Handl e

Developing Palm OS Applications, Part | 209

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

FldSetTextAllocatedSize

Set the number of characters allocated to hold the field’s text
string. Don’t confuse this with the length of the text string.

voi d Fl dSet Text Al | ocatedSize (FieldPtr fld,
Wrd al |l ocat edSi ze)

fld Pointer to a field object.

allocatedSize Number of characters to allocate for the text.
Returns nothing.

FIl dGet Text Al | ocat edSi ze

FldSetTextHandle
Set the handle of the block that contains the text string of a field.

void Fl dSet TextHandle (FieldPtr fld,

Handl e t ext Handl e)

fld Pointer to a field object (Fi el dType data structure).

textHandle Handle of a field’s text string; 0 is a possible value.
Returns nothing.

Fl dSet Text Pt r, Fl dSet Text

210 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Field Ul Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype

Parameters

Result
Comments

See Also

FldSetTextPtr

Set the field’s text to point to a text string.
void FldSet TextPtr (FieldPtr fld, CharPtr textP)

fid Pointer to a field object (Fi el dType data structure).

textP Pointer to a null-terminated string.

Returns nothing.

Since the field cannot resize a pointer (only handles can be re-
sized), the field must be not editable; if the field is editable, an
error occurs.

This function does not visually update the field.

FIl dSet Text Pt r, Fl dSet Text Handl e

FldSetUsable
Set a field usable or nonusable.
void Fl dSet Usable (FieldPtr fld, Bool ean usabl e)

fld Pointer to a FieldType structure.
usable TRUE to set usable, FALSE to set nonusable.
Returns nothing.

A nonusable field does not display or accept input.

Fl dEr aseFi el d, Fl dDrawFi el d

Developing Palm OS Applications, Part | 211

Control, Field, and Insertion Point Functions

Field UI Functions

Purpose

Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

FldUndo

Undo the last change made to the field object. Changes include
typing, backspaces, delete, paste, and cut.

void FldUndo (FieldPtr fld)
fld Pointer to the field that has the focus.
Returns nothing.

Fl dPast e, Fl dCut , Fl dCopy

FldWordWrap

Given a string and a width, return the number of characters that
can be displayed using the current font.

Wrd Fl dwordWap (CharPtr chars, Wrd nmaxW dt h)

chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Returns the number of characters.

212 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions
Insertion Point Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype
Parameters

Result

See Also

Insertion Point Functions

InsPtEnable

Enable or disable the insertion point. When the insertion point is
disabled it is invisible, when it is enabled it blinks.

voi d | nsPt Enabl e (Bool ean enabl el t)
enable TRUE = enable, FALSE = disable

Returns nothing.

This function is called by the Form functions when a text field loses

or gains the focus, and by the Windows function when a region of
the display is copied (W nCopyRect angl e).

| nsPt Enabl ed

InsPtEnabled

Return TRUE if the insertion point is enabled or FALSE if it is dis-
abled.

Bool ean | nsPt Enabl ed (voi d)
None.

Returns TRUE if the insertion point is enabled (blinking), returns
FALSE if the insertion point is disabled (invisible).

| nsPt Enabl e

Developing Palm OS Applications, Part| 213

Control, Field, and Insertion Point Functions
Insertion Point Functions

Purpose
Prototype
Parameters

Result

Purpose
Prototype

Parameters

Result

Comments

InsPtGetHeight

Return the height of the insertion point.
short | nsPt Get Hei ght (voi d)
None.

Returns the height of the insertion point, in pixels.

InsPtGetLocation
Return the screen-relative position of the insertion point.
void I nsPt Get Location (short *x, short *y)

X Pointer to top-left position of insertion point’s x coordinate.

y Pointer to top-left position of insertion point’s y coordinate.
Returns nothing. Stores the location in X and y.

This function is called by the Field functions. An application
would not normally call this function.

214 Developing Palm OS Applications, Part |

Control, Field, and Insertion Point Functions

Insertion Point Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype

Parameters

Result

Comments

See Also

InsPtSetHeight

Set the height of the insertion point.
voi d | nsPt Set Hei ght (short hei ght)

height

Height of the insertion point in pixels.
Returns nothing.

Set the height of the insertion point to match the character height
of the font used in the field that the insertion point is in. When the
current font is changed, the insertion point height should be set to
the line height of the new font.

If the insertion point is visible when its height is changed, it is
erased and redrawn with its new height.

| nsPt Get Hei ght

InsPtSetLocation
Set the screen-relative position of the insertion point.
void I nsPt Set Location (short x, short y)

X Number of pixels from the left side of the display.
y Number of pixels from the top of the display.

Returns nothing.

The position passed to this function is the location of the top-left
corner of the insertion point.

This function should be called only by the Field functions.

| nsPt Get Locati on

Developing Palm OS Applications, Part |

215

Control, Field, and Insertion Point Functions
Insertion Point Functions

Functions for System Use Only

InsPtCheckBlink

Prototype voi d I nsPt CheckBl i nk (void)

WARNING: For System Use Only.

InsPtinitialize

Prototype void InsPtinitialize (void)

WARNING: For System Use Only.

216 Developing Palm OS Applications, Part |

Form, List, and Menu
Functions

Form Functions

Purpose

Prototype
Parameters

Result

See Also

Purpose
Prototype
Parameters

Comments

See Also

FrmAlert

Create a modal dialog from an alert resource and display it until
the user selects a button in the dialog.

Wrd FrmAlert (Word alertld)

alertld ID of the alert resource.

Returns the item number of the button the user selected. A
button’s item number is determined by its order in the alert dialog;

the first button has the item number 0 (zero).

Fr nDoDi al og, Fr nCust onAl ert

FrmCloseAllForms

Sends a fr n0 oseEvent to all open forms.

voi d FrnC oseAl | Forns (void)
None.

Can be called by applications to ensure that all forms are closed
cleanly before exiting Pi | ot Mai n(); that is, before termination.

Fr nBaveAl | For ns

Developing Palm OS Applications, Part | 217

Form, List, and Menu Functions

Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

FrmCopyLabel

Copy the passed string into the data structure of the specified label
object in the active form.

voi d FrnmCopyLabel (FornPtr frm
Wrd | abel I D,
Char Ptr newlLabel)

frm Pointer to memory block that contains the form.
labellD ID of form label object.

newlLabel Pointer to a null-terminated string.
Returns nothing.

The size of the new label must not exceed the size of the label de-
fined in the resource. When defining the label in the resource,
specify an initial size at least as big as any of the strings that will be
assigned dynamically. Redraw the label if the form’s usabl e at-
tribute and the label’s vi si bl e attribute are set.

Fr nGet Label

218 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

FrmCopyTitle

Copy the title passed over the form’s current title. If the form is vis-
ible, the new title is drawn.

void FrnCopyTitle (FornPtr frm CharPtr newTitle)

frm Memory block that contains the form.

newTitle Pointer to the new title string.
Returns nothing.

The size of the new title must not exceed the title size defined in
the resource. When defining the title in the resource, specify an ini-
tial size at least as big as any of string to be assigned dynamically.

FrnCetTitle

FrmCustomAlert

Create a modal dialog from an alert resource and display the
dialog until the user taps a button in the alert dialog.

Wrd FrmCustomAlert (Word alertld, CharPtr si,
CharPtr s2, CharPtr s3)

alertld Resource ID of the alert.

sl,s2,s3 Strings to replace 1, A2, and /3.

Returns the button number the user tapped (first button is zero).

A button’s item number is determined by its order in the alert tem-
plate; the first button has the item number zero.

Up to three strings can be passed to this routine. They are used to
replace the “text replacement variables” 71, 22 and /3 that are con-
tained in the message string of the alert resource.

FrmAl ert, Fr nDoDi al og

Developing Palm OS Applications, Part| 219

Form, List, and Menu Functions

Form Functions

Purpose

Prototype
Parameters
Result
Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

FrmDeleteForm

Release the memory occupied by a form.

Any memory allocated to objects in the form is also released.
voi d FrnDel eteForm (FornPtr frm

frm Pointer to memory block that contains the form.
Returns nothing.

This function does not modify the display.

Fr m ni t For m Fr nRet ur nToFor m

FrmDispatchEvent

Dispatch an event to the application’s handler for the form.
Bool ean FrnDi spat chEvent (EventPtr eventP)
eventP Pointer to an event.

Returns nothing.

The event is dispatched to the current form unless the form ID is
specified in the event data, as, for example, with f r fOpenEvent .

Fr nSet Event Handl er, Fr nHandl eEvent

220 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

FrmDoDialog

Display a modal dialog until the user taps a button in the dialog.
Wrd FrnDoDi al og (FornPtr frm

frm Pointer to memory block that contains the form.

Returns the number of the button the user tapped (first button is
Zero).

A button’s item number is determined by its order in the alert tem-
plate; the first button has an item number of 0 (zero).

Fr m ni t For m Fr nCust onAl ert

FrmDrawForm

Draw all objects in a form and the frame around the form.

voi d FrnDrawForm (FornPtr frm

frm Pointer to the memory block that contains the form.
Returns nothing.

Saves the bits behind the form using the bi t sBehi ndFor mfield.

Fr nEr aseFor m Fr m ni t For m

Developing Palm OS Applications, Part| 221

Form, List, and Menu Functions

Form Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

See Also

FrmEraseForm

Erase a form from the display.

voi d FrnEraseForm (FornPtr frn

frm Pointer to the memory block that contains the form.
Returns nothing.

If the region obscured by the form was saved by Fr nDr awFor m
this function restores that region.

Fr nDr awFor m

FrmGetActiveForm

Return the currently active form.
FornPtr FrnGet ActiveForm (voi d)
None.

Returns the pointer to the memory block that contains the form.

Fr nGet Acti veForm D, Fr nBet Acti veForm

FrmGetActiveFormID

Return the ID of the currently active form.
Word FrnCet Acti veForm D (voi d)

None.

Returns the currently active form’s ID number.

Fr nCGet Acti veFor m

222 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

FrmGetControlGroupSelection

Return the item number of the control selected in a group of con-
trols.

Byte FrnGet Control G oupSel ection (FornPtr frm
Byt e groupNum

frm Pointer to memory block that contains the form.

groupNum Control group number.

Returns the item number of the selected control, -1 if none is se-
lected.

The item number is the index into the form’s obj ect s data struc-
ture.

Fr nGet Qbj ect | d, Fr nGet Qbj ect Ptr,
Fr nSet Cont r ol G oupSel ecti on

FrmGetControlValue
Return the on/off state of a control.

short FrnCGet Control Value (FornPtr frm
Word obj | ndex)

frm Pointer to memory block that contains the form.

objIndex Item number of the object.
Returns the state of the control: 1 = on; 0 = off.

The caller must specify a valid index. This function is used only for
push button and check box control objects.

Fr nGet bj ect | ndex, Fr nSet Cont r ol Val ue

Developing Palm OS Applications, Part| 223

Form, List, and Menu Functions

Form Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose

Prototype
Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

FrmGetFirstForm

Return the first form in the window list.

FornPtr FrnGetFirstForm (voi d)

None.

Returns a pointer to a form, or NULL if there are no forms.

The window list is a LIFO stack. The last window created is the
first window in the window list.

FrmGetFocus

Return the item (index) number of the object (UI element) that has
the focus.

Word FrnCet Focus (FornPtr frm
frm Pointer to memory block that contains the form.

Returns the index of the object (UI element) that has the focus, or -1
if none does.

Fr nGet bj ect | d, Fr nGet bj ect Pt r, Fr nSet Focus

FrmGetFormBounds

Return the visual bounds of the form; the region returned includes
the form’s frame.

voi d FrmCet FornBounds (FornPtr frm RectanglePtr r)

frm Pointer to memory block that contains the form.

r Pointer to a Rect angl eType structure that will contain the
bounds.

Returns bounds of the forminr .

224 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters

Result

See Also

FrmGetFormld

Return the resource ID of a form.

Wrd FrnmGet Formid (FornPtr frn

frm Pointer to memory block that contains the form.

Returns form resource ID.

Fr nGet For nPtr

FrmGetFormPtr

Return a pointer to the form that has the specified ID.

FornPtr FrnGet FornPtr (Word form d)

formld Form ID number.

Returns a pointer to the memory block that contains the form, or
NULL if the form is not in memory.

Fr nGet Form d

Developing Palm OS Applications, Part| 225

Form, List, and Menu Functions

Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

FrmGetGadgetData

Return the value stored in the dat a field of the gadget object.

Voi dPtr Frntet GadgetData (FornPtr frm
Wrd obj | ndex)

frm Pointer to memory block that contains the form.

objIndex Item number of the gadget object.

Returns a pointer to the custom gadget’s data.
Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the dat a field of a gadget object

contains a pointer to the custom object’s data structure.

Fr nSet Gadget Dat a

FrmGetLabel

Return pointer to the text of the specified label object in the speci-
tied form.

CharPtr FrntCetLabel (FornPtr frm Wrd | abellD)

frm
labellD

Pointer to memory block that contains the form.
ID of the label object.

Returns pointer to the label string.

Does not make a copy of the string; returns a pointer to the string.
The object must be a label.

Fr nCopyLabel

226 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

See Also

FrmGetNumberOfObjects

Return the number of objects in a form.

Word FrnCGet Nunber O Qbj ects (FornPtr frm

frmPtr Pointer to memory block that contains the form.
Returns the number of objects in the specified form.

FrmGet bj ect Pt r, FrnGet oj ect 1l d

FrmGetObjectBounds

Retrieve the bounds of an object given its form and index.

voi d FrnCet bj ect Bounds (FornPtr frm
Wrd bj | ndex,
Rect angl ePtr r)

frm Pointer to memory block that contains the form.
Objlndex Index of an object in the form.

r Pointer to the rectangle containing the object bounds.
Returns nothing. The object’s bounds are returned inr .

Fr nGet bj ect Posi t on, Fr nGet hj ect | ndex,
Fr nSet Obj ect Posi t on

Developing Palm OS Applications, Part| 227

Form, List, and Menu Functions

Form Functions

Purpose
Prototype

Parameters

Result
Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

FrmGetObjectld
Return the ID of the specified object.
Word FrinGet Qbjectld (FornPtr frm Word obj I ndex)

frm Pointer to memory block that contains the form.

objIndex Index of an object in the form.
Returns the ID number of a object.

The application developer specifies a unique object ID.

Fr nGet Obj ect Pt r, Fr nGet Qbj ect | ndex

FrmGetObjectindex

Return the item number of an object. The item number is the posi-
tion of the object in the form’s objects list.

Wird FrnCet Qoj ectlndex (FornPtr frm Wrd objlD)

frmPtr
objID

Pointer to memory block that contains the form.

ID of an object in the form.
Returns the item number of an object (the first item number is 0).

Fr nGet bj ect Pt r, Fr nGet Qoj ect 1 d

228 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose

Prototype

Parameters

Result
Comment

See Also

Purpose
Prototype

Parameters

Result

See Also

FrmGetObjectPositon

Return the coordinate of the specified object relative to the form.

voi d FrnCet bj ectPositon (FornPtr frm
Wrd obj I ndex,
SWrdPtr x, SWordPtr vy)

frm Pointer to memory block that contains the form.
objIndex Item number of the object.

X Pointer to window-relative x position.

y Pointer to window-relative y position.

Returns nothing.

177
1

The function name is misspelled (the second is missing).

Fr nCGet Obj ect Bounds, Fr nSet Qbj ect Posi t on

FrmGetObjectPtr
Return a pointer to the data structure of an object in a form.
void * FrnCetCbhjectPtr (FornPtr frm Wrd objl ndex)

frm Pointer to memory block that contains the form.

objIndex Item number of the object.
Returns pointer to an object in the form.

Fr nGet Obj ect | ndex, Fr nGet Ohj ect | d

Developing Palm OS Applications, Part| 229

Form, List, and Menu Functions

Form Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype
Parameters
Result
Comments

See Also

FrmGetObjectType

Return the type of an object.

For noj ect Ki nd Frntet Coj ect Type (FornPtr frm
Wrd obj | ndex)

frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Returns For mbj ect Ki nd of the item specified.

FrmGetTitle

Return a pointer to the title string of a form.

CharPtr FrnCGetTitle (FornPtr frm

frm Pointer to memory block that contains the form.
Returns a pointer to title string.

This is a pointer to the internal structure, not a copy.

FrnCopyTitle FrnBetTitl e

230 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose

Prototype
Parameters
Result
Comments

See Also

Purpose
Prototype
Parameters

Result

FrmGetUserModifiedState

Return TRUE if an object in the form has been modified by the user
since it was initialized or since last call to
Fr nSet Not User Mbdi fi ed.

Bool ean FrnGet User Modi fi edState (FornPtr frm
frm Pointer to the memory block that contains the form.
Returns TRUE if an object was modified, FALSE otherwise.
Returns TRUE if the di r t y attribute of the form has been set.

Fr nSet Not User Mbdi fi ed

FrmGetWindowHandle

Return the window handle of a form.

W nHandl e FrnGet WndowHandl e (FornPtr frm

frm Pointer to memory block that contains the form.

Returns the handle of the memory block that the form is in. Since

the form structure begins with the W ndowTy pe structure, this is
also a W nHandl e.

Developing Palm OS Applications, Part| 231

Form, List, and Menu Functions

Form Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

FrmGotoForm

Send a f r nJ oseEvent to the current form; send a
frmoadEvent and afrnOpenEvent to the specified form.

voi d FrnGot oForm (Word formn d)
formld ID of the form to display.

Returns nothing.

The form event handler (Fr nHandl eEvent) erases and disposes of
a form when it receives a f r 1l oseEvent .

Fr nPopupFor m

FrmHandleEvent

Handle the event that has occurred in the form.

Bool ean FrnHandl eEvent (FornPtr frm
Event Ptr event)

frm Pointer to the memory block that contains the form.

event Pointer to the event data structure.
Returns TRUE if the event was handled.

Fr nDi spat chEvent

232 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose

Prototype
Parameters
Result

Comments

Purpose

Prototype

Parameters

Result

See Also

FrmHelp

Display the specified help message until the user taps the done
button in the help dialog.

void FrimHel p (Wrd hel pMsgl d)

helpMsgld Resource ID of help message string.

Returns nothing.

The ID passed is the resource ID of a string resource that contains

the help message. The help message is displayed in a modal dialog
with vertical scrolls if necessary.

FrmHideObject

Erase the specified object and set its attribute data so that it does
not redraw or respond to the pen.

void FrnH deObj ect (FornPtr frm Wrd objl ndex)

frm Pointer to memory block that contains the form.

objIndex Item number of the object.
Returns nothing.

Fr nGet bj ect | ndex, Fr nShowhj ect

Developing Palm OS Applications, Part| 233

Form, List, and Menu Functions

Form Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose

Prototype
Parameters
Result

See Also

FrminitForm

Load and initialize a form resource.
FornPtr FrminitForm (Wrd rsclD)
Resource ID of the form.

rsclD

Returns a pointer to the form memory block.

Displays an error message if the form has already been initialized.
This function does not affect the display nor make the form active.

Fr nDoDi al og, Fr nDel et eFor m

FrmPopupForm

Send a f r mOpenEvent to the specified form. This routine differs
from Fr nGot oFor min that the current form is not closed.

voi d FrmPopupForm (Word form d)
formID Resource ID of form to open.

Returns nothing.

Fr nGot oFor m

234 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

FrmReturnToForm

Erase and delete the currently active form and make the specified
form the active form.

voi d FrnReturnToForm (Word formd)
formID Resource ID of the form to return to.

Returns nothing.

It is assumed that the form being returned to is already loaded into
memory and initialized. Passing a form ID of 0 returns to the first

form in the window list, which is the last form to be loaded.

Fr n(Got oFor m Fr nPopupFor m

FrmSaveAllForms

Send a fr nSaveEvent to all open forms.

voi d FrnBaveAl | Forns (voi d)
None.
Returns nothing.

Fr nCl oseAl | For s

Developing Palm OS Applications, Part| 235

Form, List, and Menu Functions

Form Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

FrmSetActiveForm

Set the active form. All input (key and pen) is directed to the active
form.

voi d Frntet ActiveForm (FornPtr frm
frm Pointer to memory block that contains the form.
Returns nothing.

A penDownEvent outside the form but within the display area is
ignored.

Fr nGet Acti veFor m

FrmSetCategorylLabel

Set the category label displayed on the title line of a form. If the
form’s vi si bl e attribute is set, redraw the label.

voi d Frntet Cat egorylLabel (FornPtr frm
Wrd obj I ndex,

Char Pt r newlLabel)

frm Pointer to memory block that contains the form.
objIndex Item number of the object.
newLabel Pointer to the name of the new category.

Returns nothing.

The pointer to the new label is saved in the object.

236 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

FrmSetControlGroupSelection

Set the selected control in a group of controls.

voi d Frntet Control G oupSel ection (FornPtr frm
Byt e groupNum
Wrd control I D)

frm Pointer to memory block that contains the form.
groupNum Control group number.

controllD ID of control to set.

Returns nothing.

This function unsets all the other controls in the group. The display
is updated.

Fr nGet Cont r ol G oupSel ecti on

FrmSetControlValue
Turn a control on or off.

FornmPtr frm
Wrd obj | ndex,
short newval ue)

voi d Frntet Control Val ue (

frm Pointer to memory block that contains the form.
objIndex Item number of the object.
newValue New control value (non-zero equals on).

Returns nothing.
The display is not changed.

Fr nGet Cont r ol Val ue

Developing Palm OS Applications, Part| 237

Form, List, and Menu Functions

Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype

Parameters

Result

See Also

FrmSetEventHandler

Set the event handler callback routine for the specified form.

voi d Frntet Event Handl er (FornPtr frm
For nEvent Handl er Pt r handl er)

frm Pointer to memory block that contains the form.

handler Address of a function.
Returns nothing.

Fr ntHandl eEvent calls this handler whenever it receives an event.

This routine should be called right after a form resource is loaded.
The callback routine is the mechanism for dispatching events to an
application. The tutorial explains how to use callback routines.

Fr nDi spat chEvent

FrmSetFocus

Set the focus of a form to the specified object.
voi d Frntet Focus (FornPtr frm Word objl ndex)

frm Pointer to memory block that contains the form.

Item number of the object (UI element) that gets the
focus.

objIndex

Returns nothing.

Fr nGet Focus, Fr nGet Qbj ect | ndex

238 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype
Parameters
Result

See Also

FrmSetGadgetData

Store the value passed in the dat a field of the gadget object.

FornPtr frm
Wrd obj | ndex,
Voi dPtr dat a)

voi d FrnBet Gadget Dat a (

frmPtr Pointer to memory block that contains the form.
objIndex Item number of the object.
data Application-defined value.

Returns nothing.
Gadget objects provide a way for an application to attach custom

gadgetry to a form. In general, the data field of a gadget object con-
tains a pointer to the custom object’s data structure.

Fr nGet Gadget Dat a, Fr nGet (hj ect | ndex

FrmSetNotUserModified

Clear the flag that keeps track of whether or not the form has been
modified by the user.

voi d Frntet Not User Modi fied (FornPtr frm
frm Pointer to memory block that contains the form.
Returns nothing.

Fr nGCet User Modi fi edSt at e

Developing Palm OS Applications, Part| 239

Form, List, and Menu Functions

Form Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype

Parameters

Result

Comments

See Also

FrmSetObjectPositon

Set the window-relative coordinate of the specified object.

voi d Frntet Cbj ect Positon (FornPtr frm
Wrd obj I ndex,

SWwrd x, SWrd vy)
frm Pointer to memory block that contains the form.
objIndex Item number of the object.
X Window-relative coordinate.
y Window-relative coordinate.

Returns nothing.

Does not update the display. Presently only label objects are af-
fected.

Fr nCet bj ect Posi t on, Fr nGet bj ect | ndex,
Fr nGet Obj ect Bounds

FrmSetTitle
Set the title of a form. If the form is visible, draw the new title.
void FrnBetTitle (FornPtr frm CharPtr newlitle)

frm Pointer to memory block that contains the form.

newTitle Pointer to the new title string.
Returns nothing.

Draws the title if the form is visible.

Saves the pointer to the passed title string. Does not make a copy.

FrnGetTitl e FrmCopyTitl e, Fr nCopylabel

240 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Form Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

FrmShowObject

Set an object (UI element) as usable. If the form is visible, draw the
object.

voi d FrnthowObj ect (FornPtr frm Wrd objl ndex)

frm Pointer to memory block that contains the form.

objIndex Item number of the object.
Returns nothing.

Fr nH deQbj ect, Fr nGet Gbj ect | ndex

FrmUpdateScrollers
Visually update the field scroll arrow buttons.

void FrmJpdateScrollers (FornPtr frm
Word upl ndex,
Wrd downl ndex,
Bool ean scrol | abl eUp,
Bool ean scrol | abl eDown)

frm Pointer to a form.

upIndex Index of the up-scroller button.
downIndex Index of the down-scroller button.
scrollableUp TRUE if the up-scroll should be active.

scrollableDown TRUE if the down-scroll should be active.
Returns nothing.

Fr nGet bj ect | ndex

Developing Palm OS Applications, Part| 241

Form, List, and Menu Functions

Form Functions

Purpose
Prototype

Parameters

Result

Purpose
Prototype
Parameters
Result

See Also

FrmUpdateForm

Send a f r mMpdat eEvent to the specified form.

voi d Frnpdat eForm (Word form d, Wrd updat eCode)

formID Resource ID of form to open.

updateCode If the update code is f r TRedr awpdat eCode, the
form reinitializes its global variables and redraws
itself. Otherwise, the form reinitializes its global
variables but does not redraw itself.

Returns nothing.

FrmVisible

Return TRUE if the form is visible (is drawn).

Bool ean FrmVisible (FornPtr frm

frm Pointer to memory block that contains the form.
Returns TRUE if visible, FALSE if not visible.

Fr nDr awFor m) Fr nEr aseFor m

242 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
List Ul Functions

List Ul Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

LstDrawlList

Draw the list object if it is usable.

void LstDrawkLi st (ListPtr list)

list Pointer to list object (Li st Type data structure).
Returns nothing.

If there are more choices than can be displayed, this function en-

sures that the current selection is visible. If possible, the current se-
lection is displayed at the top. The current selection is highlighted.

If the list is disabled, it's drawn grayed-out (strongly discouraged).
If it's empty, nothing is drawn. If it's not usable, nothing is drawn.

This function sets the vi si bl e attribute to TRUE.

Fr nCGet Obj ect Pt r, Lst Popupli st, Lst Er aseli st

LstEraselList

Erase a list object.

voi d LstEraselList (ListPtr ListP)
ListP Pointer to a list object (Li st Type data structure).
Returns nothing.

The vi si bl e attribute is set to FALSE by this function.

Fr nGet Obj ect Ptr, Lst DrawlLi st

Developing Palm OS Applications, Part| 243

Form, List, and Menu Functions

List UI Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype
Parameters

Result

See Also

LstGetNumberOfltems

Return the number of items in a list.

Word Lst Get NunberOfltens (ListPtr ListP)

ListP Pointer to a list object (Li st Type data structure).
Returns the number of items in a list.

Fr nGet Obj ect Pt r, Lst Set Li st Choi ces

LstGetSelection

Return the currently selected choice in the list. If there is no selec-
tion, return NoLi st Sel ect i on (-1).

Wird Lst Get Sel ection (ListPtr ListP)
ListP Pointer to list object.

Returns the item number of the current list choice. The list choices
are numbered sequentially, starting with 0; -1 = none.

Fr nGet Obj ect Ptr, Lst Set Li st Choi ces, Lst Set Sel ecti on,
Lst CGet Sel ecti onText

244 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
List Ul Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

LstGetSelectionText

Return a pointer to the text of the specified item in the list or NULL
if no such item exists.

CharPtr LstCetSelectionText (ListPtr ListP,
Word item\un

ListP Pointer to list object.

itemNum Item to select (0 = first item in list).

Returns pointer to the text of the current selection, or NULL if out
of bounds.

This is a pointer within Li st Type structure, not a copy.

Fr nGet Obj ect Ptr, Lst Set Li st Choi ces

Developing Palm OS Applications, Part| 245

Form, List, and Menu Functions

List UI Functions

Purpose

Prototype

Parameters

Result

Comments

LstHandleEvent

Handle event in the specified list; the list object must have its
usabl e and vi si bl e attribute set to TRUE. (This routine handles
two type of events, penDownEvent and | st Ent er Event ; see
Comments).

Bool ean pascal LstHandl eEvent (ListPtr |istP,
Event Ptr pEvent)

listP Pointer to a list object (Li st Type data structure).

pEvent Pointer to an Event Type structure.

Return TRUE if the event was handled. The following cases will
result in a return value of TRUE:

e A penDownEvent within the bounds of the list.

e Al st Ent er Event with a list ID value that matches the list
ID in the list data structure.

When this routine receives a penDownEvent , it checks if the pen
position is within the bounds of the list object. If it is, this routine
tracks the pen until the pen comes up. If the pen comes up within
the bounds of the list, a | st Ent er Event is added to the event
queue, and the routine is exited.

When this routine receives a | st Ent er Event, it checks that the
list ID in the event record matches the ID of the specified list. If
there is a match, this routine creates and displays a popup window
containing the list’s choices, and the routine is exited.

If a penDownEvent is received while the list’s popup window is
displayed, and the pen position is outside the bounds of the popup
window, the window is dismissed. If the pen position is within the
bounds of the window, this routine tracks the pen until it comes
up. If the pen comes up outside the list object, a| st Ent er Event

is added to the event queue.

246 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
List Ul Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

LstMakeltemVisible

Make an item visible, preferably at the top. If the item is already
visible, no changes are made.

ListPtr ListP,
Word item\um

Lst Makel tenVi si bl e (

ListP Pointer to a list object (Li st Type data structure).

itemNum Item to select (0 = first item in list).
Returns nothing.

Does not visually update the list. You must call Lst Dr awLi St to
update it.

Fr nGet Obj ect Pt r, Lst Set Sel ecti on, Lst Set Topltem
Lst Dr awLi st

LstPopuplList

Display a modal window that contains the items in the list.
short LstPopupList (ListPtr ListP)

ListP Pointer to list object.

Returns the list item selected, or -1 if no item was selected.

Saves the previously active window. Creates and deletes the new
popup window.

Fr nCet Qbj ect Ptr

Developing Palm OS Applications, Part| 247

Form, List, and Menu Functions

List UI Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

LstSetDrawFunction

Set a callback function to draw each item instead of drawing the
item’s text string.

voi d Lst Set DrawFunction (ListPtr |ist,
Li st DrawbDat aFuncPtr func)

list Pointer to list object.

func Pointer to function which draws items.

Returns nothing.
This function also adjusts t opl t emto prevent a shrunken list from
being scrolled down too far. Use this function for custom draw

functionality.

Fr nGet bj ect Ptr, Lst Set Li st Choi ces

LstSetHeight

Set the number of items visible in a list.

ListPtr ListP,
Word vi si bl el t ens)

voi d Lst Set Hei ght (

ListP

visibleltems

Pointer to list object.

Number of choices visible at once.
Returns nothing.
This function does not redraw the list if it is already visible.

Fr nGet Obj ect Ptr

248 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
List Ul Functions

Purpose

Prototype

Parameters

Result
Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

LstSetListChoices

Set the items of a list to the array of text strings passed to this func-
tion. This function does not affect the display of the list.

voi d Lst Set Li st Choices (ListPtr ListP,
char ** jtensText,
U nt nunitens)

ListP Pointer to a list object.
itemsText Pointer to an array of text strings.
numltems Number of choices in the list.

Returns nothing.
If the list is visible, erases the old list items.

Fr nGet Qbj ect Ptr, Lst Set Sel ecti on, Lst Set Topl t em
Lst Drawli st, Lst Set Hei ght, Lst Set Dr awFunct i on

LstSetPosition

Set the position of a list.

Li stPtr
short x,
short vy)

void Lst SetPosition (Li st P,

ListP Pointer to a list object
X Left bound.
y Top bound.

Returns nothing.

The list is not redrawn. Don’t call this function when the list is vis-
ible.

Fr nGet bj ect Pt r

Developing Palm OS Applications, Part| 249

Form, List, and Menu Functions

List UI Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

LstSetSelection
Set the selection for a list.

Li stPtr ListP,
Word itemum

voi d Lst Set Sel ection (

ListP

itemNum

Pointer to a list object.

Item to select (0 = first item in list, -1 = none).
Returns nothing.

The old selection, if any, is unselected. If the list is visible, the se-
lected item is visually updated. The list is scrolled to the selection,

if necessary.

Fr nGet Qbj ect Ptr, Lst Set Sel ecti on

LstSetTopltem

Set the item visible. The item cannot become the top item if it's on
the last page.
void LstSetTopltem (ListPtr ListP, Unt itenNum

ListP

itemNum

Pointer to list object.

Item to select (0 = first item in list).
Returns nothing.
Does not update the display.

Fr nGet Obj ect Pt r, Lst Set Sel ecti on, Lst Makel t enVi si bl e,
Lst DrawLi st, Lst Er aselLi st

250 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Menu Functions

Menu Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

MenuDispose
Release any memory allocated to support the menu management.
voi d MenuDi spose (MenuBar Ptr MenuP)

MenuP Pointer returned by Menul ni t ; this is a pointer to a

MenuBar Type data structure.
Returns nothing.
This function is useful for applications that have multiple menu
bars. It frees all memory allocated by a menu, resets the command

status, and restores the saved bits to the screen.

Menul ni t, MenuDr awiMEnu

MenuDrawMenu
Draw the current menu bar and the last pull-down that was visible.

voi d MenuDrawienu (MenuBar Ptr MenuP)

MenuP Pointer to a MenuBar Type data structure.

Returns nothing.

If a pull-down menu was visible the last time the menu bar was vis-
ible, the pull-down menu is also drawn. The first time a menu bar
is drawn no pull-down menu is displayed.

The menu bar and the pull-down menu are drawn in front of all
the applications windows.

Screen regions obscured by the menus are saved by this function
and restored by MenuEr aseSt at us.

Menul ni t, MenuEr aseSt at us, MenubDi spose

Developing Palm OS Applications, Part| 251

Form, List, and Menu Functions
Menu Functions

MenuEraseStatus
Purpose Erase the menu command status.
Prototype void MenuEraseStatus (MenuBar Ptr MenuP)

Parameters MenuP Pointer to a MenuBar Type data structure, or NULL
for the current menu.

Result Returns nothing.

See Also Menulnit

MenuGetActiveMenu
Purpose Returns a pointer to the current menu.
Prototype MenuBar Ptr MenuCet ActiveMenu (voi d)
Parameters None.
Result Returns a pointer to the current menu, NULL if there is none.

See Also MenuSet Acti veMenu

252 Developing Palm OS Applications, Part |

Form, List, and Menu Functions
Menu Functions

Purpose

Prototype

Parameters

Result

Comments

MenuHandleEvent

Handle events in the current menu. This routine handles two types
of events, penDownEvent and wi nEnt er Event .

Bool ean MenuHandl eEvent (MenuBar Ptr MenuP,
Event Ptr event,
WordPtr error)

MenuP Pointer to a MenuBar Type data structure.
event Pointer to an Event Type structure.
error Error (or 0 if no error).

Returns TRUE if the event is handled. (If the event is a
penDownEvent within the menu bar or the menu, or the eventis a
keyDownEvent that the menu supports.)

When MenuHandl eEvent receives a penDownEvent , it checks if
the pen position is within the bounds of the menu object. If it is,
MenuHandl eEvent tracks the pen until it comes up. If the pen
comes up within the bounds of the menu, a wi nEnt er Event is
added to the event queue, and the routine is exited.

When MenuHandl eEvent receives a wi nEnt er Event, it checks
that the menu ID in the event record matches the ID of the speci-
fied menu. If there is a match, MenuHandl eEvent creates and dis-
plays a popup window containing the menu’s choices, and the
routine is exited.

If a penDownEvent is received while the menu’s popup window is
displayed, and the pen position is outside the bounds of the popup
window, the menu is dismissed. If the pen position is within the
bounds of the window MenuHand| eEvent tracks the pen until it
comes up. If the pen comes up in the menu, a wi NExi t Event is
added to the event queue.

Developing Palm OS Applications, Part| 253

Form, List, and Menu Functions

Menu Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose
Prototype

Parameters

Result

See Also

Menulnit

Load a menu resource from a resource file.
MenuBar Ptr Menulnit (Word resourcel d)
resourceld ID that identifies the menu resource.

Returns the pointer to a memory block allocated to hold the menu
resource (a pointer to a MenuBar Type data structure).

The menu is not usable until MenuSet Act i veMenu is called.

MenuSet Acti veMenu, MenuDi spose

MenuSetActiveMenu

Set the current menu.

MenuBar Pt r MenuSet Acti veMenu (MenuBar Ptr MenuP)

MenuP Pointer to the memory block that contains the new

menu, or NULL for none.

Returns a pointer to the menu that was active before the new menu
was set, or NULL if no menu was active.

MenuGet Acti veMenu

254 Developing Palm OS Applications, Part |

Table Functions

TbiDrawTable
Purpose Draw a table.
Prototype voi d Tbl DrawTabl e (Tabl ePtr table)
Parameters table Pointer to a table object.
Result Returns nothing.

See Also Tbl Er aseTabl e, Thl Redr awTabl e,
Tbl Set Cust onDr awPr ocedur e

TbIEditing
Purpose Check whether a table is in edit mode.
Prototype Bool ean Thl Editing (Tabl ePtr table)
Parameters table Pointer to a table object.
Result Returns TRUE if the table is in edit mode, FALSE otherwise.

Comments The table is in edit mode while the user edits a text item.

Developing Palm OS Applications, Part | 255

Table Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

See Also

TblEraseTable

Erase a table object.

voi d Tbl EraseTabl e (Tabl ePtr tabl e)
table Pointer to a table object.
Returns nothing.

Tbl Dr awTabl e, Tbl Set Cust onDr awPr ocedur e,
Tbl Redr awTabl e

TblIFindRowData

Return the row number that contains the specified data value.

Bool ean Tbl Fi ndRowData (Tabl ePtr tabl e,
ULong dat a,
WrdPtr rowP)

table Pointer to a table object.
data Row data to find.
rowP Pointer to the row number (return value).

Returns TRUE if a match was found, FALSE otherwise.

Tbl Get Rowbat a, Thl Fi ndRowl D

256 Developing Palm OS Applications, Part |

Table Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype

Parameters

Result

See Also

TblIFindRowID

Return the number of the row that matches the specified ID.

Bool ean Tbl Fi ndRowl D (Tabl ePtr tabl e,

Wrd id,
VWordPtr rowP)
table Pointer to a table object.
id Row ID to find.
rowP Pointer to the row number (return value).

Returns TRUE if a match was found, FALSE otherwise.

Tbl Fi ndRowDat a

TblGetBounds

Return the bounds of a table.

voi d Tbl Get Bounds (Tabl ePtr table, RectanglePtr r)

table Pointer to a table object.

r Pointer to a Rect angl eType structure.

Returns nothing. Stores the bounds inr .

Tbl Get | t enBounds

Developing Palm OS Applications, Part | 257

Table Functions

ThlGetColumnSpacing

Purpose Return the spacing after the specified column.

Prototype Word Tbl Get Col umSpaci ng (Tabl ePtr tabl e,
Word col umm)

Parameters table Pointer to a table object.

column Column number (zero-based).
Result Returns the spacing after column (in pixels).

See Also Tbl Get Col unmmW dt h, Tbl Set Col utmSpaci ng,
Tbl Set Col umUsabl e

TbhlGetColumnWidth

Purpose Return the width of the specified column.

Prototype Wird Tbl Get Col uimW dt h (Tabl ePtr tabl e,
Wrd col unm)

Parameters table Pointer to a table object.

column Column number (zero-based).
Result Returns the width of a column (in pixels).

See Also Tbl Get Col umSpaci ng, Tbl Set Col unnW dt h,
Tbl Set Col umUsabl e

258 Developing Palm OS Applications, Part |

Table Functions

Purpose

Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

TblGetCurrentField

Return a pointer to the field structure in which the user is cur-
rently editing a text item.

FieldPtr Thl GetCurrentField (TablePtr table)
table Pointer to a table object.
Returns Fi el dPtr, or NULL if the table is not in edit mode.

Tbl Get Sel ecti on

TblGetltemBounds

Return the bounds of an item in a table.

void Thl GetltenBounds (Tabl ePtr table,
Wrd row, Wrd col um,
Rect angl ePtr r)

table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

r Pointer to a structure that holds the bounds of the
item.

Returns nothing. Stores the bounds inr.

Developing Palm OS Applications, Part | 259

Table Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters

Result

See Also

Purpose
Prototype
Parameters

Result

TblGetltemInt

Return the integer value stored in a table item.

Tabl ePtr tabl e,
Wrd row, Word col um)

Wrd Thl Getltem nt (

table Pointer to a table object.
row Row of the item to select (zero-based).
column Column of the item to select (zero-based).

Returns the integer value.

Tbl Set | t enl nt

ThlGetLastUsableRow
Return the last row in a table that is usable (visible).
Word Tbl Get Last Usabl eRow (Tabl ePtr table)

table Pointer to a table object.

Returns the row index (zero-based) or -1 if there are no usable

TOWS.

Tbl Get Rowbat a, Thl Get Row D

TblGetNumberOfRows

Return the number of rows in a table.

Word Tbl Get Nunber O Rows (Tabl ePtr tabl e)
table

Pointer to a table object.

Returns the number of rows in the specified table.

260 Developing Palm OS Applications, Part |

Table Functions

Purpose
Prototype

Parameters

Comments

See Also

Purpose
Prototype

Parameters

Result

See Also

Purpose
Prototype

Parameters

Result

See Also

TblGetRowData
Return the data value of the specified row.
ULong Tbl Get RowDat a (Tabl ePtr table, Wrd row)

table Pointer to a table object.

row Row of the item to select (zero-based).
The data value is a placeholder for application-specific values.

Tbl Get Row D, Tbl Set RowDat a

ThiGetRowHeight
Return the height of the specified row.
Word Thbl Get RowHei ght (Tabl ePtr table, Wrd row

table Pointer to a table object.

row Row to get (zero-based).
Returns the height in pixels.

Thl Get | t enBounds, Thl Set RowHei ght

ThlGetRowID

Return the ID value of the specified row.

Wrd Tbl Get Row D (Tabl ePtr table, Wrd row

table Pointer to a table object.

row Row for which the ID will be returned (zero-based).
Returns the ID value of the row in the table.

Tbl Get Rowbat a, Thl Set RowHei ght

Developing Palm OS Applications, Part | 261

Table Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

TbhlGetSelection

Return the row and column of the currently selected table item.

Tabl ePtr tabl e,
VWordPtr rowP,
WordPtr col uimpP)

Bool ean Tbl Get Sel ection (

table Pointer to a table object.

rowP Pointer to a Word variable in which to store the row
(zero-based).

columnP Pointer to a Word variable in which to store the

column (zero-based).
Returns TRUE if the item is highlighted, FALSE if not.

Tbl Set RowSel ect abl e

TblGrabFocus

Put a table into edit mode.

voi d Thl G abFocus (Tabl ePtr tabl e,
Wrd row, Wrd col umm)

table Pointer to a table object.
row Current row to be edited (zero-based).
column Current column to be edited (zero-based).

Returns nothing.

Displays an error if the row or column passed is out of bounds. An
editable field must exist in the coordinates passed to this function.

Tbl Rel easeFocus

262 Developing Palm OS Applications, Part |

Table Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

Comments

See Also

TbhlHandleEvent

Handle an event for the table.

Bool ean Tbl Handl eEvent (Tabl ePtr tabl e,
Event Ptr event)

table Pointer to a table object.
event The event to be handled.

Returns TRUE if the event was handled, FALSE if it was not.

TblinsertRow

Insert a row into the table before the specified row.

The number of rows in the table is not increased; the last row in the
table is removed.

voi d Tbl I nsert Row (Tabl ePtr table, Wrd row)

table Pointer to a table object.

row Row to insert (zero-based).
Returns nothing.

If the r owparameter is greater than or equal to the number of rows
in the table, an error is displayed.

Tbl RenoveRow, Thl Set RowUsabl e, Tbl Set RowSel ect abl e,
Tbl Mar kRowl nval i d

Developing Palm OS Applications, Part | 263

Table Functions

Purpose
Prototype

Parameters

Comments

Result

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

TbhIMarkRowlInvalid

Mark the image of the specified row invalid.
voi d Tbl Mar kRowl nval id (Tabl ePtr table, Wrd row

table Pointer to a table object.

row Row of the item to select (zero-based).

After calling this function, call Thl Redr awTabl e to redraw all
rows marked invalid. Rows not marked invalid are not redrawn.

Returns nothing.

Tbl RenoveRow, Thl Set Rowlsabl e, Tbl Set RowSel ect abl g,
Tbl Mar kTabl el nval i d, Tbl Row nval i d

TbIMarkTablelnvalid

Mark the image of all the rows in a table invalid.

voi d Tbl MarkTabl el nvalid (Tabl ePtr table)
table

Pointer to a table object.

Returns nothing.

After calling this function, you must call Tbl Redr awTabl e to
redraw all rows. Rows not marked invalid do not draw.

Thl Er aseTabl e, Tbl Redr awTabl e, Tbl Mar kTabl el nval i d

264 Developing Palm OS Applications, Part |

Table Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

TbIRedrawTable

Redraw the rows of the table that are marked invalid.
voi d Tbl RedrawTabl e (Tabl ePtr table)

table Pointer to a table object.

Returns nothing.

Tbl Mar kTabl el nval i d

TblReleaseFocus

Release the focus.

voi d Tbl Rel easeFocus (Tabl ePtr table)
table

Pointer to a table object.

Returns nothing.

If the current item is a text item, the memory allocated for editing

is released and the insertion point is turned off.

Tbl G abFocus

Developing Palm OS Applications, Part | 265

Table Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

TbIRemoveRow
Remove the specified row from the table.
voi d Tbl RenoveRow (Tabl ePtr table, Wrd row)

table Pointer to a table object.

row Row to remove (zero-based).

Returns nothing.

The number of rows in the table is not decreased; an unusable row

is added to the end of the table. If an invalid row is specified, an
error is displayed.

This function does not visually update the display.

Tbl | nsert Row, Thl Set RowUsabl e, Thl Set RowSel ect abl e,
Tbl Mar kRowl nval i d

TbIRowlInvalid

Determine whether a row is invalid. Invalid rows need to be re-
drawn.

Bool ean Tbl Rowi nvalid (Tabl ePtr table, Wrd row

table Pointer to a table object.

row Row number (zero-based).
Returns TRUE if the row is invalid, FALSE if it’s valid.

Tbl Mar kRowl nval i d

266 Developing Palm OS Applications, Part |

Table Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result
Comments

See Also

TbIRowSelectable

Determine whether the specified row is selectable. Rows that are
not selectable don’t highlight when touched.

Bool ean Tbl RowSel ect abl e (Tabl ePtr table, Wrd row)

table Pointer to a table object.

row Row of the item to select (zero-based).

Returns TRUE if the row is selectable, FALSE if it’s not.

TbIRowUsable
Determine whether the specified row is usable.
Bool ean Tbl RowUsabl e (Tabl ePtr table, Wrd row)

table Pointer to a table object.

row Row number (zero-based).
Returns TRUE if the row is usable, FALSE if it’s not.
Rows that are not usable do not display.

Tbl RowSel ect abl e, Tbl Get Last Usabl eRow

Developing Palm OS Applications, Part | 267

Table Functions

TblSelectltem

Purpose Select (highlight) the specified item. If there is already a selected
item, it is unhighlighted.

Prototype void Tbl Sel ectltem (Tabl ePtr tabl e,
Word row,
Word col umm)

Parameters table Pointer to a table object.
row Row of the item to select (zero-based).
column Column of the item to select (zero-based).

Result Returns nothing.

See Also Tbl RowSel ect abl e, Thl Get | t enBounds, Thl Get | t em nt

ThlSetColumnSpacing
Purpose Set the spacing after the specified col um.

Prototype voi d Tbl Set Col umSpaci ng (Tabl ePtr table,
Word col umn,
Word spaci ng)

Parameters table Pointer to a table object.
column Column number (zero-based).
spacing Spacing after the column.

Result Returns nothing.

See Also Tbl Set Col untmUsabl e

268 Developing Palm OS Applications, Part |

Table Functions

Purpose

Prototype

Parameters

Result
Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

TblSetColumnUsable

Set a column in a table usable or unusable.

Tabl ePtr table,
Word row,
Bool ean usabl e)

voi d Tbl Set Col unmUsabl e (

table Pointer to a table object.
column Column of the item to select (zero-based).
usable True for usable or false for not usable.

Returns nothing.
Columns that are not usable do not display.

Tbl Mar kRowl nval i d

TbhlSetColumnWidth

Set the width of the specified column.

voi d Thl Set Col umWdth (Tabl ePtr tabl e,
Word col umm,

Word wi dt h)
table Pointer to a table object.
column Column number (zero-based).
width Width of the column (in pixels).

Returns nothing.

Tbl Get Col umW dt h

Developing Palm OS Applications, Part | 269

Table Functions

TblSetCustomDrawProcedure
Purpose Set the custom draw callback procedure for the column specified.

Prototype voi d Tbl Set Cust onDr awPr ocedur e(Tabl ePtr tabl e,
Wrd col um,
Voi dPt r drawCal | back)

Parameters table Pointer to a table object.

column Column of table.
drawCallback Callback function.

Note: The callback procedure should have this prototype:

voi d drawCal | back (
Voi dPtr tabl e,
Word row,
Wrd col um,
Rect angl ePtr bounds);

Result Returns nothing.

Comments The custom draw callback function is used to draw table items
with a Tabl el t enBt yl eType of cust onirabl el t em(see table.h).

See Also Tbl Dr awTabl e

270 Developing Palm OS Applications, Part |

Table Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

TblSetltemInt

Set the integer value of the specified item.

Tabl ePtr tabl e,
Wrd row, Word col um,

void Thl Setltem nt (

Word val ue)
table Pointer to a table object.
row Row of the item (zero-based).
column Column of the item (zero-based).
value Any byte value (an integer).

Returns nothing.
An application can store what it wants in an item’s integer value.

Tbl Getltem nt, Tbl Set I tenPt r

TbhlSetltemPtr

Set the item to the specified pointer value.

Tabl ePtr tabl e,
Wrd row, Word col um,
Voi dPtr val ue)

void Thl SetltenPtr (

table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

value Pointer to data to display in the table item.

Returns nothing.
An application can store whatever it wants in the table item.

Tbl Set | t end nt

Developing Palm OS Applications, Part | 271

Table Functions

ThlSetltemStyle

Purpose Set the item to display its data in a style; for example, text, num-
bers, dates, and so on.

Prototype void Tbl Setltenttyle (TablePtr table,
Word row,
Wrd col um,
Tabl el tentt yl eType type)

Parameters table Pointer to a table object.
row Row of the item (zero-based).
column Column of the item (zero-based).
type See Table.h.

Result Returns nothing.

See Also Tbl Set Cust onDr awPr ocedur e

272 Developing Palm OS Applications, Part |

Table Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

TblSetLoadDataProcedure

Set the load-data callback procedure for the specified column.

voi d Tbl Set LoadDat aPr ocedur e(Tabl ePtr tabl e,
Wrd col um,
Tabl eLoadDat aFuncPtr | oadDat aCal | back)

table Pointer to a table object.
column Column of table.
loadDataCallback Callback procedure.

Note: The callback procedure should have this prototype:

Voi dHand LoadDat aCal | back
(VoidPtr table,

Word row,

Wrd col um,

Bool ean editabl e,

WrdPtr dataOfset,

Wor dPtr dat aSi ze) ;
For a text style item, the callback procedure should return the
handle of a block that contains a null-terminated text string, the
offset from the start of the block to the start of the string, and the
amount of space allocated for the string.

Returns nothing.

The callback function is used to obtain the data values of a table
item.

Tbl Set Cust onDr awPr ocedur e

Developing Palm OS Applications, Part | 273

Table Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

TbhlSetRowData

Set the data value of the specified row.

The data value is a placeholder for application-specific values.

voi d Thl Set RowDat a (Tabl ePtr tabl e,
Word row,
ULong dat a)

table Pointer to a table object.
row Row of the item to select (zero-based).
data Application-specific data.

Returns nothing.

Tbl Get RowDat a

ThlSetRowHeight
Set the height of the specified row.

voi d Thl Set RowHei ght (Tabl ePtr tabl e,
Wrd row, Word hei ght)

table Pointer to a table object.
row Row to set (zero-based).
height New height in pixels.

Returns nothing.

Tbl Get RowHei ght

274 Developing Palm OS Applications, Part |

Table Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

TblSetRowID

Set the ID value of the specified row.

voi d Tbl Set Row D (Tabl ePtr tabl e,
Wrd row, Word id)

table Pointer to a table object.
row Row of the item to select (zero-based).
id ID to identify a row.

Returns nothing.

Tbl Get Row D

TbhlSetRowSelectable

Set a row in a table to selectable or nonselectable.

voi d Thl Set RowSel ectabl e (Tabl ePtr table,
Wrd row,
Bool ean sel ect abl e)

table Pointer to a table object.
row Row of the item to select (zero-based).
selectable TRUE or FALSE.

Returns nothing.
Rows that are not selectable don’t highlight when touched.

Tbl RowSel ect abl e, Thl Set RowUsabl e

Developing Palm OS Applications, Part | 275

Table Functions

Purpose

Prototype

Parameters

Result

See Also

ThlSetRowUsable

Set a row in a table to usable or unusable. (Rows that are not
usable do not display.)

voi d Thl Set Rowsabl e (Tabl ePtr tabl e,
Word row,
Bool ean usabl e)

table Pointer to a table object.
row Row of the item to select (zero-based).
usable TRUE or FALSE.

Returns nothing.

Tbl RowUsabl e, Thl Set RowSel ect abl e

276 Developing Palm OS Applications, Part |

Table Functions

TblSetSaveDataProcedure
Purpose Set the save-data callback procedure for the specified column.

Prototype voi d Tbl Set SaveDat aPr ocedur e(Tabl ePtr tabl e,
Wrd col um,
Voi dPtr saveDat aCal | back)

Parameters table Pointer to a table object.
column Column of table.

saveDataCallback Callback function.

Note: The callback procedure should have this prototype:

Voi dPtr SaveDat aCal | back
(VoidPtr table,
Word row,
Wrd col um) ;

Comments The callback procedure is called when the table object determines
the data of a text object needs to be saved.

Result Returns nothing.

See Also Tbl Set Cust onDr awPr ocedur e

TblUnhighlightSelection
Purpose Unhighlight the currently selected item in a table.
Prototype voi d Tbl Unhi ghl i ght Sel ection (Tabl ePtr tabl e)
Parameters table Pointer to a table object.

Result Returns nothing.

Developing Palm OS Applications, Part | 277

Table Functions

278 Developing Palm OS Applications, Part |

Purpose
Prototype
Parameters
Result

Comment

See Also

Purpose
Prototype
Parameters

Comment

Result

See Also

10

Window Functions

WinAddWindow

Add the specified window to the active windows list.
voi d W nAddW ndow (W nHandl e wi nHandl e)
winHandle Handle of a window.

Returns nothing.

The active windows list contains all windows in the current appli-
cation’s user interface.

W nCr eat eW ndow, W nRenoveW ndow

WinClipRectangle

Clip a rectangle to the clipping rectangle of the draw window.
void Wnd i pRectangl e (RectanglePtr r)

r Pointer to a structure holding the rectangle to clip.

The draw window is the window to which all drawing functions
send their output.

The rectangle returned in r is the intersection of the rectangle
passed and the draw window’s clipping bounds.

Returns nothing.

W nCopyRect angl e, W nDr awRect anagl e,
W nEr aseRectangl e, WnCGetd ip

Developing Palm OS Applications, Part | 279

Window Functions

Purpose

Prototype

Parameters

Result

Comments

WinCopyRectangle

Copy a rectangular region from one place to another (either be-
tween windows or within a single window).

voi d WnCopyRect angl e (WnHandl e srcWn,

srcWin
dstWin
srcRect
destX
destY

mode

W nHandl e dst W n,
Rect angl ePtr srcRect,
SWord dest X,

SWrd destY,

Scr Qper ati on node)

Window from which the rectangle is copied.
Window to which the rectangle is copied.

Bounds of the region to copy.

Top bound of the rectangle in destination window.
Left bound of the rectangle in destination window.

The method of transfer from the source to the
destination window (see window.h).

Returns nothing.

Copies the bits of the window inside the rectangle region.

280 Developing Palm OS Applications, Part |

Window Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

WinCreateWindow

Create a new window and add it to the window list.

W nHandl e WnCreateWndow (Rectangl ePtr bounds,
FraneType frane,
Bool ean nodal ,
Bool ean focusabl e,
WordPtr error)

bounds Display relative bounds of the window.
frame Type of frame around the window (see window.h).
modal TRUE if the window is modal.

focusable TRUE if the window can be the active window.

error Pointer to any error encountered by this function.
Returns handle for the new window.

Windows created by this routine draw to the display, see
W nCr eat e f scr eenW ndow.

New windows are created disabled, and must be enabled before
they accept input.

W nC eat ed f scr eenW ndow, W nDel et eW ndow,
WhnlnitializeW ndow

Developing Palm OS Applications, Part| 281

Window Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

WinCreateOffscreenWindow
Create a new off-screen window and add it to the window list.

W nHandl e WnCreat e f scr eenW ndow (
SWord wi dth,
SWrd hei ght,
W ndowFor mat Type format,
WrdPtr error)

width Width of the window in pixels.

height Height of the window in pixels.

format Either scr eenFor mat or generi cFor mat .

error Pointer to any error encountered by this function.

Returns the handle of the new window.

Windows created with this routine draw to a memory buffer in-
stead of the display.

The memory buffer has two formats: screen format and generic
format. Screen format is the native format of the video system, win-
dows in this format can be copied to the display faster. The generic
format is device-independent.

W nCr eat eW ndow, W nAddW ndow

282 Developing Palm OS Applications, Part |

Window Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

WinDeleteWindow

Remove a window from the window list and free the memory
used by the window.

voi d WnDel et eW ndow (W nHandl e wi nHandl e,
Bool ean eraselt)

Handle of window to delete.

If TRUE, the window is erased before it is deleted.

winHandle

eraselt
Returns nothing.

W nCr eat eW ndow

WinDisableWindow

Disable a window but leave it on the active windows list (list of all
windows in the system).

voi d WnDi sabl eWndow (W nHandl e wi nHandl e)
winHandle Handle of window to disable.

Returns nothing.

Disabled windows ignore all pen input and cannot be made the

current window or the draw window. Windows are usually dis-
abled when they are removed from the screen.

This function does not affect the visual appearance of the window.

W nEnabl eW ndow, W nDel et eW ndow

Developing Palm OS Applications, Part| 283

Window Functions

WinDisplayToWindowPt

Purpose Convert a display-relative coordinate to a window-relative coordi-
nate. The coordinate returned is relative to the display window.

Prototype void WnDi spl ayToWw ndowPt (SWrdPtr extentX,
SWrdPtr extenty)

Parameters extentX Pointer to x coordinate to convert.

extentY Pointer to y coordinate to convert.
Result Returns nothing.

Comments W nW ndowToDi spl ayPt

WinDrawBitmap
Purpose Draw a bitmap at the given x and y coordinates.

Prototype void WnDrawBi tmap (Bit mapPtr bit mapP,

Sword x,
Sword vy)
Parameters bitmapP Pointer to a bitmap.
X The x coordinate of the top-left corner.
y The y coordinate of the top-left corner.

Result Returns nothing.

See Also W nEr aseRect angl e

284 Developing Palm OS Applications, Part |

Window Functions

Purpose

Prototype

Parameters

Result

Comment

See Also

Purpose

Prototype

Parameters

Result

See Also

WinDrawChars

Draw the specified characters in the draw window.

void WnDrawChars (CharPtr chars,

Word | en,

SWrd x,

SWwrd vy)
chars Pointer to the characters to draw.
len Number of characters to draw.
X Left bound of first character to draw.
y Top bound of first character to draw.

Returns nothing.

Before calling this function, you may call W nSet Under | i neMbde
and Ent Set Font .

W nDr awl nvert edChars, WnEr aseChars,
W nSet Under | i neMbde

WinDrawGrayLine
Draw a line in the draw window.

voi d WnDrawG ayLi ne (SWwrd x1, Swrd yl1l,
SWrd x2, SWwrd y2)

x1 x coordinate of the start of the line.
yl y coordinate of the start of the line.
x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.
Returns nothing.

W nDr awLi ne

Developing Palm OS Applications, Part| 285

Window Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

WinDrawGrayRectangleFrame
Draw a gray rectangular frame in the draw window.

voi d WnDrawG ayRect angl eFranme (FranmeType frane,
Rect angl ePtr r)

frame Type of frame to draw.

r Pointer to the rectangle to frame.
Returns nothing.

The standard gray pattern is not used by this routine; rather, the
frame is drawn so that the top-left pixel of the frame is always on.

W nDr awRect angl eFr ane

WinDrawlnvertedChars

Draw the specified characters inverted (background color) in the
draw window.

void WnDrawl nvertedChars(CharPtr chars, Wrd |en,
SWrd x, Swrd vy)

chars Pointer to the characters to draw.

len Number of characters to draw.

X, y Left and top bound of first character to draw.

Returns nothing.

The characters are drawn in the background color and the off
pixels are drawn in the foreground color.

Before calling this function, you may call W nSet Under | i neMbde
and Fnt Set Font .

W nDr awChar s

286 Developing Palm OS Applications, Part |

Window Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

WinDrawlLine

Draw a line in the draw window.

void WnDrawLi ne (short x1,
short x2,

short y1,
short y2)

x1 x coordinate of the start of the line.
yl y coordinate of the start of the line.
x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.
Returns nothing.

W nDr aw& ayLi ne, WnEr aseLi ne, WnFi |l | Li ne

WinDrawRectangle

Draw a black rectangle in the draw window; the rectangle can
have square or round corners.

voi d WnDrawRectangle (RectanglePtr r,

Word cornerD am

r Pointer to the rectangle to draw.

cornerDiam Diameter of rounded corners. Zero for square corners.
Returns nothing.

The cor ner Di amparameter specifies the diameter of four imagi-
nary circles used to form the rounded corners. An imaginary circle

is placed within each corner tangent to the rectangle on two sides.

WnFi |l | Rect angl e, W nEr aseRect angl e

Developing Palm OS Applications, Part| 287

Window Functions

Purpose

Prototype

Parameters

Result
Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

WinDrawRectangleFrame

Draw a rectangular frame around the specified region in the draw

window.

voi d WnDrawRect angl eFrane (FraneType frane,
Rectangl ePtr r)

frame Type of frame to draw.

r Pointer to the rectangle to frame.
Returns nothing.
The frame is drawn outside the specified region.

W nEr aseRect angl eFr ane, W nCGet Fr anesRect angl e,
W nDr aw& ayRect angl eFr ane, W nDr awW ndowFr ane

WinDrawWindowFrame

Draw the frame of the current drawing window.
voi d W nDr awW ndowFr anme (voi d)

None.

Returns nothing.

W nDr awRect angl eFr ane, W nGet Dr awW ndow

288 Developing Palm OS Applications, Part |

Window Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

WinEnableWindow

Enable a window.

voi d W nEnabl eW ndow (W nHandl e wi nHandl e)
winHandle Handle of the window to enable.
Returns nothing.

Enabled windows accept pen input and can be made the active
window.

This routine does not affect the visual appearance of the window.

WinDisableWindow, WinSetActiveWindow

WinEraseChars
Erase specified characters in the draw window.

void WnEraseChars (CharPtr chars, Wrd |en,
SWrd x, SWrd vy)

chars Pointer to the characters to erase.
len Number of characters to erase.

X Left bound of first character to erase.
y Top bound of first character to erase.

Returns nothing.

W nDr awChar s

Developing Palm OS Applications, Part| 289

Window Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

WinEraseLine
Erase a line in the draw window.

void WnEraseLine (Swrd x1, SWwrd y1,
SWrd x2, SWrd y2)

x1 x coordinate of the start of the line.
yl y coordinate of the start of the line.
x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.
Returns nothing.

W nDr awLi ne

WinEraseRectangle

Erase a rectangle in the draw window. (The rectangle can have
round or square corners; see W nDr awRect angl e.)

voi d W nEraseRectangl e (Rectangl ePtr r,
Word cornerD am

r Pointer to the rectangle to erase.

cornerDiam Diameter of rounded corners; zero for square corners.
Returns nothing.

W nDr awRect angl e

290 Developing Palm OS Applications, Part |

Window Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype
Parameters
Result

See Also

WinEraseRectangleFrame
Erase a rectangular frame in the draw window.

voi d W nEr aseRect angl eFrane (FrameType frane,
Rect angl ePtr r)

frame Type of frame to erase.

r Pointer to the rectangular frame.
Returns nothing.

W nDr awRect angl eFr ane

WinEraseWindow

Erase the contents of the draw window.

The frame around the draw window is not erased by this routine.
voi d W nEraseW ndow (voi d)

None.

Returns nothing.

W nEnabl eW ndow

Developing Palm OS Applications, Part| 291

Window Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result
Comments

See Also

WinFillLine

Fill a line in the draw window with the current pattern. You can
set the current pattern with W nSet Pat t er n.

void WnFillLine (SWrd x1, SWwrd y1,
SWrd x2, Swrd y2)

x1 x coordinate of the start of the line.
yl y coordinate of the start of the line.
x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.
Returns nothing.

W nSet Patt ern, WnDr awLi ne

WinFillRectangle

Draw a rectangle with current pattern. (The rectangle can have
square or round corners.)

void WnFillRectangle (RectanglePtr r,

Wrd cornerD am

r Pointer to the rectangle to draw.

cornerDiam Diameter of rounded corners. Zero for square corners.
Returns nothing.

You can set the current pattern with W nSet Pat t er n.

W nSet Patt er n. W nDr awRect angl e

292 Developing Palm OS Applications, Part |

Window Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

WinGetActiveWindow

Return the window handle of the active window.
W nHandl e W nGet Acti veW ndow (voi d)
None.

Returns the handle of the active window.

W nSet Acti veW ndow, W nGet Di spl ayW ndow,

W nGet Fi r st W ndow, W nGet Dr awW ndow, W nRenoveW ndow

WinGetClip

Return the clipping rectangle of the draw window.

void WnCGetdip (RectanglePtr r)

r Pointer to a structure to hold the clipping bounds.

Returns nothing.

WnSetdip

WinGetDisplayExtent
Return the width and height of the display (the screen).

void WnCet D spl ayExtent (SWordPtr extentX,
SWrdPtr extenty)

extentX Pointer to the width of the display.

extentY Pointer to the height of the display.

Returns nothing.

Developing Palm OS Applications, Part| 293

Window Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

WinGetDisplayWindow

Return the window handle of the display window.
W nHandl e W nGet D spl ayW ndow (voi d)
None.

Returns handle of display window.

The display window is created by the system at start-up; its size is
the same as the physical display (screen).

W nCet D spl ayExt ent, WnCet Acti veW ndow,
W nCet Dr awW ndow

WinGetDrawWindow

Return the window handle of the current draw window.
W nHandl e W nGet Dr awW ndow (voi d)

None.

Returns handle of draw window

W nCet D spl ayW ndow, W nGet Acti veW ndow,
W nSet Dr awW ndow

294 Developing Palm OS Applications, Part |

Window Functions

Purpose
Prototype
Parameters
Result
Comments

See also

Purpose

Prototype

Parameters

Result
Comments

See Also

WinGetFirstWindow

Return a pointer to the first window in the linked list of windows.
W nHandl e WnGet Fi r st Wndow (voi d)

None.

Returns handle of first window.

This function is usually used by the system only.

W nAddW ndow, W nGet Act i veW ndow

WinGetFramesRectangle

Return the region needed to draw a rectangle with the specified
frame around it.

voi d W nCet FranmesRect angl e (FraneType frane,
Rect angl ePtr r,
Rect angl ePtr obscur edRect)

frame Type of frame drawn around the rectangle.
r Pointer to the rectangle to frame.
obscuredRect Pointer to the rectangle obscured by the frame.

Returns nothing.
Frames are always drawn around (outside) a rectangle.

W nCGet W ndowBounds

Developing Palm OS Applications, Part| 295

Window Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype
Parameters
Result

See Also

WinGetPattern

Return the current fill pattern.

void WnCetPattern (CustonPatternType pattern)
pattern Pattern buffer to hold pattern.

Returns nothing.

The fill pattern is used by WnFi | | Li ne and W nFi | | Rect angl e.

A pattern defines an 8-x-8 bit pattern. The pattern is tiled to fill the
specified region. The pattern structure is eight bytes long, the first
byte is the first row of the pattern.

W nSet Pattern

WinGetWindowBounds

Return the bounds of the current draw window in display-relative
coordinates.

voi d WnGet WndowBounds (RectanglePtr r)
r Pointer to a rectangle.
Returns nothing.

W nCGet W ndowExt ent

296 Developing Palm OS Applications, Part |

Window Functions

WinGetWindowExtent

Purpose Return the width and height of the current draw window.

Prototype void WnGet WndowExtent (SWrdPtr extentX,
SWrdPtr extenty)

Parameters extentX Pointer to the width of the draw window.

extentY Pointer to the height of the draw window.
Result Returns nothing.

See Also W nGet W ndowBounds, W nGet W ndowFr aneRect ,

WinGetWindowFrameRect

Purpose Return a rectangle, in display-relative coordinates, that defines the
size and location of a window and its frame.

Prototype void W nGet W ndowFr aneRect (W nHandl e wi nHandl e,
Rect angl ePtr r)

Parameters winHandle Handle of window whose coordinates are desired.

r Pointer to the coordinates of the window.
Result Returns nothing.

See Also W nGet W ndowBounds

Developing Palm OS Applications, Part| 297

Window Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype
Parameters
Result

See Also

WinGetWindowPointer

Return a pointer to the specified window’s W ndowTy pe structure.
WnPtr WnGet WndowPoi nter (WnHandl e wi nHandl e)
winHandle Handle of a window.

Returns nothing.

W nCet Acti veW ndow

WinlnitializeWindow

Initialize the screen-dependent members of a W ndowType struc-
ture and set the window’s clipping bounds to the window’s
bounds.

void WnlnitializeWndow (W nHandl e wi nHandl e)
winHandle Handle of a window.

Returns nothing.

W nCr eat eW ndow

298 Developing Palm OS Applications, Part |

Window Functions

WinlnvertChars
Purpose Invert the specified characters in the draw window.

Prototype void WnlnvertChars (CharPtr chars, Wrd |en,
SWrd x, Swrd vy)

Parameters chars Pointer to the characters to invert.
len Number of characters to invert.
X, y Left and top bound of first character to invert.

Result Returns nothing.

See Also W nDrawl nvertedChars, WnDr anwChar s

WinlInvertLine
Purpose Invert a line in the draw window.

Prototype void WnlnvertLine (SWrd x1, SWrd yl1,
SWrd x2, SWrd y2)

Parameters x1 x coordinate of the start of the line.
yl y coordinate of the start of the line.
x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.
Result Returns nothing.

See Also Wnl nvert Rect angl e, W nl nvert Rect angl eFr ang,
W nDr awLi ne, W nEr aselLi ne

Developing Palm OS Applications, Part| 299

Window Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

WinlnvertRectangle

Invert a rectangle in the draw window. (The rectangle can have
square or round corners.)

void WnlnvertRectangle (RectanglePtr r,
Word cornerD am

r Pointer to the rectangle to invert.

cornerDiam Diameter of rounded corners; zero for square corners.
Returns nothing.

Wnl nvertLi ne, Wnl nvert Rect angl eFr ane,
W nDr awRect angl e

WinlnvertRectangleFrame
Invert a rectangular frame in the draw window.

void Wnl nvert Rect angl eFrane (FraneType frane,
Rect angl ePtr r)

frame Type of frame to invert.

r Pointer to the rectangular frame to invert.
Returns nothing.

W nl nvert Rect angl e, Wnl nvertLine,
W nDr awRect angl eFr ane, W nEr aseRect angl eFr ane

300 Developing Palm OS Applications, Part |

Window Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result
Comments

See Also

Purpose

Prototype
Parameters
Result

See Also

WinModal

Return TRUE if the specified window is modal.
Bool ean W nMdal (W nHandl e wi nHandl e)
winHandle Handle of a window.

Returns TRUE if modal, otherwise FALSE.

A window is modal if it cannot lose the focus.

WinRemoveWindow

Remove the specified window from the window list.
voi d W nRenoveW ndow (W nHandl e wi nHandl e)
winHandle Handle of a window.
Returns nothing.

Does not free the memory used by the window.

W nAddW ndow, W nDel et eW ndow, W nCGet Fi r st W ndow

WinResetClip

Reset the clipping rectangle of the draw window to the portion of
the draw window that is within the bounds of the display.

void WnResetd ip (void)
None.

Returns nothing.

WnSetdip

Developing Palm OS Applications, Part| 301

Window Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

WinRestoreBits

Copy the contents of the specified window to the draw window
and delete the passed window.

void WnRestoreBits (WnHandl e wi nHandl e,
SWrd destX, SWrd destY)

winHandle Handle of window to copy and delete.
destX x coordinate in the draw window to copy to.
destY y coordinate in the draw window to copy to.

Returns nothing.

This routine is generally used to restore a region of the display that
was saved with WnSaveBi ts.

W nSaveBits

WinSaveBits

Create an offscreen window and copy the specified region from the
draw window to the offscreen window.

W nHandl e WnSaveBits (Rectangl ePtr sourceP,
WrdPtr error)

source P Pointer to the bounds of the region to save, relative to
the display.
error Pointer to any error encountered by this function.

Returns the handle of the window containing the saved image, or
zero if an error occurred.

The offscreen window is the same size as the region to copy.

WnRestoreBits

302 Developing Palm OS Applications, Part |

Window Functions

WinScrollRectangle
Purpose Scroll a rectangle in the draw window.

Prototype void WnScrol | Rectangl e (Rectangl ePtr r,
D rectionType direction,
SWrd di stance,
Rect angl ePtr vacat ed)

Parameters r Pointer to the rectangle to scroll.
direction Direction to scroll (up, down, left, or right).
distance Distance to scroll in pixels.
vacated Pointer to the rectangle that needs to be redrawn

because it has been vacated as a result of the scroll.
Result Returns nothing.

Comments The rectangle scrolls within its own bounds. Any portion of the
rectangle that is scrolled outside its bounds is clipped.

Developing Palm OS Applications, Part| 303

Window Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

WinSetActiveWindow

Make a window the active window.

void WnSet Acti veW ndow (W nHandl e wi nHandl e)
winHandle Handle of a window

Returns nothing.

The active window is not actually set in this routine; flags are set to
indicate that a window is being exited and another window is
being entered. The routine Evt Get Event sends a Wi nEXi t Event
and a wi nEnt er Event when it detects these flags. The active
window is set by Evt Get Event when it sends the

wi_nEnt er Event . The draw window is also set to the new active
window, when the active window is changed.

All user input is directed to the active window.

W nAddW ndow, W nGet Acti veW ndow

WinSetClip

Set the clipping rectangle of the draw window.

void WnSetd ip (RectanglePtr r)

r Pointer to a structure holding the clipping bounds.

Returns nothing.

WndipRectangle, WnSetdip WnCetdip

304 Developing Palm OS Applications, Part |

Window Functions

Purpose

Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

WinSetDrawWindow

Set the draw window. (All drawing operations are relative to the
draw window.)

W nHandl e W nSet Dr awW ndow (W nHandl e w nHandl e)
winHandle Handle of a window.
Returns the draw window.

W nCet Dr awW ndow, W nSet Acti veW ndow

WinSetPattern

Set the current fill pattern.

void WnSetPattern (CustonPatternType pattern)
pattern Pattern to use.

Returns nothing.

The fill pattern is used by WnFi | | Li ne and WnFi | | Rect angl e.

W nCet Pattern

Developing Palm OS Applications, Part| 305

Window Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

WinSetUnderlineMode

Set the graphic state to enable or disable the underlining of charac-
ters.

Under | i neModeType
W nSet Under | i neMode (Underl i neModeType node)

mode New underline mode type, one of noUnder | i ne,

grayUnder | i ne, sol i dUnderl i ne.
Returns the previous underline mode type.

W nDr awChar s

WinWindowToDisplayPt

Convert a window-relative coordinate to a display-relative coordi-
nate.

SWrdPtr extent X,
SWrdPtr extenty)

voi d W nW ndowToDi spl ayPt (

extentX Pointer to x coordinate to convert.

extentY Pointer to y coordinate to convert.
Returns nothing.

The coordinate passed is assumed to be relative to the draw
window.

W nDi spl ayToW ndowPt

306 Developing Palm OS Applications, Part |

11

Miscellaneous User
Interface Functions

Category Functions

Purpose

Prototype

Parameters

Result

CategoryCreatelList

Read a database’s categories and set categories.

voi d CategoryCreateList (DmOpenRef db,

db
Ist

currentCategory

showAll

Returns nothing.

ListPtr |st,
Word current Cat egory,
Bool ean showAl |)

Database containing categories to extract.
List object to load categories into.

Will be set as the current selection in the
resulting list.

TRUE if an “All” category should be included
in the list.

Developing Palm OS Applications, Part | 307

Miscellaneous User Interface Functions
Category Functions

CategoryEdit
Purpose Event handler for the Edit Categories dialog.

Prototype Bool ean CategoryEdit (DrOpenRef db,
WordPtr cat egory)

Parameters db Database containing the categories to be edited.

category Current category.

Result Returns TRUE if any of the following conditions are true:
the current category is renamed
the current category is deleted

the current category is merged with another category

CategoryFind
Purpose Return the index of the category that matches the name passed.
Prototype Word Cat egoryFi nd (DnOpenRef db, CharPtr nane)

Parameters db Database to search for the passed category.

name Category name.

Result Returns the category index.

308 Developing Palm OS Applications, Part |

Miscellaneous User Interface Functions
Category Functions

Purpose

Prototype

Parameters

Result

Comment

Purpose

Prototype

Parameters

Result

CategoryFreeList

Unlock or free memory locked or allocated by
Cat egor yCr eat eLi st which was attached to the passed List ob-
ject.

voi d Cat egoryFreelLi st (DmOpenRef db, ListPtr |st)

db Database containing the categories.
1st Pointer to the category list containing the memory
to be freed.

Returns nothing.

Calling this function does not remove the categories from the
passed database.

CategoryGetName
Return the name of the specified category.

voi d Cat egor yCet Name (DnOpenRef db,
Word i ndex,
Char Pt r nane)

db Database that contains the categories.
index Category index.
name Buffer to hold category name. Buffer should be

dnCat egor yLengt h in size.

Stores the category name in the name buffer passed.

Developing Palm OS Applications, Part | 309

Miscellaneous User Interface Functions

Category Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

CategoryGetNext

Given a category index this routine return the index of the next cat-
egory. Categories are not stored sequentially.

Word Cat egor yCGet Next (DnOpenRef db, Wrd i ndex)

db

index

Database that contains the categories.

Category index.

Category index of next category.

CategoryTruncateName
Truncate a category name so that it’s short enough to display.

Char Ptr nane,
Wrd maxW dt h)

voi d Cat egoryTruncat eNane (

name Category name to truncate.

maxWidth Maximum size, in pixels, of truncated category
(including ellipsis).

Returns nothing

CategorySetTriggerLabel

Set the label displayed by the category trigger. The category name
is truncated if it's to long.

voi d Cat egorySet Tri gger Label (Control Ptr ctl,

Char Pt r nane)

ctl Pointer to control object to relabel.

label Pointer to the name of the new category.

Returns nothing.

310 Developing Palm OS Applications, Part |

Miscellaneous User Interface Functions
Category Functions

CategorySelect

Purpose Process the selection and editing of categories.

Prototype Bool ean Cat egorySel ect (DnmOpenRef db,

FornPtr frm
VWwrd ctl D,
Wrd I st D,

Bool ean title,
WordPtr categoryP,
Char Ptr cat egor yNane)

Parameters db Database that contains the categories.
frm Form that contains the category popup list.
ctlID ID of the popup trigger.
IstID ID of the popup list.
title True if the popup trigger is on the title line.
categoryP Current category (index into db structure).
categoryName Name of the current category.

Result Returns TRUE if any of the following conditions are true:
the current category is renamed
the current category is deleted

the current category is merged with another category

Developing Palm OS Applications, Part | 311

Miscellaneous User Interface Functions
Character Attribute Functions

Character Attribute Functions

Purpose

Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

GetCharAttr

Return a pointer to the characters attributes array which is used by
the character classification and character conversion macros (such
as isalpha and toascii).

WrdPtr GetCharAttr (void)
None

A pointer to the attributes array. See CharAttr.h for an explanation
of the attributes.

GetCharCaselessValue

Return a pointer to an array that maps all characters to an assigned
caseless and accentless value. This should be used for finding text.

Byt ePtr Get Char Casel essVal ue (voi d)
None.

A pointer to the sort array.

The compiler pads each byte out to a word so each index position
contains two characters.

Note: array[x].high = sort value for character 2x+1.

312 Developing Palm OS Applications, Part |

Miscellaneous User Interface Functions
ClipBoard Functions

Purpose

Prototype
Parameters

Result

GetCharSortValue

Return a pointer to an array that maps all characters to an assigned
sorting value. This should be used for ordering (sorting) text.

Byt ePtr GCet Char Sort Val ue (voi d)
None.

Returns a pointer to the attributes array.

The compiler pads each byte out to a word so each index position
contains two characters.

Note: array[x].low = sort value for character 2x.

ClipBoard Functions

Purpose

Prototype

Parameters

Result

See Also

ClipboardAddItem

Add the item passed to the specified clipboard. The f or mat param-
eter determines which clipboard (text, ink, etc.) the item is added
to.

voi d d i pboardAddltem (d i pboar dFor mat Type format,

Voi dPtr ptr,

Wrd | ength)
format Text, ink, bitmap, etc.
ptr Pointer to the item to place on the clipboard.
length Size of the item to place on the clipboard.

Returns nothing.

Fl dCut, FI dCopy

Developing Palm OS Applications, Part | 313

Miscellaneous User Interface Functions

Font Functions

Purpose

Prototype

Parameters

Result

ClipboardGetltem

Return the handle of the contents of the clipboard of a specified
type and the length of a clipboard item.

Voi dHand d i pboardGetltem

(d i pboar dFor mat Type format, WrdPtr | ength)

format Text, ink, bitmap, etc.

length Pointer to the length of the clipboard item.

Handle of the clipboard item.

Font Functions

Purpose

Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

FntAccentHeight

Return the height of an accent of the characters in the current font.
The height of an accent is the distance between the top of the char-
acter cell and the top a non-accent capital letter.

short Fnt Accent Hei ght (voi d)

None.

Height of an accent (in pixels).

FntAscent

Return the ascent of the characters in the current font. The ascent
of a character is the distance from the top of a non-accent capital
letter to the base line.

short Fnt Ascent (void)

None.

Returns character ascent (in pixels).

314 Developing Palm OS Applications, Part |

Miscellaneous User Interface Functions
Font Functions

Purpose
Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

FntAverageCharWidth

Return the average character width in the current font.
short Fnt AverageCharWdth (void)

None.

Returns the average character width (in pixels).

FntBaseLine

Return the distance from the top of character cell to the baseline for
the current font.

short Fnt BaseLi ne (voi d)
None.

Returns the baseline of the font (in pixels).

FntCharHeight

Return the character height, in the current font including accents
and descenders.

short Fnt Char Hei ght (voi d)
None

Height of the characters in the current font, expressed in pixels.

Developing Palm OS Applications, Part | 315

Miscellaneous User Interface Functions
Font Functions

FntCharsinWidth

Purpose Find the number of characters in a string that fit within a passed
width. Spaces at the end of a string are ignored and removed. Any
characters after a carriage return are ignored and the string is con-
sidered truncated.

Prototype void FntCharslnWdth (CharPtr string,
Int *stringWdthP,
I nt *stringlLengthP,
Bool ean *fit Wt hi nW dt h)

Parameters string Pointer to the char string.
stringWidthP Maximum width to allow.
stringLengthP Maximum characters to allow (assumes

current Font).

fitWithinWidth Set to TRUE if the string is considered
truncated.

Result ~ When the call is completed, the information is updated as follows:

stringWidthP Set to the width of the chars allowed.

stringLengthP Set to the number of chars within the width.

fitWithinWidth TRUE if the string is considered truncated,
FALSE if it isn't.

316 Developing Palm OS Applications, Part |

Miscellaneous User Interface Functions
Font Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

FntCharsWidth

Return the width of the specified character string. The Missing
Character Symbol is substituted for any character which does not
exist in the current font.

short Fnt CharsWdth (CharPtr pChars, Wrd | ength)

pChars Pointer to a string of characters.

length Number of character in the string.

Returns the width of the string, in pixels.

FntCharWidth

Return the width of the specified character. If the specified char-
acter does not exist within the current font, the Missing Character
Symbol is substituted.

short Fnt CharWdth (char ch)

ch Character whose width is needed.

Returns the width of the specified character (in pixels).

FntDescenderHeight

Return the height of a character’s descender in the current font.
The height of a descender is the distance between the base line an
the bottom of the character cell.

short Fnt Descender Hei ght (voi d)

None.

Returns the height of a descender, expressed in pixels.

Developing Palm OS Applications, Part | 317

Miscellaneous User Interface Functions

Font Functions

Purpose
Prototype
Parameters

Result

Purpose
Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

FntGetFont

Return the Font ID of the current font.
Font I D Fnt Get Font (voi d)
None.

Returns FontID of the current font.

FntGetFontPtr

Return a pointer to the current font.
Font Ptr Fnt Get Font Ptr (void)
None.

Returns the FontPtr of the current font.

FntLineHeight

Return the height of a line in the current font. The height of a line
is the height of the character cell plus the space between lines (the
external leading).

short FntLi neHei ght (void)

None.

Returns the height of a line in the current font.

318 Developing Palm OS Applications, Part |

Miscellaneous User Interface Functions
Font Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype
Parameters

Result

Purpose
Prototype
Parameters

Result

FntLineWidth

Return the width of the specified line of text, taking tab characters
in to account. The function assumes that the characters passed are
left-aligned and that the first character in the string is the first char-
acter drawn on a line. In other words, this routine doesn’t work for
characters that don’t start at the beginning of a line.

short FntLineWdth (CharPtr pChars, Wrd | ength)

pChars Pointer to a string of characters.

length Number of character in the string.

Returns the line width (in pixels).

FntProportionalFont

Indicate whether the current font is proportionally spaced or fixed
width.

Bool ean Fnt Proporti onal Font (voi d)
None.

Returns TRUE if the current font is proportionally spaced, FALSE
if it’s fixed width.

FntSetFont

Set the current font.

Font 1 D Fnt Set Font (FontI D fontl D)
fontID ID of the font to make the active font.

Returns ID of the current font before the change.

Developing Palm OS Applications, Part | 319

Miscellaneous User Interface Functions
Other User Interface Functions

Other User Interface Functions

AbtShowAbout

Purpose Displays the info dialog box. The application name is picked up
from either the tAIN resource of the application, or the name of the
application database (which is assigned in the makefile).

Prototype voi d Abt ShowAbout (ULong creator)

Parameters creator Creator ID of this application.

Result Returns nothing.

DayHandleEvent

Purpose Handle event in the specified control. This routine handles two
type of events, penDownEvent and ctlEnterEvent.

Prototype Bool ean DayHandl eEvent (DaySel ectorPtr pSel ector,
Event Ptr pEvent)

Parameters pSelector Pointer to control object (ControlType)
pEvent Pointer to an EventType structure.

pError Pointer to returned error code

Result True if the event was handle or false if it was not.
Posts a daySelectEvent with info on whether to use the date.

A date is used if the user selects a day in the visible month.

Functions for System Use Only

Find

Prototype void Find (GoToParansPtr goToP)

320 Developing Palm OS Applications, Part |

Miscellaneous User Interface Functions
Functions for System Use Only

Prototype

Prototype

Prototype

Prototype

WARNING: System Use Only!

FindDrawHeader

Bool ean Fi ndDr awHeader (Fi ndParansPtr parans,
CharPtr title)

WARNING: System Use Only!

FindGetLineBounds

voi d Fi ndGet Li neBounds (Fi ndParansPtr parans,
Rect angl ePtr r)

WARNING: System Use Only!

FindSaveMatch

Bool ean Fi ndSaveMatch (Fi ndParansPtr parans,
U nt recordNum
Wrd pos,
Unt fieldNum
DWrd appCust om
U nt dbCar dNo,
Local | D dbl D)

WARNING: System Use Only!

FindStrinStr

Bool ean FindStrinStr (CharPtr strToSearch,
Char Ptr strToFi nd,

Developing Palm OS Applications, Part | 321

Miscellaneous User Interface Functions
Functions for System Use Only

Wor dPtr posP)

WARNING: System Use Only!

Ullnitialize

Prototype void U lnitialize (void)

WARNING: System Use Only!

UlIReset

Prototype void U Reset (void)

WARNING: System Use Only!

322 Developing Palm OS Applications, Part |

12

System, Error, Preferences,
and Find Functions

System Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

SysAppLaunch

Launch the specified application with the given command line ar-
guments, given a card number and database ID of an application
resource database.

Err SysAppLaunch(U nt cardNo, LocallD dblD,
U nt | aunchFl ags, Wrd cnd,
Ptr cndPBP, DWrd* resultP)

cardNo, dbID car dNo and dbl Didentify the application.
launchFlags Set to 0.

cmd Action code.

cmdPBP Action code parameter block.

resultP Pointer to what's returned by the application’s

Pi | ot Mai n routine.

Returns 0 if no error, or one of sysErr Par antrr,
menEr r Not EnoughSpace, sysErr Qut O Omner | Ds.

Launching an application with all launch bits cleared makes the ap-
plication a subroutine call from the point of view of the caller.

SysBr oadcast Act i onCode, SysUl AppSwi t ch,

SysCur AppDat abase

Developing Palm OS Applications, Part | 323

System, Error, Preferences, and Find Functions

System Functions

Purpose

Prototype

Parameters

Result

Comments

SysBatteryinfo

Retrieve settings for the batteries. Set set to FALSE to retrieve bat-
tery settings. (Applications should not change any of the settings).

WARNING: Use this function only to retrieve settings!

U nt SysBatterylnfo(Bool ean set,
U ntPtr warnThreshol dP,
UntPtr critical Threshol dP,
U ntPtr nmaxTi cksP,
SysBat t er yKi nd* ki ndP,
Bool ean* pl uggedl n)

set If false, parameters with non-nil pointers are
retrieved. Never set this parameter to TRUE.

warnThresholdP Pointer to battery voltage warning threshold
in volts*100, or nil.

criticalThresholdP Pointer to the battery voltage critical threshold
in volts*100, or nil.

maxTicksP Pointer to the battery timeout, or nil.
kindP Pointer to the battery kind, or nil.
pluggedInP Pointer to pl ugged! n return value, or nil.

Returns the current battery voltage in volts*100.

Call this function to make sure an upcoming activity won’t be inter-
rupted by a low battery warning.

war nThr eshol dP and nmaxTi cksP are the battery-warning
voltage threshold and time out. If the battery voltage falls below
the threshold, or the timeout expires, a | owBat t er yChr key event
is put on the queue. Normally, applications call SysHandl eEvent
which calls SysBat t er yWar ni ngDi al og in response to this event.

critical Threshol dPis the battery voltage threshold. If battery
voltage falls below this level, the system turns itself off without
warning and doesn’t turn on until battery voltage is above it again.

324 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
System Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

SysBroadcastActionCode

Send the specified action code and parameter block to the latest
version of every Ul application.

Err SysBroadcast Acti onCode (Wrd cnd, Ptr cndPBP)

cmd Action code to send.

cmdPBP Action code parameter block to send.
Returns 0 if no error, or one of the following errors:
sysErrParantrr, mentrrNot EnoughSpace,
sysErr Qut O Onner | Ds.

SysAppLaunch

SysCopyStringResource
Copy a resource string to a passed string.

voi d SysCopyStringResource (CharPtr string,
U nt thel D)

string String to copy the resource string to

thelD Resource string ID

Stores a copy of the resource string in st ri ng.

Developing Palm OS Applications, Part | 325

System, Error, Preferences, and Find Functions

System Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

SysCurAppDatabase

Return the card number and database ID of the current applica-
tion’s resource database.

Err SysCur AppDat abase (U ntPtr cardNoP,
Local | D* dbl DP)

cardNoP Pointer to the card number; 0 or 1.
dbIDB Pointer to the database ID.

Returns 0 if no error, or SysEr r Par anErr if an error occurs.

SysAppLaunch, SysUl AppSwi t ch

SysFormPointerArrayToStrings

Form an array of pointers to strings in a block. Useful for setting
the items of a list.

Voi dHand SysFor nPoi nt er ArrayToSt ri ngs
(CharPtr c,
I nt stringCount)

C Pointer to packed block of strings, each
terminated by NULL.
stringCount Count of strings in block.

Unlocked handle to allocated array of pointers to the strings in the
passed block. The returned array points to the strings in the passed
packed block.

326 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
System Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

SysHandleEvent

Handle defaults for system events such as hard and soft key
presses.

Bool ean SysHandl eEvent (EventPtr eventP)

eventP Pointer to an event.

Returns TRUE if the system handled the event.

Applications should call this routine immediately after calling

Evt Get Event unless they want to override the default system be-

havior. However, overriding the default system behavior is almost
never appropriate for an application.

Evt ProcessSof t KeySt r oke, KeyRat es

Developing Palm OS Applications, Part | 327

System, Error, Preferences, and Find Functions

System Functions

Purpose

Prototype

Parameters

Result

Comments

SyslinsertionSort

Sort elements in an array according to the passed comparison func-
tion. Only elements which are out of order move. Moved elements
are moved to the end of the range of equal elements. If a large
amount of elements are being sorted, try to use the quick sort (see

Sys(Sort).

This the insertion sort algorithm: Starting with the second element,
each element is compared to the preceding element. Each element
not greater than the last is inserted into sorted position within
those already sorted. A binary search for the insertion point is per-
formed. A moved element is inserted after any other equal ele-
ments.

void SyslnsertionSort (Byte baseP,
I nt nuntX El enent s,
Int width,
CmpFuncPtr conpar F,
Long ot her)

baseP Base pointer to an array of elements.

numOfElements Number of elements to sort (must be at least
2).

width Width of an element.

comparF Comparison function (see Comments).

other Other data passed to the comparison function.

Returns nothing.

The comparison function (conpar F) has this prototype:
int conmparF (BytePtr A, BytePtr B, Long other);

The function returns:
e >0if A>B
e <0if A<B
e 0ifA=B

328 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
System Functions

See Also

Purpose

Prototype
Parameters
Result

See Also

Purpose

Sys rt

SysKeyboardDialog

Pop up the system keyboard if there is a field object with the focus.
The field object’s text chunk is edited directly.

voi d SysKeyboar dDi al og ()
None.
Returns nothing. The field’s text chunk is changed.

Fr nSet Focus

SysQSort

Sort elements in an array according to the passed comparison func-
tion. Equal records can be in any position relative to each other be-
cause a quick sort tends to scramble the ordering of records. As a
result, calling SysQSort multiple times can result in a different
order if the records are not completely unique. If you don’t want
this behavior, use the insertion sort instead (see SysInsertionSort).

To pick the pivot point, the quick sort algorithm picks the middle
of three records picked from around the middle of all records. That
way, the algorithm can take advantage of partially sorted data.

These optimizations are built in:

¢ The routine contains its own stack to limit uncontrolled
recursion. When the stack is full, an insertion sort is used
because it doesn't require more stack space.

e An insertion sort is also used when the number of records is
low. This avoids the overhead of a quick sort which is
noticeable for small numbers of records.

e If the records seem mostly sorted, an insertion sort is
performed to move only those few records needing moving.

Developing Palm OS Applications, Part | 329

System, Error, Preferences, and Find Functions

System Functions

Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters

Result

void SysQSort (Byte baseP,
| nt nunOX El enent s,
I nt width,
ChpFuncPtr conpar F,
Long ot her)

baseP Base pointer to an array of elements.

numOfElements Number of elements to sort
(must be at least 2),

width Width of an element.

comparF Comparison function. See Comments for
SyslnsertionSort.

other Other data passed to the comparison function.
Returns nothing.

Sysl nsertionSort

SysRandom

Return a random number anywhere from 0 to sysRandomivax.
I nt SysRandom (ULong newSeed)

newSeed New seed value, or 0 to use existing seed.

Returns a random number.

330 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
System Functions

Purpose

Prototype
Parameters
Result

Comments

Purpose

Prototype
Parameters

Result

SysReset

Perform a soft reset and reinitialize the globals and the dynamic
memory heap.

voi d SysReset (void)
None.
No return value.

This routine resets the system, reinitializes the globals area and all
system managers, and reinitializes the dynamic heap. All database
information is preserved. This routine is called when the user
presses the hidden reset button on the device.

When running an application using the simulator, this routine
looks for two data files that represent the memory of card 0 and
card 1. If these are found, the Palm OS memory image is created
using them. If they are not found, they are created.

When running an application on the device, this routine simply
looks for the memory cards at fixed locations.

SysSetAutoOffTime

Set the time out value in seconds for auto-power-off. Zero means
never power-off.

Ul nt SysSet Aut oOF f Ti mre (Ul nt seconds)
seconds Time out in seconds, or 0 for no time out

Returns previous value of time out in seconds.

Developing Palm OS Applications, Part | 331

System, Error, Preferences, and Find Functions

System Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

See Also

SysTaskDelay

Put the processor into doze mode for the specified number of ticks.
Err SysTaskDel ay (Long del ay)

delay Number of ticks to wait (see sysTicksPerSecond)
Returns 0 if no error.

Evt Get Event

SysUIAppSwitch

Try to make the current UI application quit and then launch the UI
application specified by card number and database ID.

Err SysU AppSwitch(U nt cardNo,
Local I D dbl D,

Word cnd,
Ptr cndPBP)
cardNo Card number for the new application; currently only
card 0 is valid.
dbID ID of the new application.

cmd Action code.

cmdPBP Action code parameter block.
Returns 0 if no error.

SysAppLaunch

332 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
System Functions

Prototype

Prototype

Prototype

Prototype

Prototype

Functions for System Use Only

SysAppExit

Err SysAppExit (SysApplnfoPtr appl nfoP,
Ptr prevd obal sP, Ptr gl obal sP)

WARNING: System Use Only!

SysApplinfoPtr

SysAppl nfoPtr SysCur Appl nf oP (voi d)

WARNING: System Use Only!

SysAppStartup

Err SysAppStartup (SysAppl nfoPtr appl nf oPP,
Ptr prevd obal sP, Ptr gl obal sP)

WARNING: System Use Only!

SysBatteryDialog

voi d SysBatteryD al og (voi d)

WARNING: System Use Only!

SysCardimageDeleted

voi d SysCardl nmageDel eted (U nt car dNo)

WARNING: System Use Only!

Developing Palm OS Applications, Part 1 333

System, Error, Preferences, and Find Functions

System Functions

Prototype

Purpose

Prototype

Prototype

Prototype

SysCardimagelnfo

Ptr SysCardlmagelnfo (U nt cardNo, ULongPtr sizeP)

WARNING: System Use Only!

SysColdBoot

Perform a cold boot and reformat all RAM areas of both memory
cards.

WARNING: System Use Only!

SysCurApplinfoP

SysCur Appl nfoPtr SysCurr Appl nf oP (voi d)

WARNING: System Use Only!

SysDisablelnts

Wrd SysDi sabl el nts (void)

WARNING: System Use Only!

SysDoze

voi d SysDoze (Bool ean onl yNM)

WARNING: System Use Only!

334 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
System Functions

Prototype

Prototype

Prototype

Prototype

Prototype

SysGetTrapAddress

Voi dPtr SysCet TrapAddress (U nt trapNum

WARNING: System Use Only!

Syslinit

void Syslnit (void)

WARNING: System Use Only!

SysKernellnfo

Err SysKernellnfo (VoidPtr paranP)

WARNING: System Use Only!

SysLaunchConsole

Err SysLaunchConsol e (voi d)

WARNING: System Use Only!

SysLibFind

Err SysLibFind (CharPtr nameP, U ntPtr refNunP)

WARNING: System Use Only!

Developing Palm OS Applications, Part | 335

System, Error, Preferences, and Find Functions
System Functions

SysLiblinstall

Prototype Err SysLi bl nstall (SysLibEntryProcPtr |ibraryP,
UntPtr ref NunP)

WARNING: System Use Only!

SysLibRemove

Prototype Err SysLi bRenove (U nt ref Num

WARNING: System Use Only!

SysLibTblEntry

Prototype SysLi bTbl EntryPtr SysLi bTbl Entry (U nt ref Num

WARNING: System Use Only!

SysNewOwnerID

Prototype U nt SysNewOanerl D (voi d)

WARNING: System Use Only!

SysPowerOn

Prototype void SysPowerOn (Ptr cardOP, ULong cardOSi ze,
Ptr cardlP, ULong cardlSi ze,
DWrd sysCar dHeader O f set ,
Bool ean reFor mat)

WARNING: System Use Only!

336 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
System Functions

SysRestoreStatus

Prototype void SysRestoreStatus (Wrd status)

WARNING: System Use Only!

SysSetA5

Prototype DWrd SysSet A5 (DWrd newval ue)

WARNING: System Use Only!

SysSetTrapAddress

Prototype Err SysSet TrapAddress (U nt trapNum
Voi dPtr procP)

WARNING: System Use Only!

SysSleep

Prototype void SysSleep (Bool ean until Reset,
Bool ean ener gency)

WARNING: System Use Only!

SysUlLaunch

Prototype void SysU Launch (voi d)

WARNING: System Use Only!

Developing Palm OS Applications, Part | 337

System, Error, Preferences, and Find Functions
Error Manager Functions

Error Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

ErrDisplay

Display an error alert if error checking is set to partial or full.

void ErrDi splay (char* nessage)

-> message Error message text.

No return value.

Call this routine to display an error message, source code filename,
and line number. This routine is actually a macro that is compiled
into the code only if the compiler define ERROR_CHECK_LEVEL
is set to 1 or 2 (ERROR_CHECK_PARTIAL or
ERROR_CHECK_FULL).

Err Fatal D spl ayl f, Err NonFat al D spl ayl f, “Usi ng t he
Error Manager”

ErrDisplayFileLineMsg

Display a nonexitable dialog with an error message. Do not allow
the user to continue.

void ErrDi spl ayFi | eLi neMsg(CharPtr filenane,
U nt Iineno,

Char Ptr nsgQ)
filename Source code filename.
lineno Line number in the source code file.
msg Message to display.

Never returns.

338 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
Error Manager Functions

Comment

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

Called by Err Fat al D spl ayl f and Err NonFat al Di spl ayl f.
This function is useful when the application is already on the
device and being tested by users.

Err Fat al D spl ayl f, Err NonFat al D spl ayl f, Err D spl ay

ErrFatalDisplaylf

Display an error alert dialog if condi t i on is TRUE and error
checking is set to partial or full.

void ErrFatal D splaylf (Bool ean condition,
char* message)

-> condition If TRUE, display the error.

->message Error message text.
No return value.

Call this routine to display a fatal error message, source code file-
name, and line number. The alert is displayed only if condi t i on
is true. The dialog is cleared only when the user resets the system
by responding to the dialog.

This routine is actually a macro that is compiled into the code if the
compiler define ERROR_CHECK_LEVEL is set to 1 or 2
(ERROR_CHECK_PARTIAL or ERROR_CHECK_FULL).

Err NonFat al D spl ayl f, Err D spl ay, “Usi ng the Error
Manager”

Developing Palm OS Applications, Part | 339

System, Error, Preferences, and Find Functions
Error Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

ErrNonFatalDisplaylf

Display an error alert dialog if condi ti on is TRUE and error
checking is set to full.

void ErrNonFatal D splaylf (Bool ean condition,
char* nessage)

-> condition If TRUE, display the error.

-> message Error message text.

No return value.

Call this routine to display a nonfatal error message, source code
filename, and line number. The alert is displayed only if condi -
ti on is true. The alert dialog is cleared when the user selects to
continue (or resets the system).

This routine is actually a macro that is compiled into the code only
if the compiler define ERROR_CHECK_LEVEL is set to 2
(ERROR_CHECK_FULL).

ErrFatal D splaylf,ErrDi splay,“Using the Error Man-
ager”

ErrThrow

Cause a jump to the nearest Catch block.
void ErrThrow (Long err)

err Error code.

Never returns.

Use the macros Err Try, Err Cat ch, and Er r EndCat ch in conjunc-
tion with this function.

Err Fatal D spl ayl f, Err NonFat al D spl ayl f, Err D spl ay,
“Using the Error MNanager”

340 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
System Preferences Functions

System Preferences Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

PrefGetAppPreferences
Return a copy of an application’s preferences.

Bool ean Pref Get AppPr ef erences (ULong type,
I nt version,
Voi dPtr prefs,
Word prefsSize)

type Application creator type.
version Version number of the application.
prefs Pointer to a buffer to hold preferences.

prefsSize Size of the buffer passed.

Returns FALSE if the preference resource was not found or the
preference resource contains the wrong version number.

The content and format of an application preference is application-
dependent.

Pr ef Set Pr ef er ences

Developing Palm OS Applications, Part | 341

System, Error, Preferences, and Find Functions
System Preferences Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

PrefGetPreferences

Return a copy of the system preferences.

voi d Pref Get Preferences (SystenPreferencesPtr p)
p Pointer to system preferences.

Returns nothing. Stores the system preferences in p.

The p parameter points to a memory block allocated by the caller
that is filled in by this function.

This function is often called in St ar t Appl i cat i on to get local-
ized settings.

Pr ef Set Pr ef er ences

PrefOpenPreferenceDB

Return a handle to the system preference database.
DrOpenRef Pref GpenPr ef erenceDB (voi d)
Nothing.

Returns the handle, or 0 if an error results.

Pr ef Get Pr ef er ences, Pr ef Set Pr ef er ences

342 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
System Preferences Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

See Also

PrefSetAppPreferences
Save an application’s preferences in the preferences database.

voi d Pref Set AppPr ef erences (ULong type,
I nt version,
Voi dPtr prefs,
Wrd prefsSize)

type Application creator type.

version Version number of the application.
prefs Pointer to a buffer holding preferences.
prefsSize Size of the buffer passed.

Nothing.

The content and format of an application preference is application-
dependent.

Pr ef Get Pr ef er ences

PrefSetPreferences

Set the system preferences.

voi d Pref Set Preferences (SystenPreferencesPtr p)
p Pointer to system preferences.

Returns nothing.

Pr ef Get Pr ef er ences

Developing Palm OS Applications, Part 1 343

System, Error, Preferences, and Find Functions

Find Functions

Find Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

FindDrawHeader

Draw the header line that separates, by database, the list of found
items.

Bool ean Fi ndDr awHeader (Fi ndParansPtr parans,
CharPtr title)

params Handle of Fi ndPar ansPtr.

title Description of the database (for example Memos)

Returns TRUE if Find screen is filled up. Applications should exit
from the search if this occurs.

FindGetLineBounds

Returns the bounds of the next available line for displaying a
match in the Find Results dialog.

voi d Fi ndGet Li neBounds (Fi ndParansPtr parans,
Rectangl ePtr r)

params Handle of Fi ndPar ansPtr.

T Pointer to a structure to hold the bounds of the next
results line.

Returns nothing.

344 Developing Palm OS Applications, Part |

System, Error, Preferences, and Find Functions
Find Functions

Purpose

Prototype

Parameters

Result

Comments

FindSaveMatch

Saves the record and position within the record of a text search
match. This information is saved so that it’s possible to later navi-
gate to the match.

voi d Fi ndSaveMat ch (FindParansPtr parans,
U nt recordNum
Wrd pos,
Unt field\Num
DWrd appCust om
U nt dbCar dNo,
Local I D rdbl D)

params Handle of Fi ndPar ansPtr.

recordNum Record index.

pos Offset of the match string from start of record.
appCustom Extra data the application can save with a match.
dbCardNo Car number of the database that contains the match.
dbID Local ID of the database that contains the match.

Returns TRUE if the maximum number of displayable items has
been exceeded

Called by application code when it gets a match.

Developing Palm OS Applications, Part | 345

System, Error, Preferences, and Find Functions

Find Functions

Purpose

Prototype

Parameters

Result

FindStrinStr

Perform a case-blind partial word search for a string in another
string. This function assumes that the string to find is in lower-case
characters.

void FindStrinStr (CharPtr strToSearch,
Char Ptr strToFi nd,
Wr dPtr posP)

strToSearch String to search.
sttToFind String to find.

posP Pointer to the offset in the search string of the match.

Returns TRUE if the string was found.

346 Developing Palm OS Applications, Part |

Purpose
Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

13

System Event
Manager Functions

EvtAddEventToQueue
Add an event to the event queue.
voi d Evt AddEvent ToQueue (EventPtr event)

event Pointer to the structure that contains the event.

error Pointer to any error encountered by this function.

Returns nothing.

EvtCopyEvent
Copy an event.
voi d Evt CopyEvent (EventPtr source, EventPtr dest)

source Pointer to the structure containing the event to copy.

dest Pointer to the structure to copy the event to.

Returns nothing.

Developing Palm OS Applications, Part | 347

System Event Manager Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

EvtDequeuePenPoint

Get the next pen point out of the pen queue (called by the recog-
nizers).

Err Evt DequeuePenPoi nt (Poi nt Type* retP)
retP Return point.

Always returns 0.

Called by a recognizer that wishes to extract the points of a stroke.
Returns the point (-1, -1) at the end of a stroke.

Before calling this routine, you must call
Evt DequeuePensSt r okel nf o.

Evt DequeuePenSt r okel nf o

EvtDequeuePenStrokelnfo
Initiate the extraction of a stroke from the pen queue.

Err Evt DequeuePenStrokel nfo(Poi nt Type* startPtP,
Poi nt Type* endPt P)

startPtP
startPtP

Start point returned here.

End point returned here.
Always returns 0.

Called by the system function Evt Get SysEvent . This routine
must be called before Evt DequeuePenPoi nt is called.

Subsequent calls to Evt DequeuePenPoi nt return points at the
starting point in the stroke and including the end point. After the
end point is returned, the next call to Evt DequeuePenPoi nt re-
turns the point -1, -1.

Evt DequeuePenPoi nt

348 Developing Palm OS Applications, Part |

System Event Manager Functions

Purpose
Prototype
Parameters

Result

Purpose

Prototype

Parameters

Result

Comments

EvtEnableGraffiti

Set Graffiti enabled or disabled.

voi d Evt Enabl eG affiti (Bool ean enabl e)

enable TRUE to enable Graffiti, FALSE to disable Graffiti.

Returns nothing.

EvtEnqueueKey
Place keys into the key queue.

Err Evt EnqueueKey (U nt ascii,
U nt keycode,
U nt nodifiers)

ascii ascii code of key.
keycode Virtual key code of key.

modifiers ~ Modifiers for key event.
Returns 0 if successful, or evt Er r Par anEr r if an error occurs.

Called by the keyboard interrupt routine and the Graffiti and Soft-
Keys recognizers. Note that because both interrupt- and noninter-
rupt-level code can post keys into the queue, this routine disables
interrupts while the queue header is being modified.

Most keys in the queue take only 1 byte if they have no modifiers
and no virtual key code, and are 8-bit ASCIL. If a key event in the
queue has modifiers or is a non-standard ascii code, it takes up to 7
bytes of storage and has the following format:

evtKeyStringEscape 1 byte

ASCII code 2 bytes
virtual key code 2 bytes
modifiers 2 bytes

Developing Palm OS Applications, Part | 349

System Event Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result

Comments

See Also

EvtFlushKeyQueue

Flush all keys out of the key queue.
Err Evt Fl ushKeyQueue (voi d)
None.

Always returns 0.

Called by the system function Evt Set PenQueuePtr.

EvtFlushNextPenStroke

Flush the next stroke out of the pen queue.

Err Evt Fl ushNext PenStroke (voi d)

None

Always returns 0.

Called by recognizers that need only the start and end points of a
stroke. If a stroke has already been partially dequeued (by

Evt DequeuePenSt r okel nf 0) this routine finishes the stroke de-

queueing. Otherwise, this routine flushes the next stroke in the
queue.

Evt DequeuePenPoi nt

350 Developing Palm OS Applications, Part |

System Event Manager Functions

Purpose
Prototype
Parameters
Result
Comment

See Also

Purpose
Prototype

Parameters

Comments

Result

EvtFlushPenQueue

Flush all points out of the pen queue.

Err Evt Fl ushPenQueue (voi d)

None

Always returns 0.

Called by the system function Evt Set KeyQueuePt r .

Evt PenQueueSi ze

EvtGetEvent
Return the next available event.
voi d Evt Get Event (EventPtr event, Long timeout)

event Pointer to the structure to hold the event returned.

timeout Max amount of ticks to wait before an event is
returned (-1 means wait indefinitely).

Pass t i meout = -1 in most instances. When running on the device,
this makes the CPU go into doze mode until the user provides
input. For applications that do animation, pass t i meout >=0.

Returns nothing.

Developing Palm OS Applications, Part| 351

System Event Manager Functions

EvtGetPen
Purpose Return the current status of the pen.
Prototype void EvtGetPen(Sword *pScreenX,
Sword *pScreeny,
Bool ean * pPenDown)
Parameters pScreenX x location relative to display.
pScreenY y location relative to display.
pPenDown TRUE or FALSE.
Result Returns nothing.
Comments Called by various Ul routines.
See Also KeyCQurrent State
EvtGetPenBtnList
Purpose Return a pointer to the silk-screen button array.
Prototype PenBtnlnfoPtr asm
Evt Get PenBt nLi st (Ul nt Ptr nunButt ons)
Parameters numButtons Pointer to the variable to contain the
number of buttons in the array.
Result Returns a pointer to the array.

Comments The array returned contains the bounds of each silk-screened
button and the ASCII code and modifiers byte to generate for each
button.

See Also Evt ProcessSof t KeySt r oke

352 Developing Palm OS Applications, Part |

System Event Manager Functions

Purpose
Prototype
Parameters

Result

Comments

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result

Comments

EviKeyQueueEmpty

Return TRUE if the key queue is currently empty.
Bool ean Evt KeyQueueEnpty (voi d)

None.

Returns TRUE if the key queue is currently empty, otherwise re-
turns FALSE.

Called by key manager to determine if it should enqueue auto-
repeat keys.

EvtKeyQueueSize

Return the size of the current key queue in bytes.
ULong Evt KeyQueueSi ze (voi d)

None.

Returns size of queue in bytes.

Called by applications that wish to see how large the current key
queue is.

EvtPenQueueSize

Return the size of the current pen queue in bytes.
ULong Evt PenQueueSi ze (voi d)

None.

Returns size of queue in bytes.

Call this function to see how large the current pen queue is.

Developing Palm OS Applications, Part| 353

System Event Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

EvtProcessSoftKeyStroke

Translate a stroke in the system area of the digitizer and enqueue
the appropriate key events in to the key queue.

Err Evt ProcessSoft KeyStroke(Poi nt Type* startPtP,
Poi nt Type* endPt P)

startPtP
endPtP

Start point of stroke.
End point of stroke.

Returns 0 if recognized, -1 if not recognized.

Evt Get PenBt nLi st, G f ProcessStr oke

EvtResetAutoOffTimer

Reset the auto-off timer to assure that the device doesn’t automati-
cally power off during a long operation without user input (for ex-
ample, serial port activity).

Err EvtReset AutoO f Ti mer (void)

None.

Always returns 0.

Called by Seri al Li nkMyr, Can be called periodically by other
managers.

SysSet Aut o f Ti ne

354 Developing Palm OS Applications, Part |

System Event Manager Functions
Functions for System Use Only

Purpose

Prototype
Parameters
Result

Comments

EvtWakeup

Force the event manager to wake up and send a ni | Event to the
current application.

Err Evt Wakeup (voi d)
None.
Always returns 0.

Called by interrupt routines, like the sound manager and alarm
manager.

Functions for System Use Only

Prototype

Prototype

Prototype

EvtDequeueKeyEvent

Err Evt DequeueKeyEvent (EventPtr eventP)

WARNING: System Use Only!

EvtEnqueuePenPoint

Err Evt EnqueuePenPoi nt (Poi nt Type* ptP)

WARNING: System Use Only!

EvtGetSysEvent

voi d Evt Get SysEvent (EventPtr eventP,
Long ti neout)

WARNING: System Use Only!

Developing Palm OS Applications, Part | 355

System Event Manager Functions
Functions for System Use Only

Evtinitialize

Prototype void Evtinitialize (void)

WARNING: System Use Only!

EvtSetKeyQueuePtr

Prototype Err Evt Set KeyQueuePtr (Ptr keyQueueP, ULong si ze)

WARNING: System Use Only!

EvtSetPenQueuePtr

Prototype Err Evt Set PenQueuePtr (Ptr penQueueP, ULong si ze)

WARNING: System Use Only!

EvtSysinit

Prototype Err Evt Syslnit (void)

WARNING: System Use Only!

356 Developing Palm OS Applications, Part |

Purpose

Prototype

Parameters

Result

Comments

See Also

14

Feature, Time, Float,
and String Functions

FtrGet

Get a feature.

Err FtrGet (DWrd creator,
U nt featureNum
DWor dPtr val ueP)

creator Creator type, should be same as the application
that owns this feature.

featureNum Feature number of the feature.

valueP Value of the feature is returned here.

Returns 0 if no error, or f t r Err NoSuchFtr or
ftrErrlnternal Error if an error occurs.

The value of the feature is application-dependent.

Ft r Set

Developing Palm OS Applications, Part | 357

Feature, Time, Float, and String Functions

FtrGetBylndex

Purpose Get a feature by index.

Until the caller gets back f t r Er r NoSuchFeat ur e, it should pass
indices for each table (ROM, RAM) starting at 0 and incrementing .

Prototype Err FtrGetBylndex (U nt index,
Bool ean ronirabl e,
DWrdPtr creatorP,
UntPtr nunf,
DWor dPt r val ueP)

Parameters index Index of feature.
romTable If TRUE, index into ROM table; otherwise,
index into RAM table.
creatorP Feature creator is returned here.
numP Feature number is returned here.
valueP Feature value is returned here.

Result Returns 0if no error, orftrErrinternal Error or
ftrErr NoSuchFeat ur e if an error occurs.

Comments This routine is normally only used by shell commands. Most appli-
cations do not need it.

358 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose

Prototype

Parameters

Result

FtrSet

Set a feature.

Err FtrSet (DWrd creator,
U nt featureNum
DWrd newval ue)

creator Creator type, should be same as the application
that owns this feature.

featureNum Feature number of the feature.

newValue New value.

Returns 0 if no error, or f t r Er r NoSuchFeat ur g,
mentr r ChunkLocked, nmentrrl nval i dPar am or
mentr r Not EnoughSpace if an error occurs.

The value of the feature is application-dependent.

Ftr Get

FtrUnregister

Unregister a feature.

Err FtrUnregister (DWrd creator,
U nt featureNum

creator Creator type, should be same as the application
that owns the creator.

featureNum Feature number of the feature.

Returns 0 if no error, or ftr I nt er nal Error,
ftrErrNoSuchFeat ur e, mentr r ChunkLocked,

mentr r I nval i dPar am or mentr r Not EnoughSpace if an error
occurs.

Developing Palm OS Applications, Part| 359

Feature, Time, Float, and String Functions
For System Use Only

For System Use Only

Ftrinit

Prototype Err Ftrilnit (void)

WARNING: This function for System use only

String Manager Functions

StrATol
Purpose Converts a string to an integer.
Prototype Int StrATol (CharPtr str)
Parameters str String to convert.
Result Returns the integer.

Comments Use this function instead of the standard at oi routine.

StrCat
Purpose Concatenate one string to another.
Prototype CharPtr StrCat (CharPtr dst, CharPtr src)
Parameters Two string pointers.
Result Returns a pointer to the destination string.

Comments Use this function instead of the standard st r cat routine.

360 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
String Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype

Parameters

Result

Comments

See Also

StrCaselessCompare

Compare two strings with case and accent insensitivity.

Int StrCasel essConpare (CharPtr s1, CharPtr s2)
Two string pointers.

Returns 0 if the two strings match, or non-zero if they don't.

Use this function instead of the standard st ri cnp routine. Use it
to find strings but not sort them because it ignores case and accents.

St r Conpar e

StrChr
Look for a character within a string.
CharPtr StrChr (CharPtr str, Int chr)

str String to search.

chr Character to search for.

Returns a pointer to the first occurrence of character in st r, or
NULL if not found.

Use this function instead of the standard st r chr routine.

This routine does not correctly find a “\0’ character.

StrStr

Developing Palm OS Applications, Part| 361

Feature, Time, Float, and String Functions
String Manager Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

StrCompare

Compare two strings.

Int StrConpare (CharPtr s1, CharPtr s2)
Two string pointers.

Returns 0 if the strings match.
Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

This function is case sensitive. Use it to sort strings but not to find
them.

Use this function instead of the standard st r cnp routine.

St r Casel essConpar e

StrCopy

Copy one string to another.

CharPtr StrCopy (CharPtr dst, CharPtr src)
Two string pointers.

Returns a pointer to the destination string.

Use this function instead of the standard st r cpy routine.

This function does not return overlapping strings.

362 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
String Manager Functions

Purpose
Prototype

Parameters

Result

See Also

Purpose
Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters
Result

Comments

StriToA

Convert an integer to ASCII.

CharPtr StrlToA (CharPtr s, Long i)
s String pointer to store results.
1 Integer to convert.

Returns a pointer to the result string.

StrATol, Strl ToH

StriToH

Convert an integer to hexadecimal ASCIL.

CharPtr StrlToH (CharPtr s, ULong i)
s String pointer to store results.
1 Integer to convert.

Returns the string pointer s.

Strl ToA

StrLen

Compute the length of a string.
Unt StrLen (CharPtr src)
src String pointer

Returns the length of the string.

Use this function instead of the standard st r | en routine.

Developing Palm OS Applications, Part| 363

Feature, Time, Float, and String Functions
String Manager Functions

Purpose
Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

StrStr

Look for a substring within a string.
CharPtr StrStr (CharPtr str, CharPtr token)

str String to search.

token String to search for.

Returns a pointer to the first occurrence of t oken in st r, or NULL
if not found.

Use this function instead of the standard st r st r routine.

StrChr

StrToLower

Convert all the characters in a string to lowercase.
CharPtr StrToLower (CharPtr dst, CharPtr src)
Two string pointers.

Returns a pointer to the destination string.

This function doesn’t convert accented characters.

364 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
Time Manager Functions

Time Manager Functions

Purpose
Prototype

Parameters

Result

Comments

Purpose
Prototype

Parameters

Result

See Also

DateAdjust
Return a new date +/- the days adjustment.
voi d Dat eAdj ust (DatePtr dateP, Long adj ustmnent)

dateP A Dat eType structure with the date to be adjusted
(see DateTime.h).

adjustment The adjustment in seconds.
Changes dat eP to contain the new date.

This function is useful for advancing a day or week and not wor-
rying about month and year wrapping.

If the time is advanced out of bounds, it is cut at the bounds sur-
passed.

DateDaysToDate
Return the date, given days.
voi d Dat eDaysToDate (ULong days, DatePtr dateP)

days Days since 1/1/1904.
dateP Pointer to Dat eType structure (returned).

Returns nothing, stores the date in dat eP.

Ti mAdj ust, Dat eToDays

Developing Palm OS Applications, Part| 365

Feature, Time, Float, and String Functions
Time Manager Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

See Also

DateSecondsToDate

Return the date given seconds.

voi d Dat eSecondsToDate (ULong seconds,
Dat ePtr dat eP)
seconds Seconds since 1/1/1904.

dateP Pointer to DateType structure (returned).

Returns nothing; stores the date in dat eP.

DateToAscii

Convert the time passed to an ASCII string in the passed
Dat eFor mat Type.

voi d Dat eToAscii(Byte nonths,
Byt e days,
Wrd years,
Dat eFor mat Type dat eFor mat ,
CharPtr pString)

NOTE: Handles the long and short forms of the date formats.

months Months (1-12).

days Days (1-31).

years Years (for example 1995).

dateFormat Long or short Dat eFor mat Type.

pString Pointer to string which gets the result. Must be of
length dat eSt ri ngLengt h for standard formats or
| ongDat eSt r Lengt h for long date formats.

Returns nothing; stores the resultin pSt ri ng.

Ti meToAsci i , Dat eToDONDMFor nat

366 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
Time Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

See Also

DateToDays

Return the date in days since 1/1/1904.
ULong Dat eToDays (DateType date)
date Dat eType structure.
Returns the days since 1/1/1904.

Ti mAdj ust, Dat eDaysToDat e

DateToDOWDMFormat

Convert the date passed to an ASCII string.

voi d Dat eToDONDMFor mat (Byt e nont hs,
Byt e days,
Wrd years,
Dat eFor mat Type dat eFor nat ,
CharPtr pString)

months Month (1-12).

days Day (1-31).

years Years (for example 1995).

dateFormat False to use AM and PM.

pString Pointer to string which gets the result. The

string must be of length t i meSt ri ngLengt h.
Returns nothing; stores ASCII string in pSt r i ng.

Dat eToAsci |

Developing Palm OS Applications, Part| 367

Feature, Time, Float, and String Functions
Time Manager Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

DayOfMonth

Return the day of a month on which the specified date occurs (for
example, don2ndTue).

Unt DayOMonth (U nt nonth, Unt day, Unt year)

month Month (1-12).
day Day (1-31).
year Year (ex: 1995).

Returns the day of the month as a DayOf WeekType, see
DateTime.h.

DayOfWeek

Return the day of the week.

Unt DayOrWwek (U nt nonth, Unt day, U nt year)

month Month (1-12).
day Day (1-31).
year Year (ex: 1995).

Returns the day of the week (Sunday = 0, Monday =1, etc.).

DaysIinMonth
Return the number of days in the month.
U nt DayslnMnth (Unt nonth, Unt year)

Month (1-12).
Year (for example, 1995).

month

year

Returns the number of days in the month for that year.

368 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
Time Manager Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

Comments

See Also

SelectDay

Display a form showing a date and allow the user to select a dif-
ferent date.

Bool ean Sel ect Day (int *nonth,
i nt *day,
int *year,
CharPtr title)

month Month selected.

day Day selected.

year Year selected.

title String title for the dialog.

Returns true if the OK button was pressed. In that case, the parame-
ters passed are changed.

TimAdjust

Return a new date, +/- the time adjustment.

voi d Ti mAdj ust(DateTi nePtr dateTi neP,
Long adj ust nent)

dateTimeP A Dat eType structure (see DateTime.h).

adjustment The adjustment in seconds.
Returns nothing. Changes dat eTi meP to the new date and time.

This function is useful for advancing a day or week and not wor-
rying about month and year wrapping.

If the time is advanced out of bounds it is cut at the bounds sur-
passed.

Dat eAdj ust

Developing Palm OS Applications, Part| 369

Feature, Time, Float, and String Functions
Time Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

Comments

TimDateTimeToSeconds

Return the date and time in seconds since 1/1/1904.

ULong Ti nDat eTi neToSeconds (Dat eTi mePtr dat eTi neP)
dateTimeP A Dat eType structure (see DateTime.h).
The time in seconds since 1/1/1904.

Ti nBecondsToDat eTi ne

TimGetSeconds

Return seconds since 1/1/1904.
ULong Ti nGet Seconds (voi d)
None.

Returns the number of seconds.

Ti nBet Seconds

TimGetTicks

Return the tick count since the last reset.
ULong Ti ntet Ti cks (voi d)

None.

Returns the tick count.

The tick count does not advance while the device is in sleep mode.

370 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
Time Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters
Result

See Also

TimSecondsToDateTime

Return the date and time, given seconds.

voi d Ti nBecondsToDat eTi ne(ULong seconds,
Dat eTi nePt r dat eTi meP)

seconds Seconds to advance from 1/1/1904.
dateTimeP A Dat eTi meType structure that’s filled by the
function.

Returns nothing. Stores the date and time given seconds since 1/1/
1904 in dat eTi neP.

Ti nDat eTi neToSeconds

TimSetSeconds

Return seconds since 1/1/1904.

voi d Ti nBSet Seconds (ULong seconds)

seconds Place to return the seconds since 1/1/1904.
Returns nothing; modifies seconds.

Ti nCet Seconds

Developing Palm OS Applications, Part| 371

Feature, Time, Float, and String Functions
Time Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Prototype

Prototype

TimeToAscii
Convert the time passed to an ASCII string.

voi d TimeToAscii(Byte hours,
Byt e m nut es,
Ti meFor mat Type ti neFor nmat,
CharPtr pString)

hours Hours (0-23).

minutes Minutes (0-59).

timeFormat False to use AM and PM.

pString Pointer to string which gets the result. Must be

of length ti meStri ngLengt h.

Returns nothing. Stores pointer to the text of the current selection
inpString.

Dat eToAscCi |

Functions for System Use Only

TimGetAlarm

ULong Ti ntet Al arm (voi d)

WARNING: System use only!

TimHandlelnterrupt

voi d Ti mHandl el nterrupt (Bool ean peri odi cUpdat e)

Warning: System use only!

372 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
Float Manager Functions

Prototype

Prototype

TimInit

Err Timnit (void)

Warning: System use only!

TimSetAlarm

ULong Ti nBet Al ar m (ULong al ar nSeconds)

Warning: System use only!

Float Manager Functions

Purpose
Prototype
Parameters

Result

FplAdd

Add two floating-point numbers (returns a + b).

Fl oat Type Fpl Add (Fl oat Type a, Fl oat Type b)
a, b The floating-point numbers.

Returns the normalized floating-point result of the addition.

Developing Palm OS Applications, Part| 373

Feature, Time, Float, and String Functions
Float Manager Functions

Purpose

Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

Comments

FplAToF

Convert a zero-terminated ASCII string to a floating-point number.
The string must be in the format : [-]x[.]lyyyyyyyylel-]zz]

FI oat Type Fpl AToF (char* s)
S Pointer to the ASCII string.

Returns the floating-point number.

Fpl FToA

FplBaselOlInfo

Extract detailed information on the base 10 form of a floating-point
number: the base 10 mantissa, exponent, and sign.

Err Fpl BaselOlnfo (Fl oat Type a,
ULong* manti ssaP,
I nt* exponent P,

| nt* signP)
a The floating-point number.
mantissal The base 10 mantissa (return value).
exponentP The base 10 exponent (return value).
signP The sign, 1 or -1 (return value).

Returns an error code, or 0 if no error.

The mantissa is normalized so it contains at least
kMaxSi gni fi cant Di gi t s significant digits when printed as an
integer value.

374 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
Float Manager Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

See Also

FplDiv
Divide two floating-point numbers (result = dividend / divisor).

Fl oat Type Fpl Div (Fl oat Type di vi dend,
FI oat Type di vi sor)

dividend

divisor

Floating-point dividend.

Floating-point divisor.

Returns the normalized floating-point result of the division.

FplFloatToLong

Convert a floating-point number to a long integer.
Long Fpl Fl oat ToLong (Fl oat Type f)

f Floating-point number to be converted.
Returns the long integer.

Fpl LongToFI oat, Fpl Fl oat ToULong

FplFloatToULong

Convert a floating-point number to an unsigned long integer.
ULong Fpl Fl oat ToULong (Fl oat Type f)

f Floating-point number to be converted.

Returns an unsigned long integer.

Fpl LongToFl oat, Fpl Fl oat ToLong

Developing Palm OS Applications, Part| 375

Feature, Time, Float, and String Functions
Float Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

Result

See Also

FplFree

Release all memory allocated by the floating-point initialization.
voi d Fpl Free()

None.

Returns nothing.

Applications must call this routine after they’ve called other func-
tions that are part of the float manager.

Fpl | ni t

FpIFToA

Convert a floating-point number to a zero-terminated ASCII string
in exponential format : [-]x.yyyyyyyye[-]zz

Err Fpl FToA (Fl oat Type a, char* s)
a The floating-point number.
s Pointer to buffer to contain the ASCII string.

Returns an error code, or 0 if no error.

Fpl AToF

376 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
Float Manager Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters

Result

Purpose
Prototype
Parameters

Result

Fplinit

Initialize the floating-point conversion routines.
Allocate space in the system heap for f pl globals.

Initialize the t enPower s array in the globals area to the powers of
10 from -99 to +99 in floating-point format.

Err Fpllnit()
None.
Returns an error code, or 0 if no error.

Applications must call this routine before calling any other f pl
function.

Fpl Free

FplLongToFloat

Convert a long integer to a floating-point number.
Fl oat Type Fpl LongToFl oat (Long Xx)

X A long integer.

Returns the floating-point number.

FplMul

Multiply two floating-point numbers.

FI oat Type Fpl Mul (Fl oat Type a, Fl oat Type b)
a,b The floating-point numbers.

Returns the normalized floating-point result of the multiplication.

Developing Palm OS Applications, Part| 377

Feature, Time, Float, and String Functions

Alarm Manager API
FplSub
Purpose Subtract two floating-point numbers (returns a - b).
Prototype Fl oat Type Fpl Sub (Fl oat Type a, Fl oat Type b)
Parameters a, b The floating-point numbers.
Result Returns the normalized floating-point result of the subtraction.

Alarm Manager API

Purpose

Prototype

Parameters

Result

AlmGetAlarm

Return the alarm date/time in seconds since 1/1/1904 and the
caller-defined alarm reference value for the given application.

ULong Al nGetAlarm (U nt cardNo,
Local I D dbl D,
DWordpPtr refP)

->cardNo Storage card number of the application.

->dbID Local ID of the application.

<->refP Pointer to location for the alarm’s reference value.
Alarm seconds since 1/1/1904; if no alarm is active for the applica-

tion, 0 is returned for the alarm seconds and the reference value is
undefined.

378 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions

Alarm Manager API
AlmSetAlarm
Purpose Set or cancel an alarm for the given application.
Prototype Err AlnSetAlarm (U nt cardNo,
Local I D dbl D,
DWrd ref,
ULong al ar nSeconds,
Bool ean qui et)
Parameters ->cardNo Storage card number of the application.
->dbID Local ID of the application.
-> ref Caller-defined value to be passed with
notifications.
->alarmSeconds Alarm date/time in seconds since 1/1/1904,
or 0 to cancel the current alarm (if any).
-> quiet Reserved for future upgrade (set to zero).
Result 0 No error.
almErrMemory Insufficient memory.
almErrFull Alarm table is full.
Comments If an alarm for this application has already been set, it is replaced

with the new alarm. Action code notifications are sent after the
alarm is triggered and can be used by the application to set the next
alarm.

Developing Palm OS Applications, Part| 379

Feature, Time, Float, and String Functions
Alarm Manager API

Functions for System Use Only

AlmAlarmCallback

Prototype void Al nAl arnCal | back (voi d)

WARNING: This function for use by system software only.

AlmCancelAll

Prototype void Al nCancel All (Bool ean enabl e)

WARNING: This function for use by system software only.

AlmDisplayAlarm

Prototype void Al nDi spl ayAl arm (Bool ean di spl ayOnl y)

WARNING: This function for use by system software only.

AlmEnableNotification

Prototype voi d Al nEnabl eNoti fi cati o(Bool ean enabl e)

WARNING: This function for use by system software only.

AlmiInit

Prototype Err Almnit (void)

WARNING: This function for use by system software only.

380 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
Sound Manager Functions

Sound Manager Functions

Purpose

Prototype

Parameters

Result

SndDoCmd

Send a sound manager command to a specified sound channel.

NOTE: Passing NIL for the channel pointer causes the command
to be sent to the shared sound channel.

Err SndDoCrd (Voi dPtr chanP,
SndCommandPt r cndP,
Bool ean noWai t)

-> chanP Pointer to sound channel. Present implementation
doesn’t support multiple channels. Must be zero.

-> cmdP Pointer to a SndCommandType structure which
contains command parameters.

->noWait (0 = await completion
I0 = immediate return (asynchronous)
asynchronous mode is not presently supported

0 No error.

sndEr r BadPar am Invalid parameter.
sndEr r BadChannel Invalid channel pointer.
sndErr Qrul | Sound queue is full.

Developing Palm OS Applications, Part| 381

Feature, Time, Float, and String Functions
Sound Manager Functions

Purpose

Prototype

Parameters

Result

Comments

Purpose
Prototype
Parameters

Result

SndGetDefaultVolume

Return default sound volume levels.

voi d SndGet Def aul t Vol une (U ntPtr al ar mAnpP,
untPtr sysAmP,
U ntPtr def AmpP)

<->alarmAmpP Pointer to storage for alarm amplitude.
<->sysAmpP Pointer to storage for system sound amplitude.

<->defAmpP Pointer to storage for master amplitude.
Returns nothing.

Any pointer arguments may be passed as NULL. In that case, the
corresponding setting is not returned.

SndPlaySystemSound

Play a standard system sound.

void SndPl aySyst enSound (SndSysBeepType beepl D)
->beepID ID of system sound to play.

Returns nothing.

382 Developing Palm OS Applications, Part |

Feature, Time, Float, and String Functions
Sound Manager Functions

Purpose

Prototype

Parameters

Result

Comments

Prototype

SndSetDefaultVolume

Set the default sound volume levels.

voi d SndSet Def aul t Vol une (U ntPtr al ar mAnpP,
untPtr sysAmP,
U ntPtr def AmpP)

-> alarmAmpP Pointer to alarm amplitude (0- sndMaxAnp).

-> sysAmpP Pointer to system sound amplitude
(0-sndMaxAmp).
-> defAmpP Pointer to master amplitude (0- sndMaxAmp).

Returns nothing.

Any pointer arguments may be passed as NULL. In that case, the
corresponding setting are not affected.

Functions for System Use Only

Sndinit

Err Sndlnit(void)

WARNING: This function for use by system software only.

Developing Palm OS Applications, Part| 383

Feature, Time, Float, and String Functions
Sound Manager Functions

384 Developing Palm OS Applications, Part |

15

Pen, Key, and
CD Graffiti Functions

Pen Manager Functions

PenCalibrate
Purpose Set the calibration of the pen.

Prototype Err PenCalibrate (Poi nt Type* di gTopLeftP,
Poi nt Type* di gBot Ri ght P,
Poi nt Type* scr TopLeftP,
Poi nt Type* scr Bot Ri ght P)

Parameters digTopLeftP Digitizer output from top-left coordinate.
digBotRightP Digitizer output from bottom-right coordinate.
scrTopLeftP Screen coordinate near top-left corner.
scrBotRightP Screen coordinate near bottom-right corner.

Result Returns 0 if no error.
Comments Called by Preferences application when calibrating pen.

See Also PenReset Cal i bration

Developing Palm OS Applications, Part | 385

Pen, Key, and Graffiti Functions
Pen Manager Functions

PenResetCalibration
Purpose Reset the calibration in preparation for calibrating the pen again.
Prototype Err PenResetCalibration (void)
Parameters None.
Result Always returns 0.

Comments Called by Preferences application before capturing points when cal-
ibrating the digitizer.

See Also PenCalibrate

WARNING: The digitizer is off after calling this routine and must
be calibrated again!!!

Functions for System Use Only

PenClose

Prototype Err Pend ose (voi d)

WARNING: This function for use by system software only.

PenGetRawPen
Prototype Err PenCGet RawPen (Poi nt Type* penP)

See Instead Evt DequeuePenPoi nt

WARNING: This function for use by system software only.

386 Developing Palm OS Applications, Part |

Pen, Key, and Graffiti Functions
Pen Manager Functions

Prototype

Prototype

Prototype

Prototype

Prototype

PenOpen

Err PenQpen (voi d)

WARNING: This function for use by system software only.

PenSleep

Err PenSl eep (void)

WARNING: This function for use by system software only.

PenRawToScreen

Err PenRawToScreen (Poi nt Type* penP)

WARNING: This function for use by system software only.

PenScreenToRaw

Err PenScreenToRaw (Poi nt Type* penP)

WARNING: This function for use by system software only.

PenWake

Err PenWake (voi d)

WARNING: This function for use by system software only.

Developing Palm OS Applications, Part | 387

Pen, Key, and Graffiti Functions
Key Manager Functions

Key Manager Functions

KeyCurrentState

Purpose Return bit field with bits set for each key that is currently de-
pressed.

Prototype DWrd KeyCurrent State (void)
Parameters void
Result DWord with bits set for keys that are depressed. See

keyBi t Power , keyBi t PageUp, keyBi t PageDown, etc., in
KeyMyr . h.

Comments Called by applications that need to poll the keys.

See Also KeyRat es

388 Developing Palm OS Applications, Part |

Pen, Key, and Graffiti Functions
Key Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Prototype

KeyRates

Get or set the key repeat rates.

Err KeyRates (

set

initDelayP
periodP
doubleTapDelayP
queueAheadP

Bool ean set,

WordPtr initDel ayP,
VWordPtr peri odP,

Wor dPtr doubl eTapDel ayP,
Bool eanPtr queueAheadP)

If TRUE, settings are changed; if FALSE,
current settings are returned.

Initial delay in ticks for a auto-repeat event.
Auto-repeat rate specified as period in ticks.
Max double-tap delay in ticks.

If TRUE, auto-repeating keeps queueing up
key events if the queue has keys in it. If
FALSE, auto-repeat does not enqueue keys
unless the queue is already empty.

Returns 0 if no error.

KevCQurrent St at e

Functions for System Use Only

KeyBootKeys

DWrd KeyBoot Keys (voi d)

WARNING: This function for use by system software only.

Developing Palm OS Applications, Part | 389

Pen, Key, and Graffiti Functions
Key Manager Functions

Prototype

Prototype

Prototype

Prototype

Prototype

KeyHandlelnterrupt

ULong KeyHandl el nterrupt(Bool ean peri odic,
DWrd st at us)

WARNING: This function for use by system software only.

Keylnit

Err Keylnit (void)

WARNING: This function for use by system software only.

KeyResetDoubleTap

Err KeyReset Doubl eTap (voi d)

WARNING: This function for use by system software only.

KeySleep

Err KeySleep (Bool ean until Reset,
Bool ean ener gency)

WARNING: This function for use by system software only.

KeyWake

Err KeyWake (voi d)

WARNING: This function for use by system software only.

390 Developing Palm OS Applications, Part |

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

Graffiti Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters

Result

See Also

GrfAddMacro

Add a macro to the macro list.

Err G fAddMacro (CharPtr nameP,
Byt ePtr nacr oDat aP,
Wrd dat aLen)

nameP Name of macro.
macroDataP Data of macro.
datalLen Size of macro data in bytes.

Returns 0 if no error; returns gr f Er r NoMacr os,
grf Err Macr oPtr TooSnal | , dnEr r Not Val i dRecor d,
dnErr Wi t eQut O Bounds if an error occurs.

G f Get Macr o, G f Get Macr oNane, G f Del et eMacr o

GrfAddPoint

Add a point to the Graffiti point buffer.
Err G f AddPoi nt (Poi nt Type* ptP)
ptP Pointer to point.

Returns 0 if no error; returns gr f Er r Poi nt Buf f er Ful | if an
error occurs.

G f Fl ushPoi nt s

Developing Palm OS Applications, Part | 391

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters

Result

See Also

Purpose
Prototype
Parameters

Result

See Also

GrfCleanState

Remove any temporary shifts from the dictionary state.

Err Gfd eanState (void)

None

Returns 0 if no error, or gr f Er r NoDi ct i onary if an error occurs.

GflnitState

GrfDeleteMacro

Delete a macro from the macro list.

Err GfDel eteMacro (Wrd index)
Which macro to delete.

index

Returns 0 if no error, or gr f Er r NoMacr os,
gr f Err Macr oNot Found if an error occurs.

G f AddMacr o

GrfFindBranch

Locate a branch in the Graffiti dictionary by flags.
Err G fFi ndBranch (Wrd fl ags)

tlags

Flags of the branch we're searching for.

Returns 0 if no error, or gr f Err NoDi cti onary or
gr f Err BranchNot Found if an error occurs.

GfdeanState, GflnitState

392 Developing Palm OS Applications, Part |

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

See Also

GrfFilterPoints

Filter the points in the Graffiti point buffer.
Err GfFilterPoints (void)

None.

Always returns 0.

G fMatch

GrfFlushPoints

Dispose of all points in the Graffiti point buffer.
Err G fFlushPoints (void)

None.

Always returns 0.

G f AddPoi nt

Developing Palm OS Applications, Part | 393

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

Purpose

Prototype

Parameters

Result

See Also

GrfGetAndExpandMacro

Look up and expand a macro in the current macros.

Err G f Get AndExpandMacr o(Char Pt r naneP,
Byt ePtr nacr oDat aP,
Wr dPtr datalLenP)

namel’ Name of macro to look up.
macroDataP Macro contents returned here.
dataLenP On entry, size of macroDataP buffer;

on exit, number of bytes in macro data.

Returns 0 if no error, or gr f Er r NoMacr os or
gr f Err Macr oNot Found if an error occurs.

G f AddMacr o, G f Get Macr o

394 Developing Palm OS Applications, Part |

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

GrfGetGlyphMapping
Look up a glyph in the dictionary and return the text.

Err GfGetd yphMappi ng(Word gl yphl D,
WrdpPtr flagsP,
voi d* dataPtrP,
Wr dPtr datalLenP,
WordPtr uncert ai nLenP)

glyphID Glyph ID to lookup.

tlagsP Returned dictionary flags.
dataPtrP Where returned text goes.
datalLenP On entry, size of dataPtrP;

on exit, number of bytes returned.

uncertainLenP Return number of uncertain characters in text.

Returns 0 if no error, or gr f Err NoDi cti onary or
gr f Er r NoMappi ng if an error occurs.

G f Mat ch

GrfGetMacro

Look up a macro in the current macros.

Err G fGetMacro(CharPtr naneP, BytePtr nacroDat aP,
VWr dPtr dat aLenP)

nameP Name of macro to lookup.
macroDataP Macro contents returned here.
dataLenP On entry: size of macroDataP buffer.

On exit: number of bytes in macro data.
Returns 0 if no error or grfErrNoMacros, grfErrMacroNotFound.

G f AddMacr o

Developing Palm OS Applications, Part | 395

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

Purpose
Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype

Parameters

Result

See Also

GrfGetMacroName

Look up a macro name by index.

Err G fCGet MacroNane (Word i ndex,

index

nameP

Index of macro.

Name returned here.

Char Ptr naneP)

Returns 0 if no error, or gr f Er r NoMacr os or

gr f Err Macr oNot Found if an error occurs.

G f AddMVacr o, G f Get Macr o

GrfGetNumPoints

Return the number of points in the point buffer.

Err G fGet NunPoints (WrdPtr nunPtsP)

numPtsP
Always returns 0.

G f AddPoi nt

GrfGetPoint

Returned number of points.

Return a point out of the Graffiti point buffer.

Err GfCGetPoint (Wrd index,

index

pointP

Which point to get.

Returned point.

Poi nt Type* poi nt P)

Returns 0 if no error, or gr f Er r BadPar amif an error occurs.

G f AddPoi nt, G f Get NunPoi nt s

396 Developing Palm OS Applications, Part |

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters
Result

See Also

GrfGetState

Returns the current shift state of Graffiti.

Err GfCetState(Bool ean* capsLockP,
Bool ean* nuniockP,
WordPtr tenpShiftP,
Bool ean* aut oShi ft edP)

capsLockP Returns TRUE if caps lock on.
numLockP Returns TRUE if num lock on.
tempShiftP Current temporary shift.

autoShiftedP Returns TRUE if shift not set by the user.

Always returns 0.

GfSetState

GrflnitState

Reinitialize the Graffiti dictionary state.
Err GflnitState (void)

None.

Always returns 0.

GfCGetState, GfSetState

Developing Palm OS Applications, Part | 397

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

GrfMatch

Purpose Recognize the current stroke in the Graffiti point buffer and return
with the recognized text.

Prototype Err G fMatch (WrdPtr fl agsP,
voi d* dataPtrP,
Wor dPt r dat aLenP,
WordPtr uncertai nLenP,
G f Mat chl nf oPt r mat chl nf oP)

Parameters flagsP Glyph flags are returned here.
dataPtrP Return text is placed here.
dataLenP Size of dataptr on exit; number of characters
returned on exit.
uncertainLenP Return number of uncertain characters.
matchInfoP Array of gr f MaxMat ches, or nil.

Result Returns 0 if no error, or gr f Er r Nod yphTabl e,
grf ErrNoDi ctionary, or grf Err NoMappi ng if an error occurs.

See Also & f AddPoi nt, G f Fl ushPoi nt s

398 Developing Palm OS Applications, Part |

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

GrfMatchGlyph

Recognize the current stroke as a glyph.

G f Mat chl nf oPtr mat chl nf oP,
Wrd maxUnCertai nty,
Word nmaxMat ches)

Err G fMtchd yph (

matchInfoP Pointer to array of matches to fill in.
maxUnCertainty =~ Maximum number of errors to tolerate.
maxMatches Size of mat chl nf oP array.

Returns 0 if no error, or gr f Er r Nod yphTabl e if an error occurs.

G f Mat ch

GrfProcessStroke

Translate a stroke to keyboard events using Graffiti.

Err G fProcessStroke (Poi nt Type* startPtP,
Poi nt Type* endPt P,

Bool ean upShift)

startPtP Start point of stroke.

endPtP End point of stroke.

upShift Set to TRUE to feed an artificial upshift into the
engine.

0 if recognized.

Called by SysHandl eEvent when a pen-up is detected in the
writing area. This routine recognizes the stroke and sends the rec-
ognized characters into the key queue. It also flushes the stroke out
of the pen queue after recognition.

SysHandl eEvent

Developing Palm OS Applications, Part | 399

Pen, Key, and Graffiti Functions
Graffiti Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters
Result

See Also

Prototype

GrfSetState
Set the current shift state of Graffiti.

Err G fSet St at e(Bool ean capsLock,
Bool ean nuniock,
Bool ean upper Shift)

capsLock Set to TRUE to turn on caps lock.
numLock Set to TRUE to turn on num lock.
upperShift Set to TRUE to put into upper shift.

Always returns 0.

GfCetState

SysShortCutListDialog

Pop up the Graffiti ShortCut list as a field object with the focus.
void SysG fShortCutListD al og (void)

event Pointer to an Event Type structure.

The field’s text chunk is changed.

G f Get Macr o, & f Get Macr oNane

Functions for System Use Only
GrfFieldChange

Bool ean reset St at e,
U ntPtr characterToDel et e)

Err G fFi el dChange(

WARNING: System Use Only.

400 Developing Palm OS Applications, Part |

Pen, Key, and Graffiti Functions
GraffitiShift Functions

Prototype

GrfFree

Err GfFree(void)

WARNING: System Use Only.

GraffitiShift Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose

Prototype
Parameters

Result

GsiEnable

Enable or disable the Graffiti-shift state indicator.
voi d Gsi Enabl e (Bool ean enabl el t)
enablelt TRUE to enable, FALSE to disable.
Returns nothing.

Enabling the indicator makes it visible, disabling it makes the inser-
tion point invisible.

GsiEnabled

Return TRUE if the Graffiti-shift state indicator is enabled, or
FALSE if it’s disabled.

Bool ean Gsi Enabl ed (voi d)
None.

TRUE if enabled, FALSE if not.

Developing Palm OS Applications, Part | 401

Pen, Key, and Graffiti Functions

GraffitiShift Functions
Gsilnitialize
Purpose Initialize the global variables used to manage the Graffiti-shift state

Prototype
Parameters

Result

Purpose
Prototype
Parameters
Result

Comments

Purpose

Prototype

Parameters

Result

Comment

See Also

indicator.
void Gsilnitialize (void)
None.

Returns nothing.

GsiSetLocation

Set the display-relative position of the Graffiti-shift state indicator.
voi d Gsi SetLocation (short x, short vy)

X,y Coordinate of left side and top of the indicator.

Returns nothing.

The indicator is not redrawn by this routine.

GsiSetShiftState
Set the Gralffiti-shift state indicator.

void Gsi SetShiftState (Wird | ockFl ags,

Wrd tenmpShift)

gl f CapsLock or gl f NunLock.

The current temporary shift.

lockFlags
tempShift

Returns nothing.

This function affects only the state of the UI element, not the under-
lying Graffiti engine.

GfSetState

402 Developing Palm OS Applications, Part |

	Part I: System and User Interface Management
	Developing Palm OS™ Applications
	Part I
	Table of Contents
	Developing Palm OS Applications
	Overview of Application Development
	Designing UI and Program Functionality
	Designing Screen Layout and User Interaction

	Constructing UI Resources
	Using Managers and Filling out the Program Logic
	Using Events and Launch Codes
	Using the Palm OS Managers

	Building, Debugging, and Testing
	Building the Application and Running it on the Dev...
	Using Other Components of the SDK

	Internal Structure of an Application
	Naming Conventions
	Basic Hardware
	RAM and ROM
	Palm OS Modes of Operation
	Palm OS Connectivity
	Real-Time Clock and Timer
	Palm OS Device Screen and Sound Generation
	Palm OS Device Reset Switch

	Application Control Flow
	How Events Control an Application
	Basic Application Stages
	The Startup Routine
	The Event Loop
	The Stop Routine

	How Action Codes Control the Application
	Action Code Example
	Responding to Action Codes
	Predefined Action Codes
	Action Code Flags

	Action Code Parameter Blocks
	sysAppLaunchCmdSaveData
	sysAppLaunchCmdSystemReset
	sysAppLaunchCmdInitDatabase
	sysAppLaunchCmdSyncCallApplication
	sysAppLaunchCmdGoto Command
	sysAppLaunchCmdFind

	Creating Your Own Action Codes

	Palm OS User Interface Resources
	Menu Bar Resource
	Menu Resource
	Application Icon Name Resource
	Alert Resource
	Button Resource
	Check Box Resource
	Field Resource
	Form Bitmap Resource
	Form Resource
	Gadget Resource
	Graffiti Shift Resource
	Label Resource
	List Resource
	Popup List Resource
	Popup Trigger Resource
	Push Button Resource
	Repeating Button Resource
	Selector Trigger Resource
	String Resource
	Table Resource
	Title Resource
	Version Number String
	Supported Fonts

	Palm OS Events
	appStopEvent
	ctlEnterEvent
	ctlExitEvent
	ctlRepeatEvent
	ctlSelectEvent
	daySelectEvent
	fldChangedEvent
	fldEnterEvent
	fldHeightChangedEvent
	frmCloseEvent
	frmLoadEvent
	frmOpenEvent
	frmSaveEvent
	frmUpdateEvent
	keyDownEvent
	lstEnterEvent
	lstExitEvent
	lstSelectEvent
	menuEvent
	nilEvent
	penDownEvent
	penMoveEvent
	penUpEvent
	popSelectEvent
	tblEnterEvent
	tblExitEvent
	tblSelectEvent
	winEnterEvent
	winExitEvent

	Palm OS UI Objects
	Control Objects
	Control Object Overview
	Control Object Events
	Structure of a Control
	Fields of a ControlType Structure

	Associated Resources
	Control Functions

	Field Objects
	Field Object Overview
	Field Object Events
	Structure of a Field
	Fields of a Field Structure

	Associated Resources
	Field Functions

	Form Objects
	Form Object Overview
	Structure of a Form
	Fields of Form Objects

	Associated Resource
	Form Functions

	List Object
	List Object Overview
	List Object Events
	Structure of a List
	List Object Fields

	Associated Resources
	List Functions

	Menu Objects
	Menu Object Overview
	Menu Events
	Structure of a Menu
	Menu Object Fields
	Menu Pull-Down Fields
	Menu Item Fields

	Associated Resources
	Menu Functions

	Date and Time UI Objects
	Date and Time Functions

	Insertion Point Object
	Insertion Point Functions

	Table Objects
	Table Events
	Structure of a Table
	Fields of a Table Structure

	Associated Resource
	Table Functions

	Window Objects
	Window Events
	Structure of a Window
	Fields of a Window Structure

	Window Functions

	Using Palm OS Managers
	The System Manager
	System Boot and Reset
	Power Management
	Palm OS Power Modes
	Guidelines for Application Developers

	The Microkernel
	Application Support
	Launching and Clean-Up
	Event Processing
	Inter-Application Communication

	Using the System Manager
	System Reset Calls
	Power Management Calls
	Application Utilities

	System Manager Functions

	The Feature Manager
	Feature Manager Overview
	Using the Feature Manager
	Feature Manager Functions

	The String Manager
	The Time Manager
	Using Real-Time Clock Functions
	Using System Ticks Functions
	Time Manager Structures
	Time Manager Function Summary

	The System Event Manager
	Event Translation: Pen Strokes to Key Events
	Pen Queue Management
	Key Queue Management
	Auto-Off Control
	System Event Manager Function Summary

	The Pen Manager
	Pen Manager Functions

	The Key Manager
	Key Manager Functions

	The Graffiti Manager
	Graffiti Manager Function Summary

	The Alarm Manager
	Alarm Manager Overview
	Using the Alarm Manager
	Alarm Manager Function Summary

	The Alert Manager
	The Alert Resource
	Alert Manager Functions

	The Sound Manager
	Using the Sound Manager
	Sound Manager Function Summary

	The Error Manager
	Displaying Development Errors
	The Try and Catch Mechanism
	Using the Error Manager
	Using the Try and Catch Mechanism

	Error Manager Function Summary

	Control, Field, and Insertion Point Functions
	Control Functions
	CtlDrawControl
	CtlEraseControl
	CtlGetLabel
	CtlGetValue
	CtlHandleEvent
	CtlHideControl
	CtlHitControl
	CtlEnabled
	CtlSetEnabled
	CtlSetLabel
	CtlSetUsable
	CtlSetValue
	CtlShowControl

	Field UI Functions
	FldCalcFieldHeight
	FldCompactText
	FldCopy
	FldCut
	FldDelete
	FldDirty
	FldDrawField
	FldEraseField
	FldFreeMemory
	FldGetAttributes
	FldGetBounds
	FldGetFont
	FldGetInsPtPosition
	FldGetMaxChars
	FldGetScrollPosition
	FldGetSelection
	FldGetTextAllocatedSize
	FldGetTextHandle
	FldGetTextHeight
	FldGetTextLength
	FldGetTextPtr
	FldGetVisibleLines
	FldGrabFocus
	FldHandleEvent
	FldInsert
	FldMakeFullyVisible
	FldPaste
	FldRecalculateField
	FldReleaseFocus
	FldScrollable
	FldScrollField
	FldSendChangeNotification
	FldSendHeightChangeNotification
	FldSetAttributes
	FldSetBounds
	FldSetDirty
	FldSetFont
	FldSetInsPtPosition
	FldSetMaxChars
	FldSetScrollPosition
	FldSetSelection
	FldSetText
	FldSetTextAllocatedSize
	FldSetTextHandle
	FldSetTextPtr
	FldSetUsable
	FldUndo
	FldWordWrap

	Insertion Point Functions
	InsPtEnable
	InsPtEnabled
	InsPtGetHeight
	InsPtGetLocation
	InsPtSetHeight
	InsPtSetLocation
	Functions for System Use Only
	InsPtCheckBlink
	InsPtInitialize

	Form, List, and Menu Functions
	Form Functions
	FrmAlert
	FrmCloseAllForms
	FrmCopyLabel
	FrmCopyTitle
	FrmCustomAlert
	FrmDeleteForm
	FrmDispatchEvent
	FrmDoDialog
	FrmDrawForm
	FrmEraseForm
	FrmGetActiveForm
	FrmGetActiveFormID
	FrmGetControlGroupSelection
	FrmGetControlValue
	FrmGetFirstForm
	FrmGetFocus
	FrmGetFormBounds
	FrmGetFormId
	FrmGetFormPtr
	FrmGetGadgetData
	FrmGetLabel
	FrmGetNumberOfObjects
	FrmGetObjectBounds
	FrmGetObjectId
	FrmGetObjectIndex
	FrmGetObjectPositon
	FrmGetObjectPtr
	FrmGetObjectType
	FrmGetTitle
	FrmGetUserModifiedState
	FrmGetWindowHandle
	FrmGotoForm
	FrmHandleEvent
	FrmHelp
	FrmHideObject
	FrmInitForm
	FrmPopupForm
	FrmReturnToForm
	FrmSaveAllForms
	FrmSetActiveForm
	FrmSetCategoryLabel
	FrmSetControlGroupSelection
	FrmSetControlValue
	FrmSetEventHandler
	FrmSetFocus
	FrmSetGadgetData
	FrmSetNotUserModified
	FrmSetObjectPositon
	FrmSetTitle
	FrmShowObject
	FrmUpdateScrollers
	FrmUpdateForm
	FrmVisible

	List UI Functions
	LstDrawList
	LstEraseList
	LstGetNumberOfItems
	LstGetSelection
	LstGetSelectionText
	LstHandleEvent
	LstMakeItemVisible
	LstPopupList
	LstSetDrawFunction
	LstSetHeight
	LstSetListChoices
	LstSetPosition
	LstSetSelection
	LstSetTopItem

	Menu Functions
	MenuDispose
	MenuDrawMenu
	MenuEraseStatus
	MenuGetActiveMenu
	MenuHandleEvent
	MenuInit
	MenuSetActiveMenu

	Table Functions
	TblDrawTable
	TblEditing
	TblEraseTable
	TblFindRowData
	TblFindRowID
	TblGetBounds
	TblGetColumnSpacing
	TblGetColumnWidth
	TblGetCurrentField
	TblGetItemBounds
	TblGetItemInt
	TblGetLastUsableRow
	TblGetNumberOfRows
	TblGetRowData
	TblGetRowHeight
	TblGetRowID
	TblGetSelection
	TblGrabFocus
	TblHandleEvent
	TblInsertRow
	TblMarkRowInvalid
	TblMarkTableInvalid
	TblRedrawTable
	TblReleaseFocus
	TblRemoveRow
	TblRowInvalid
	TblRowSelectable
	TblRowUsable
	TblSelectItem
	TblSetColumnSpacing
	TblSetColumnUsable
	TblSetColumnWidth
	TblSetCustomDrawProcedure
	TblSetItemInt
	TblSetItemPtr
	TblSetItemStyle
	TblSetLoadDataProcedure
	TblSetRowData
	TblSetRowHeight
	TblSetRowID
	TblSetRowSelectable
	TblSetRowUsable
	TblSetSaveDataProcedure
	TblUnhighlightSelection

	Window Functions
	WinAddWindow
	WinClipRectangle
	WinCopyRectangle
	WinCreateWindow
	WinCreateOffscreenWindow
	WinDeleteWindow
	WinDisableWindow
	WinDisplayToWindowPt
	WinDrawBitmap
	WinDrawChars
	WinDrawGrayLine
	WinDrawGrayRectangleFrame
	WinDrawInvertedChars
	WinDrawLine
	WinDrawRectangle
	WinDrawRectangleFrame
	WinDrawWindowFrame
	WinEnableWindow
	WinEraseChars
	WinEraseLine
	WinEraseRectangle
	WinEraseRectangleFrame
	WinEraseWindow
	WinFillLine
	WinFillRectangle
	WinGetActiveWindow
	WinGetClip
	WinGetDisplayExtent
	WinGetDisplayWindow
	WinGetDrawWindow
	WinGetFirstWindow
	WinGetFramesRectangle
	WinGetPattern
	WinGetWindowBounds
	WinGetWindowExtent
	WinGetWindowFrameRect
	WinGetWindowPointer
	WinInitializeWindow
	WinInvertChars
	WinInvertLine
	WinInvertRectangle
	WinInvertRectangleFrame
	WinModal
	WinRemoveWindow
	WinResetClip
	WinRestoreBits
	WinSaveBits
	WinScrollRectangle
	WinSetActiveWindow
	WinSetClip
	WinSetDrawWindow
	WinSetPattern
	WinSetUnderlineMode
	WinWindowToDisplayPt

	Miscellaneous User Interface Functions
	Category Functions
	CategoryCreateList
	CategoryEdit
	CategoryFind
	CategoryFreeList
	CategoryGetName
	CategoryGetNext
	CategoryTruncateName
	CategorySetTriggerLabel
	CategorySelect

	Character Attribute Functions
	GetCharAttr
	GetCharCaselessValue
	GetCharSortValue

	ClipBoard Functions
	ClipboardAddItem
	ClipboardGetItem

	Font Functions
	FntAccentHeight
	FntAscent
	FntAverageCharWidth
	FntBaseLine
	FntCharHeight
	FntCharsInWidth
	FntCharsWidth
	FntCharWidth
	FntDescenderHeight
	FntGetFont
	FntGetFontPtr
	FntLineHeight
	FntLineWidth
	FntProportionalFont
	FntSetFont

	Other User Interface Functions
	AbtShowAbout
	DayHandleEvent

	Functions for System Use Only
	Find
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr
	UIInitialize
	UIReset

	System, Error, Preferences, and Find Functions
	System Functions
	SysAppLaunch
	SysBatteryInfo
	SysBroadcastActionCode
	SysCopyStringResource
	SysCurAppDatabase
	SysFormPointerArrayToStrings
	SysHandleEvent
	SysInsertionSort
	SysKeyboardDialog
	SysQSort
	SysRandom
	SysReset
	SysSetAutoOffTime
	SysTaskDelay
	SysUIAppSwitch
	Functions for System Use Only
	SysAppExit
	SysAppInfoPtr
	SysAppInfoPtr SysCurAppInfoP (void)
	SysAppStartup
	SysBatteryDialog
	SysCardImageDeleted
	SysCardImageInfo
	SysColdBoot
	SysCurAppInfoP
	SysDisableInts
	SysDoze
	SysGetTrapAddress
	SysInit
	SysKernelInfo
	SysLaunchConsole
	SysLibFind
	SysLibInstall
	SysLibRemove
	SysLibTblEntry
	SysNewOwnerID
	SysPowerOn
	SysRestoreStatus
	SysSetA5
	SysSetTrapAddress
	SysSleep
	SysUILaunch

	Error Manager Functions
	ErrDisplay
	ErrDisplayFileLineMsg
	ErrFatalDisplayIf
	ErrNonFatalDisplayIf
	ErrThrow

	System Preferences Functions
	PrefGetAppPreferences
	PrefGetPreferences
	PrefOpenPreferenceDB
	PrefSetAppPreferences
	PrefSetPreferences

	Find Functions
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr

	System Event Manager Functions
	EvtAddEventToQueue
	EvtCopyEvent
	EvtDequeuePenPoint
	EvtDequeuePenStrokeInfo
	EvtEnableGraffiti
	EvtEnqueueKey
	EvtFlushKeyQueue
	EvtFlushNextPenStroke
	EvtFlushPenQueue
	EvtGetEvent
	EvtGetPen
	EvtGetPenBtnList
	EvtKeyQueueEmpty
	EvtKeyQueueSize
	EvtPenQueueSize
	EvtProcessSoftKeyStroke
	EvtResetAutoOffTimer
	EvtWakeup
	Functions for System Use Only
	EvtDequeueKeyEvent
	EvtEnqueuePenPoint
	EvtGetSysEvent
	EvtInitialize
	EvtSetKeyQueuePtr
	EvtSetPenQueuePtr
	EvtSysInit

	Feature, Time, Float, and String Functions
	FtrGet
	FtrGetByIndex
	FtrSet
	FtrUnregister
	For System Use Only
	FtrInit

	String Manager Functions
	StrAToI
	StrCat
	StrCaselessCompare
	StrChr
	StrCompare
	StrCopy
	StrIToA
	StrIToH
	StrLen
	StrStr
	StrToLower

	Time Manager Functions
	DateAdjust
	DateDaysToDate
	DateSecondsToDate
	DateToAscii
	DateToDays
	DateToDOWDMFormat
	DayOfMonth
	DayOfWeek
	DaysInMonth
	SelectDay
	TimAdjust
	TimDateTimeToSeconds
	TimGetSeconds
	TimGetTicks
	TimSecondsToDateTime
	TimSetSeconds
	TimeToAscii
	Functions for System Use Only
	TimGetAlarm
	TimHandleInterrupt
	TimInit
	TimSetAlarm

	Float Manager Functions
	FplAdd
	FplAToF
	FplBase10Info
	FplDiv
	FplFloatToLong
	FplFloatToULong
	FplFree
	FplFToA
	FplInit
	FplLongToFloat
	FplMul
	FplSub

	Alarm Manager API
	AlmGetAlarm
	AlmSetAlarm
	Functions for System Use Only
	AlmAlarmCallback
	AlmCancelAll
	AlmDisplayAlarm
	AlmEnableNotification
	AlmInit

	Sound Manager Functions
	SndDoCmd
	SndGetDefaultVolume
	SndPlaySystemSound
	SndSetDefaultVolume
	Functions for System Use Only
	SndInit

	Pen, Key, and Graffiti Functions
	Pen Manager Functions
	PenCalibrate
	PenResetCalibration
	Functions for System Use Only
	PenClose
	PenGetRawPen
	PenOpen
	PenSleep
	PenRawToScreen
	PenScreenToRaw
	PenWake

	Key Manager Functions
	KeyCurrentState
	KeyRates
	Functions for System Use Only
	KeyBootKeys
	KeyHandleInterrupt
	KeyInit
	KeyResetDoubleTap
	KeySleep
	KeyWake

	Graffiti Manager Functions
	GrfAddMacro
	GrfAddPoint
	GrfCleanState
	GrfDeleteMacro
	GrfFindBranch
	GrfFilterPoints
	GrfFlushPoints
	GrfGetAndExpandMacro
	GrfGetGlyphMapping
	GrfGetMacro
	GrfGetMacroName
	GrfGetNumPoints
	GrfGetPoint
	GrfGetState
	GrfInitState
	GrfMatch
	GrfMatchGlyph
	GrfProcessStroke
	GrfSetState
	SysShortCutListDialog
	Functions for System Use Only
	GrfFieldChange
	GrfFree

	GraffitiShift Functions
	GsiEnable
	GsiEnabled
	GsiInitialize
	GsiSetLocation
	GsiSetShiftState

