

Welcome to

Developing Palm OS
Applications

Part I: System and User Interface
Management

Navigate this online document as follows:

To see bookmarks Type Command-7
To see information on
Adobe Acrobat Reader

Type Command-?

To navigate Click on
any blue hypertext link
any Table of Contents entry
arrows in the menu bar

U.S. Robotics®

Developing Palm OS™
Applications

Part I

©1996 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmit-
ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and Graffiti are registered trademarks, and Palm
Computing, HotSync, Palm OS, and the Palm OS logo are trademarks of U.S. Robotics
and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK ARE
SUBJECT TO THE LICENSE AGREEMENT.

Canada
Metrowerks Inc.
1500 du College, suite 300
St. Laurent, QC
H4L 5G6 Canada

voice: (514) 747-5999
fax: (514) 747-2822

U.S.A. and International
Metrowerks Corporation
2201 Donley Drive
Suite 310
Austin, TX 78758

voice: (512) 873-4700
fax: (512) 873-4900

U.S. Robotics, Palm Computing Division
Mail Order
1-800-881-7256
Metrowerks Mail Order
voice: (800) 377-5416
fax: (512) 873-4901

U.S. Robotics, Palm Computing Division
World Wide Web site: http://www.usr.com/palm

Metrowerks World Wide Web site (Internet): http://www.metrowerks.com
Registration information (Internet): register@metrowerks.com

Technical support (Internet): support@metrowerks.com
Sales, marketing, & licensing (Internet): sales@metrowerks.com

AppleLink: METROWERKS
America OnLine: goto: METROWERKS

Compuserve: goto: METROWERKS

Table of Contents
Table of Contents . v

1 Developing Palm OS Applications 27
Overview of Application Development 27

Designing UI and Program Functionality 28
Designing Screen Layout and User Interaction 28

Constructing UI Resources 29
Using Managers and Filling out the Program Logic 29

Using Events and Launch Codes 29
Using the Palm OS Managers 30

Building, Debugging, and Testing 30
Building the Application and Running it on the Device . . . 31
Using Other Components of the SDK 31

Internal Structure of an Application 31
Naming Conventions 33
Basic Hardware . 34

RAM and ROM . 34
Palm OS Modes of Operation 34
Palm OS Connectivity. 35
Real-Time Clock and Timer 35
Palm OS Device Screen and Sound Generation 36
Palm OS Device Reset Switch 36

2 Application Control Flow . 37
How Events Control an Application 37

Basic Application Stages. 38
The Startup Routine 38
The Event Loop . 41
The Stop Routine . 44

How Action Codes Control the Application 47
Action Code Example 47
Responding to Action Codes 49
Predefined Action Codes 50

Action Code Flags 51
Developing Palm OS Applications, Part I v

Table of Contents

Action Code Parameter Blocks 51
sysAppLaunchCmdSaveData 51
sysAppLaunchCmdSystemReset 52
sysAppLaunchCmdInitDatabase. 52
sysAppLaunchCmdSyncCallApplication 52
sysAppLaunchCmdGoto Command 53
sysAppLaunchCmdFind 54

Creating Your Own Action Codes 55

3 Palm OS User Interface Resources 57
Menu Bar Resource . 59
Menu Resource . 59
Application Icon Name Resource 62
Alert Resource . 63
Button Resource . 65
Check Box Resource. 67
Field Resource . 70
Form Bitmap Resource 72
Form Resource . 73
Gadget Resource . 77
Graffiti Shift Resource 78
Label Resource . 78
List Resource. 79
Popup List Resource 81
Popup Trigger Resource 81
Push Button Resource 83
Repeating Button Resource. 86
Selector Trigger Resource 88
String Resource. 90
Table Resource . 90
Title Resource . 91
Version Number String 92
Supported Fonts . 92

4 Palm OS Events . 93
appStopEvent . 93
vi Developing Palm OS Applications, Part I

Table of Contents

ctlEnterEvent . 93
ctlExitEvent . 93
ctlRepeatEvent . 94
ctlSelectEvent . 94
daySelectEvent . 95
fldChangedEvent . 95
fldEnterEvent . 96
fldHeightChangedEvent 96
frmCloseEvent . 96
frmLoadEvent . 97
frmOpenEvent . 97
frmSaveEvent . 97
frmUpdateEvent . 98
keyDownEvent . 99
lstEnterEvent. . 100
lstExitEvent . 100
lstSelectEvent . 101
menuEvent . 101
nilEvent . . 102
penDownEvent. . 102
penMoveEvent . . 102
penUpEvent . 103
popSelectEvent . . 103
tblEnterEvent . 104
tblExitEvent . 104
tblSelectEvent . 105
winEnterEvent . . 106
winExitEvent . 106

5 Palm OS UI Objects . 107
Control Objects . . 107

Control Object Overview 108
Control Object Events 109
Structure of a Control 110

Fields of a ControlType Structure 111
Associated Resources 112
Developing Palm OS Applications, Part I vii

Table of Contents

Control Functions 112
Field Objects . . 113

Field Object Overview 113
Field Object Events 114
Structure of a Field 115

Fields of a Field Structure 116
Associated Resources 117
Field Functions . 118

Form Objects . . 119
Form Object Overview 119
Structure of a Form 121

Fields of Form Objects 124
Associated Resource 125
Form Functions . 125

List Object . . 127
List Object Overview 128
List Object Events 128
Structure of a List 129

List Object Fields 129
Associated Resources 130
List Functions . 131

Menu Objects . 131
Menu Object Overview 131
Menu Events . 132
Structure of a Menu 133

Menu Object Fields. 134
Menu Pull-Down Fields 135
Menu Item Fields 135

Associated Resources 135
Menu Functions . 136

Date and Time UI Objects 136
Date and Time Functions 136

Insertion Point Object 136
Insertion Point Functions 136

Table Objects . . 137
Table Events . . 137
viii Developing Palm OS Applications, Part I

Table of Contents

Structure of a Table 137
Fields of a Table Structure 139

Associated Resource 139
Table Functions . 140

Window Objects . 141
Window Events . 141
Structure of a Window 142

Fields of a Window Structure 142
Window Functions 144

6 Using Palm OS Managers . 147
The System Manager 148

System Boot and Reset 149
Power Management 150

Palm OS Power Modes 150
Guidelines for Application Developers 151

The Microkernel . 151
Application Support 152

Launching and Clean-Up 152
Event Processing. 152
Inter-Application Communication 155

Using the System Manager 155
System Reset Calls 155
Power Management Calls 156
Application Utilities 156

System Manager Functions 157
The Feature Manager 158

Feature Manager Overview 158
Using the Feature Manager 159
Feature Manager Functions 160

The String Manager 160
The Time Manager . 161

Using Real-Time Clock Functions. 161
Using System Ticks Functions 162
Time Manager Structures 162
Time Manager Function Summary 163
Developing Palm OS Applications, Part I ix

Table of Contents

The System Event Manager 164
Event Translation: Pen Strokes to Key Events. 164
Pen Queue Management 165
Key Queue Management 166
Auto-Off Control 166
System Event Manager Function Summary 167

The Pen Manager . . 167
Pen Manager Functions 168

The Key Manager . . 168
Key Manager Functions 168

The Graffiti Manager 169
Graffiti Manager Function Summary 170

The Alarm Manager. 171
Alarm Manager Overview. 171
Using the Alarm Manager 172
Alarm Manager Function Summary 172

The Alert Manager . 173
The Alert Resource 173
Alert Manager Functions 173

The Sound Manager. 174
Using the Sound Manager 174
Sound Manager Function Summary 174

The Error Manager . 175
Displaying Development Errors 175
The Try and Catch Mechanism 176
Using the Error Manager 177

Using the Try and Catch Mechanism 178
Error Manager Function Summary 179

7 Control, Field, and Insertion Point Functions 181
Control Functions. . 181

CtlDrawControl . 181
CtlEraseControl . 181
CtlGetLabel . 182
CtlGetValue . 182
CtlHandleEvent . 183
x Developing Palm OS Applications, Part I

Table of Contents

CtlHideControl . 184
CtlHitControl . 184
CtlEnabled . 185
CtlSetEnabled . 185
CtlSetLabel . 186
CtlSetUsable . . 186
CtlSetValue . 187
CtlShowControl . 187

Field UI Functions . 188
FldCalcFieldHeight 188
FldCompactText . 188
FldCopy . 189
FldCut . 189
FldDelete . 190
FldDirty. . 190
FldDrawField . 191
FldEraseField . 191
FldFreeMemory . 192
FldGetAttributes 192
FldGetBounds . 193
FldGetFont . 193
FldGetInsPtPosition 194
FldGetMaxChars 194
FldGetScrollPosition 195
FldGetSelection . 195
FldGetTextAllocatedSize 196
FldGetTextHandle 196
FldGetTextHeight 197
FldGetTextLength 197
FldGetTextPtr . 197
FldGetVisibleLines 198
FldGrabFocus . 198
FldHandleEvent . 199
FldInsert . 200
FldMakeFullyVisible 200
FldPaste. . 201
Developing Palm OS Applications, Part I xi

Table of Contents

FldRecalculateField. 201
FldReleaseFocus . 202
FldScrollable. . 202
FldScrollField . 203
FldSendChangeNotification 203
FldSendHeightChangeNotification 204
FldSetAttributes . 204
FldSetBounds . 205
FldSetDirty . 205
FldSetFont. . 206
FldSetInsPtPosition 206
FldSetMaxChars . 207
FldSetScrollPosition 207
FldSetSelection. . 208
FldSetText . . 209
FldSetTextAllocatedSize 210
FldSetTextHandle 210
FldSetTextPtr . 211
FldSetUsable . 211
FldUndo . 212
FldWordWrap . 212

Insertion Point Functions 213
InsPtEnable . 213
InsPtEnabled . 213
InsPtGetHeight . 214
InsPtGetLocation 214
InsPtSetHeight . . 215
InsPtSetLocation 215
Functions for System Use Only. 216

InsPtCheckBlink 216
InsPtInitialize . 216

8 Form, List, and Menu Functions 217
Form Functions. . 217

FrmAlert . 217
FrmCloseAllForms 217
xii Developing Palm OS Applications, Part I

Table of Contents

FrmCopyLabel . . 218
FrmCopyTitle . 219
FrmCustomAlert 219
FrmDeleteForm . 220
FrmDispatchEvent 220
FrmDoDialog . 221
FrmDrawForm. . 221
FrmEraseForm . . 222
FrmGetActiveForm 222
FrmGetActiveFormID. 222
FrmGetControlGroupSelection 223
FrmGetControlValue 223
FrmGetFirstForm. 224
FrmGetFocus . 224
FrmGetFormBounds 224
FrmGetFormId. . 225
FrmGetFormPtr . 225
FrmGetGadgetData. 226
FrmGetLabel . 226
FrmGetNumberOfObjects 227
FrmGetObjectBounds 227
FrmGetObjectId . 228
FrmGetObjectIndex. 228
FrmGetObjectPositon 229
FrmGetObjectPtr 229
FrmGetObjectType 230
FrmGetTitle . 230
FrmGetUserModifiedState. 231
FrmGetWindowHandle 231
FrmGotoForm . 232
FrmHandleEvent 232
FrmHelp . 233
FrmHideObject . 233
FrmInitForm. . 234
FrmPopupForm . 234
FrmReturnToForm 235
Developing Palm OS Applications, Part I xiii

Table of Contents

FrmSaveAllForms 235
FrmSetActiveForm 236
FrmSetCategoryLabel 236
FrmSetControlGroupSelection 237
FrmSetControlValue 237
FrmSetEventHandler 238
FrmSetFocus. . 238
FrmSetGadgetData 239
FrmSetNotUserModified 239
FrmSetObjectPositon 240
FrmSetTitle . 240
FrmShowObject . 241
FrmUpdateScrollers 241
FrmUpdateForm 242
FrmVisible . 242

List UI Functions . 243
LstDrawList . . 243
LstEraseList . 243
LstGetNumberOfItems 244
LstGetSelection . 244
LstGetSelectionText. 245
LstHandleEvent . 246
LstMakeItemVisible 247
LstPopupList . 247
LstSetDrawFunction 248
LstSetHeight. . 248
LstSetListChoices 249
LstSetPosition . 249
LstSetSelection . . 250
LstSetTopItem . 250

Menu Functions . 251
MenuDispose . 251
MenuDrawMenu. 251
MenuEraseStatus. 252
MenuGetActiveMenu 252
MenuHandleEvent 253
xiv Developing Palm OS Applications, Part I

Table of Contents

MenuInit . 254
MenuSetActiveMenu 254

9 Table Functions . 255
TblDrawTable . 255
TblEditing. . 255
TblEraseTable . 256
TblFindRowData 256
TblFindRowID . . 257
TblGetBounds . 257
TblGetColumnSpacing 258
TblGetColumnWidth 258
TblGetCurrentField. 259
TblGetItemBounds 259
TblGetItemInt . 260
TblGetLastUsableRow 260
TblGetNumberOfRows 260
TblGetRowData . 261
TblGetRowHeight 261
TblGetRowID . 261
TblGetSelection . 262
TblGrabFocus . 262
TblHandleEvent . 263
TblInsertRow . 263
TblMarkRowInvalid 264
TblMarkTableInvalid 264
TblRedrawTable . 265
TblReleaseFocus . 265
TblRemoveRow . 266
TblRowInvalid . . 266
TblRowSelectable 267
TblRowUsable . . 267
TblSelectItem . 268
TblSetColumnSpacing 268
TblSetColumnUsable 269
TblSetColumnWidth 269
Developing Palm OS Applications, Part I xv

Table of Contents

TblSetCustomDrawProcedure 270
TblSetItemInt . 271
TblSetItemPtr . 271
TblSetItemStyle . 272
TblSetLoadDataProcedure 273
TblSetRowData . 274
TblSetRowHeight 274
TblSetRowID . 275
TblSetRowSelectable 275
TblSetRowUsable 276
TblSetSaveDataProcedure 277
TblUnhighlightSelection 277

10 Window Functions . 279
WinAddWindow 279
WinClipRectangle 279
WinCopyRectangle 280
WinCreateWindow 281
WinCreateOffscreenWindow. 282
WinDeleteWindow 283
WinDisableWindow 283
WinDisplayToWindowPt 284
WinDrawBitmap 284
WinDrawChars . 285
WinDrawGrayLine 285
WinDrawGrayRectangleFrame 286
WinDrawInvertedChars. 286
WinDrawLine . 287
WinDrawRectangle 287
WinDrawRectangleFrame 288
WinDrawWindowFrame 288
WinEnableWindow 289
WinEraseChars . 289
WinEraseLine . 290
WinEraseRectangle 290
WinEraseRectangleFrame 291
xvi Developing Palm OS Applications, Part I

Table of Contents

WinEraseWindow 291
WinFillLine . 292
WinFillRectangle 292
WinGetActiveWindow 293
WinGetClip . 293
WinGetDisplayExtent 293
WinGetDisplayWindow 294
WinGetDrawWindow. 294
WinGetFirstWindow 295
WinGetFramesRectangle 295
WinGetPattern . . 296
WinGetWindowBounds 296
WinGetWindowExtent 297
WinGetWindowFrameRect 297
WinGetWindowPointer 298
WinInitializeWindow 298
WinInvertChars . 299
WinInvertLine . . 299
WinInvertRectangle 300
WinInvertRectangleFrame 300
WinModal. . 301
WinRemoveWindow 301
WinResetClip . 301
WinRestoreBits. . 302
WinSaveBits . . 302
WinScrollRectangle 303
WinSetActiveWindow 304
WinSetClip . 304
WinSetDrawWindow 305
WinSetPattern . 305
WinSetUnderlineMode 306
WinWindowToDisplayPt 306

11 Miscellaneous User Interface Functions 307
Category Functions 307

CategoryCreateList 307
Developing Palm OS Applications, Part I xvii

Table of Contents

CategoryEdit . 308
CategoryFind . 308
CategoryFreeList 309
CategoryGetName 309
CategoryGetNext. 310
CategoryTruncateName 310
CategorySetTriggerLabel 310
CategorySelect . . 311

Character Attribute Functions 312
GetCharAttr . . 312
GetCharCaselessValue 312
GetCharSortValue 313

ClipBoard Functions 313
ClipboardAddItem 313
 ClipboardGetItem 314

 Font Functions . . 314
FntAccentHeight 314
FntAscent . . 314
FntAverageCharWidth 315
FntBaseLine . 315
FntCharHeight. . 315
FntCharsInWidth. 316
FntCharsWidth . 317
FntCharWidth . 317
FntDescenderHeight 317
FntGetFont . 318
FntGetFontPtr . 318
FntLineHeight . . 318
FntLineWidth . 319
FntProportionalFont 319
FntSetFont . 319

Other User Interface Functions 320
AbtShowAbout . 320
DayHandleEvent 320

Functions for System Use Only 320
Find . 320
xviii Developing Palm OS Applications, Part I

Table of Contents

FindDrawHeader 321
FindGetLineBounds 321
FindSaveMatch . 321
FindStrInStr . 321
UIInitialize . 322
UIReset . . 322

12 System, Error, Preferences, and Find Functions 323
System Functions . . 323

SysAppLaunch . 323
SysBatteryInfo . . 324
SysBroadcastActionCode 325
SysCopyStringResource 325
SysCurAppDatabase 326
SysFormPointerArrayToStrings 326
SysHandleEvent . 327
SysInsertionSort . 328
SysKeyboardDialog 329
SysQSort . 329
SysRandom . 330
SysReset . 331
SysSetAutoOffTime. 331
SysTaskDelay . 332
SysUIAppSwitch 332
Functions for System Use Only. 333

SysAppExit . 333
SysAppInfoPtr 333
SysAppInfoPtr SysCurAppInfoP (void) 333
SysAppStartup 333
SysBatteryDialog 333
SysCardImageDeleted 333
SysCardImageInfo 334
SysColdBoot . 334
SysCurAppInfoP. 334
SysDisableInts 334
SysDoze . 334
Developing Palm OS Applications, Part I xix

Table of Contents

SysGetTrapAddress 335
SysInit . 335
SysKernelInfo 335
SysLaunchConsole 335
SysLibFind . 335
SysLibInstall . 336
SysLibRemove. 336
SysLibTblEntry 336
SysNewOwnerID 336
SysPowerOn . 336
SysRestoreStatus. 337
SysSetA5 . 337
SysSetTrapAddress. 337
SysSleep . 337
SysUILaunch . 337

Error Manager Functions 338
ErrDisplay . 338
ErrDisplayFileLineMsg 338
ErrFatalDisplayIf 339
ErrNonFatalDisplayIf 340
ErrThrow . 340

System Preferences Functions 341
PrefGetAppPreferences 341
PrefGetPreferences 342
PrefOpenPreferenceDB 342
PrefSetAppPreferences 343
PrefSetPreferences 343

Find Functions . 344
FindDrawHeader 344
FindGetLineBounds 344
FindSaveMatch . 345
FindStrInStr . 346

13 System Event Manager Functions 347
EvtAddEventToQueue 347
EvtCopyEvent . . 347
xx Developing Palm OS Applications, Part I

Table of Contents

EvtDequeuePenPoint 348
EvtDequeuePenStrokeInfo. 348
EvtEnableGraffiti. 349
EvtEnqueueKey . 349
EvtFlushKeyQueue 350
EvtFlushNextPenStroke 350
EvtFlushPenQueue 351
EvtGetEvent . . 351
EvtGetPen. . 352
EvtGetPenBtnList 352
EvtKeyQueueEmpty 353
EvtKeyQueueSize 353
EvtPenQueueSize 353
EvtProcessSoftKeyStroke 354
EvtResetAutoOffTimer 354
EvtWakeup . 355

Functions for System Use Only 355
EvtDequeueKeyEvent 355
EvtEnqueuePenPoint 355
EvtGetSysEvent 355
EvtInitialize . . 356
EvtSetKeyQueuePtr 356
EvtSetPenQueuePtr 356
EvtSysInit. . 356

14 Feature, Time, Float, and String Functions. 357
FtrGet . 357
FtrGetByIndex . . 358
FtrSet . . 359
FtrUnregister . 359

For System Use Only 360
FtrInit . 360

String Manager Functions 360
StrAToI . 360
StrCat. . 360
StrCaselessCompare 361
Developing Palm OS Applications, Part I xxi

Table of Contents

StrChr . 361
StrCompare . 362
StrCopy . . 362
StrIToA . . 363
StrIToH . . 363
StrLen . 363
StrStr . . 364
StrToLower . 364

Time Manager Functions 365
DateAdjust . 365
DateDaysToDate 365
DateSecondsToDate 366
DateToAscii . 366
DateToDays . 367
DateToDOWDMFormat 367
DayOfMonth . 368
DayOfWeek . 368
DaysInMonth . 368
SelectDay . 369
TimAdjust. . 369
TimDateTimeToSeconds. 370
TimGetSeconds . 370
TimGetTicks . . 370
TimSecondsToDateTime. 371
TimSetSeconds . . 371
TimeToAscii . . 372
Functions for System Use Only. 372

TimGetAlarm . 372
TimHandleInterrupt 372
TimInit . . 373
TimSetAlarm . 373

Float Manager Functions 373
FplAdd . . 373
FplAToF. . 374
FplBase10Info . 374
FplDiv . 375
xxii Developing Palm OS Applications, Part I

Table of Contents

FplFloatToLong . 375
FplFloatToULong 375
FplFree . 376
FplFToA . 376
FplInit . 377
FplLongToFloat . 377
FplMul . 377
FplSub . 378

Alarm Manager API. 378
AlmGetAlarm . 378
AlmSetAlarm . 379
Functions for System Use Only. 380

AlmAlarmCallback 380
AlmCancelAll 380
AlmDisplayAlarm 380
AlmEnableNotification 380
AlmInit . . 380

Sound Manager Functions 381
SndDoCmd . 381
SndGetDefaultVolume 382
SndPlaySystemSound. 382
SndSetDefaultVolume. 383
Functions for System Use Only. 383

SndInit . 383

15 Pen, Key, and Graffiti Functions 385
Pen Manager Functions 385

PenCalibrate. . 385
PenResetCalibration 386
Functions for System Use Only. 386

PenClose . 386
PenGetRawPen 386
PenOpen . 387
PenSleep . 387
PenRawToScreen 387
PenScreenToRaw 387
Developing Palm OS Applications, Part I xxiii

Table of Contents

PenWake . 387
Key Manager Functions 388

KeyCurrentState . 388
KeyRates . 389
Functions for System Use Only. 389

KeyBootKeys . 389
KeyHandleInterrupt 390
KeyInit . . 390
KeyResetDoubleTap 390
KeySleep . 390
KeyWake . 390

Graffiti Manager Functions 391
GrfAddMacro . 391
GrfAddPoint . 391
GrfCleanState . 392
GrfDeleteMacro . 392
GrfFindBranch . . 392
GrfFilterPoints . . 393
GrfFlushPoints. . 393
GrfGetAndExpandMacro 394
GrfGetGlyphMapping 395
GrfGetMacro . 395
GrfGetMacroName 396
GrfGetNumPoints 396
GrfGetPoint . 396
GrfGetState . 397
GrfInitState . 397
GrfMatch . 398
GrfMatchGlyph . 399
GrfProcessStroke 399
GrfSetState . 400
SysShortCutListDialog 400
Functions for System Use Only. 400

GrfFieldChange 400
GrfFree . . 401

GraffitiShift Functions 401
xxiv Developing Palm OS Applications, Part I

Table of Contents

GsiEnable . . 401
GsiEnabled . 401
GsiInitialize . 402
GsiSetLocation . . 402
GsiSetShiftState . 402
Developing Palm OS Applications, Part I xxv

Table of Contents
xxvi Developing Palm OS Applications, Part I

1
Developing Palm OS
Applications

This chapter helps you understand the basic principles of Palm OS
application development. It discusses these topics:
• Overview of Application Development explains the steps in-

volved in creating an application.
• Internal Structure of an Application provides some informa-

tion about resources the system creates for each application,
and how they are used.

• Naming Conventions briefly explains naming conventions
used for functions and structures.

• Basic Hardware gives some background information about
the Palm OS device.

Overview of Application Development
This section provides an overview of the process of developing an
application for the Palm OS device. It introduces the different com-
ponents of an application in the order that you’ll most likely work
with them and provides many links to the related sections in this
guide and pointers to other relevant documentation included in
your developer package.

You learn about these topics:

• Designing UI and Program Functionality
• Constructing UI Resources
• Using Managers and Filling out the Program Logic
• Building, Debugging, and Testing
• Building the Application and Running it on the Device
• Using Other Components of the SDK
Developing Palm OS Applications, Part I 27

Developing Palm OS Applications
Overview of Application Development
Designing UI and Program Functionality
The first step in application development is to envision what users
will do as they interact with your application. After that, it’s useful
to implement a small prototype and have some users interact with
it. When you’re satisfied with the basic interface and user interac-
tion, you can move on from the prototype to a complete application.

This section looks as the steps involved in creating a working user
interface.

Designing Screen Layout and User Interaction

Careful UI design is critical for a Palm OS application because using
a Palm OS device differs from using other computers. Here are a
few points you have to consider when designing your application:

• Because of the limited screen size, you have to design the lay-
out carefully. Strive for a balance between providing enough
information to the user and overcrowding the screen.

• Because users interact with the application using the pen,
user input paradigms need to be different from those of key-
board-based applications.

• Limit data input where possible. It often makes sense to let
users do the bulk of data input on the desktop while discour-
aging reliance on Graffiti and the popup keyboard.

• Consider offloading some of the computationally intensive
tasks to the desktop; use the device mostly as a satellite
viewer if you can.

• Plan integration with the desktop early. Your conduit/
backup strategy and you integration with desktop software
can greatly enhance the usefulness of your program.

The Palm OS development team has developed a set of design
guidelines that were used as the basis for the four applications resi-
dent on the device (Note Pad, Address Book, etc.). These guidelines
are summarized in Chapter 5 of the “Palm OS Cookbook.” Some in-
formation, such as recommended font size or border width, is in-
cluded in Chapter 3, “Palm OS User Interface Resources.”

Follow the design guidelines in chapters 4 and 5 of the “Palm OS
Cookbook” to make your application easier to learn and to use.
28 Developing Palm OS Applications, Part I

Developing Palm OS Applications
Overview of Application Development
Constructing UI Resources
The ResEdit resource templates that were used to implement all the
applications resident on the device are provided with your develop-
ment environment. You can use ResEdit with the resource templates
to create your own buttons, pop-up lists, menus, and other parts of
the user interface.

The process of creating new resources is described in detail in the
tutorial; the basic process consists of entering values into the at-
tribute fields of the resource templates. Each resource has to have an
ID and may also need a width, height, label, or other attributes. The
recommended (or required) values for the different fields in each re-
source are provided in Chapter 3, “Palm OS User Interface Re-
sources.”The “Palm OS Tutorial” provides “recipes” for creating
each resource type in the Tutorial Cookbook chapter.

When you build your program, the system converts the ResEdit re-
sources into data structures that the system can work with. Different
resource types map to a different data structures, that is, UI object
type. For example, menu resources map to objects that know how to
turn highlighting on and of and fields know how to position input
cursors and process user input. The operating system provides quite
a bit of default functionality for each UI object type. Your program
logic can use, replace, or extend that functionality. Detailed informa-
tion on all structures and their fields is provided in Chapter 5,
“Palm OS UI Objects.”

Using Managers and Filling out the Program
Logic
To successfully build a Palm OS application, you need to under-
stand how the system itself is structured and how to structure your
application.

Using Events and Launch Codes

Palm OS applications are single-threaded event-driven programs.
The events are generated by the system based on user inputs and
system interrupts. The program logic may generate events as well.
The programs are structured as a series of event handlers dis-
patched from a single event loop in each program.
Developing Palm OS Applications, Part I 29

Developing Palm OS Applications
Overview of Application Development
In addition, a number of launch codes regulate how applications in-
teract with each other; for example, one application can invoke a
find action on another using a launch code. This is described in
more detail in How Action Codes Control the Application.

NOTE: To make your application interact appropriately with other
applications on the device, and to avoid other problems later, read
Chapter 4, “Design, Testing, and Localization Guidelines” of the
Palm OS Cookbook.

Using the Palm OS Managers

The Palm OS system API is divided into functional areas called
managers. Each manager has a distinct three-letter prefix used on all
API calls and structures and is discussed separately below.

• The system manager, system event manager, feature man-
ager, float manager, string manager, and so on are discussed
in Chapter 6, “Using Palm OS Managers.”

• The memory manager, data manager, and resource manager
are explained in Chapter 1, “Palm OS Memory Management”
of “Developing Palm OS Applications, Part II.”

• The communications API is explained in Chapter 2, “Palm
OS Communications” of “Developing Palm OS Applications,
Part II.”

NOTE: Avoid using functions from standard desktop C libraries.
These will significantly slow down and enlarge your program.
Many will not work at all on the device. Use functions provided by
the Palm OS managers instead.

Building, Debugging, and Testing
To build your application for initial debugging and testing, you use
the CodeWarrior IDE and the Pilot Simulator library, which lets you
build and debug applications on the Macintosh. Documentation for
the CodeWarrior IDE and source-level debugger is provided with
CodeWarrior.
30 Developing Palm OS Applications, Part I

Developing Palm OS Applications
Internal Structure of an Application
After you’ve built the application, you can use the Pilot Simulator to
run it on a simulated Pilot device on the Macintosh screen. You can
interact with the simulated buttons, menus, or fields, and even enter
Graffiti characters using the mouse. You can also use the Simulator
to test your application using an automated test suite called Grem-
lins. Using the Simulator is discussed in detail in chapter 2, “Using
the Palm OS Simulator,” of the “Palm OS Cookbook.”

Building the Application and Running it on the
Device
When you’ve completed building and testing the application with
the Simulator, you can compile it with a Makefile from MPW and
download and run the executable on the device. This process is de-
scribed in Chapter 1, “Running an Application on the Palm OS De-
vice,” and Chapter 3, “File Transfer With the Pilot Debugger” of the
Palm OS Cookbook. Phase 20 of the Palm OS Tutorial provides step-
by-step instructions for changing a Makefile, compiling an applica-
tion, downloading the application onto the device, and running it.

Using Other Components of the SDK
The Palm OS has provided the following additional items in the de-
velopment kit to help you come up to speed quickly:

• The Palm OS tutorial provides step-by-step examples of de-
veloping an application from start to finish in its twenty
phases. Examples, both resources and code that is incremen-
tally changed, are included.

• The actual source code for the four PIM applications on the
Pilot is included as examples. The code can be a valuable aid
when you develop your own program. The software devel-
opment kit provides a royalty-free license that permits you to
use any or all of the source code from the examples in your
application.

Internal Structure of an Application
Every application running under Palm OS must have certain mini-
mum system (not UI) resources defined to be recognized by the
Palm OS system software. These required resources are created for
Developing Palm OS Applications, Part I 31

Developing Palm OS Applications
Internal Structure of an Application
you by the development environment. Most applications have other
resources that are application specific in addition to the required
minimum resources. (Throughout this chapter, resources are refer-
enced by type and ID where the type is a 4 byte ascii string like
‘code’ and the ID is a decimal integer.)

The system creates a ’code’ #1 resource for every application. This
resource is the entry point for the application and is where applica-
tion initialization is performed. When the Palm OS device launches
an application, it starts executing at the first byte of the ’code’ #1 re-
source. All of the application code that you provide is included in
this resource as well.

Typically, this is startup code provided with the Palm OS
development environment that is linked in with your application
code. This startup code works as follows:

• The startup code performs application setup and initializa-
tion

• The startup code calls your “main” routine
• When your “main” routine exits, control is returned to the

startup code which performs any necessary cleanup of your
application and returns control to the Palm OS system soft-
ware.

The system also creates a ’pref’ #0 resource for every application.
This resource contains startup information necessary for launching
your application. The resource includes the required stack size, the
dynamic heap space required, and the task priority. Note that al-
though the ’pref’ #0 resource must be present, it is mainly for future
use since in the current version of the system user-interface applica-
tions do not get their own stack or priority.

The final required resources are the ’code’ #0 and ’data’ #0 re-
sources. These resources contain the required size of your global
data and an image of the initialized area of that global data. When
your application is launched, a memory chunk in the dynamic heap
is allocated which is big enough to hold all of your globals and then
the ’data’ #0 resource is used to initialize those globals.
32 Developing Palm OS Applications, Part I

Developing Palm OS Applications
Naming Conventions
Naming Conventions
The following conventions are use throughout the Palm OS API:

• Functions start with a capital letter.
• All functions belonging to a particular manager start with a

two- or three-letter prefix, such as “Ctl” for control functions
or “Ftr” for functions that are part of the feature manager.

• Events and other constants start with a lower case letter.
• Structure elements start with a lower case letter.
• Global variables start with a capital letter.
• Typedefs start with a capital letter and end with “type” (for

example, DateFormatType, found in DateTime.h).
• Resource types usually start with a lower case followed by

three capital letters, for example tSTR or tTBL. (There are
some customized Macintosh resources provided with your
developer package. They are all upper case, for example,
MENU.)

• Members of an enumerated type start with a lower-case pre-
fix followed by a name starting with a capital letter, as fol-
lows:

enum formObjects {
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,
frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObj,
frmGraffitiStateObj,
frmGadgetObj};

typedef enum formObjects FormObjectKind;
Developing Palm OS Applications, Part I 33

Developing Palm OS Applications
Basic Hardware
Basic Hardware
This section helps you understand the device you’re developing
your application for by discussing RAM and ROM, Palm OS Modes
of Operation, Palm OS Connectivity, Real-Time Clock and Timer,
Palm OS Device Screen and Sound Generation, Palm OS Device
Screen and Sound Generation, and Palm OS Device Reset Switch.

RAM and ROM
The first version of Palm OS runs on the Motorola 68328 “Dragon-
Ball” processor. The first memory card shipped with the device has
128K of pseudo-static RAM and 512K of ROM for the system soft-
ware and application code. A portion of the RAM (32K) is reserved
for system use and is not available for storing user data. Both the
ROM and RAM are on a memory module which users can replace.
The Palm OS device does not have a disk drive or PCMCIA support.

Palm OS Modes of Operation
To minimize power consumption, Palm OS dynamically switches
between 3 different modes of operation: sleep mode, doze mode,
and running mode.

• In sleep mode, the device looks like it is turned off: the display
is blank, the digitizer is inactive, and the main clock is
stopped. The only circuits still active are the real-time clock
and interrupt generation circuitry.
The device enters this mode when there is no user activity for
a number of minutes or when the user presses the “off” but-
ton. The device only comes out of sleep mode when there is
an interrupt, for example, when the user presses a button.

• In doze mode, the main clock is running, the device appears
like it is turned on, and the processor’s clock is running but it
is not executing instructions (that is, it is halted). When the
processor gets an interrupt, it comes out of halt and starts
processing the interrupt.
The device enters this mode it’s on but has no user input to
process.

• In running mode, the processor is actually executing instruc-
tions.
34 Developing Palm OS Applications, Part I

Developing Palm OS Applications
Basic Hardware
The device enters this mode when it detects user input (like a
tap on the screen) while in doze mode, or when it detects an
interrupt while in doze or sleep mode. The device stays in
running mode only as long as it takes to process the user
input (most likely less than a second) then it immediately re-
enters doze mode.

To maximize battery life, the processor on the Palm OS device is
kept out of running mode as much as possible. Any interrupt gener-
ated on the device must therefore be capable of “waking” up the
processor. The processor can receive interrupts from the serial port,
the hard buttons on the case, the button on the cradle, the program-
mable timer, the memory module slot, the real-time clock (for
alarms), the low battery detector, and any built-in peripherals such
as a pager or modem.

Palm OS Connectivity
The Palm OS device uses its serial port for implementing desktop
PC connectivity or other external communication. The serial com-
munication is fully interrupt-driven for receiving data. Currently,
interrupt-driven transmission of data is not implemented in soft-
ware, but the hardware does support it. There are 5 external signals
used for this communication: signal ground (SG), transmit data
(TxD), receive data (RxD), clear to send (CTS), and request to send
(RTS).

The Palm OS device has an external connector that provides the 5
serial communication signals, a general purpose output, a general
purpose input, and a cradle button input.

Real-Time Clock and Timer
The Palm OS device has a real-time clock and programmable timer
as part of the 68328. The real time clock maintains the current time
even when the system is in sleep mode (turned “off”). It is capable
of generating an interrupt to wake the device when an alarm is set
by the user. The programmable timer is used to generate the system
tick count interrupts (100 times/sec.) while the processor is in doze
or running mode. The system tick interrupts are required for peri-
odic activity such as polling the digitizer for user input, key de-
bouncing, etc.
Developing Palm OS Applications, Part I 35

Developing Palm OS Applications
Basic Hardware
The Palm OS device has one memory module socket for installing
modules which may contain ROM or RAM storage.

Palm OS Device Screen and Sound Generation
The first version of the Palm OS device has an LCD screen of
160x160 pixels. The LCD controller built into the 68328 maps a por-
tion of system memory to the LCD. Currently, the software only
supports 1 bit/pixel monochrome graphics although the controller
can support 2 bits/pixel gray scale.

The Palm OS device has a built-in digitizer overlaid onto the LCD
screen and extending about an inch below the screen. This digitizer
is capable of sampling accurately to within 0.35 mm (.0138 in) with
up to 50 accurate points/second. When the device is in doze mode,
an interrupt is generated when the pen is first brought down on the
screen. After a pen down is detected, the system software polls the
pen location periodically (every 20ms) until the pen is again raised.

The Palm OS device has primitive sound generation. A square wave
is generated directly from the 68328’s PWM circuitry. There is fre-
quency and duration control but no volume control.

Palm OS Device Reset Switch
The Palm OS device has a reset button for resetting the processor
and forcing a boot-up sequence:

• Simply pressing the reset switch causes a soft reset which
does not destroy any user data.

• Holding down the power button while pressing the reset
switch causes a hard reset which erases all user data follow-
ing a confirmation by the user.
36 Developing Palm OS Applications, Part I

2
Application Control Flow

Palm OS applications are generally single-threaded, event-driven
programs. They may use predefined UI elements (sometimes re-
ferred to as UI objects) or they may create their own. All applica-
tions must use the memory and data management facilities
provided by the system and must be considerate of the system and
other applications by periodically allowing system event handlers
access to the event flow.

The flow of control in Palm OS is driven by two different mecha-
nisms, discussed in some detail in this chapter:
• How Events Control an Application discusses the event man-

ager, the main interface between the Palm OS system soft-
ware and an application. It discusses in some detail what an
application does in response to user input, providing code
fragments as examples where needed.

• How Action Codes Control the Application discusses how an
application handles requests for immediate action at its top
level (PilotMain). For example, there are action codes for
launching an application, for telling an application to search
its data for a text string, and for notifying an application that
data has been synchronized. Using action codes, an applica-
tion can request information or actions from another applica-
tion.

How Events Control an Application
This section starts with a high-level overview of the stages of a Palm
OS application, then discusses the event loop in some detail.

Note that each event is discussed in some detail in Chapter 4, “Ap-
plication Control Flow.”The event flow for each User Interface re-
source is discussed in Chapter 3, “Palm OS User Interface
Resources.”The event flow for each User Interface object is dis-
cussed in Chapter 5, “Application Control Flow.”
Developing Palm OS Applications, Part I 37

Application Control Flow
How Events Control an Application
Basic Application Stages
When an application receives a the action code
sysAppLauchCommandNormalLaunch (see How Action Codes
Control the Application), it begins with a startup routine, then goes
into an event loop, and finally exits with a stop routine.

• The Startup Routine is the application’s opportunity to per-
form actions which need to happen once, and only once, at
startup. A typical startup routine opens databases, reads
saved state information (such as UI preferences) and initial-
izes the application’s global data.

• The Event Loop fetches events from the queue and dis-
patches them, taking advantage of default system functional-
ity as appropriate.

• The Stop Routine is the application’s opportunity to perform
cleanup activities before exiting. Typical activities include
closing databases and saving state information.

The following sections look at each of the phases in some detail.
Note that for each phase, Palm OS provides a default behavior that
can help you keep application code at a minimum. If your applica-
tion has special requirements, your application may instead handle
the bulk of the work itself.

The Startup Routine
During the startup routine, an application has to follow these steps:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global vari-
ables that will be referenced throughout the application.

2. Find the application database by creator type. If none exists,
create it and initialize it.

3. Get application-specific preferences and initialize related glo-
bal variables.

4. Initialize any other global variables.

Listing 2.1 shows an example StartApplication function from
the datebook application.
38 Developing Palm OS Applications, Part I

Application Control Flow
How Events Control an Application
Listing 2.1 StartApplication from Datebook.c

static Word StartApplication (void)
{
Word error = 0;
Err err = 0;
UInt mode;
DateTimeType dateTime;
DatebookPreferenceType prefs;
SystemPreferencesType sysPrefs;

// Determine if secret record should be shown.
PrefGetPreferences (&sysPrefs);
HideSecretRecords = sysPrefs.hideSecretRecords;

if (HideSecretRecords)
mode = dmModeReadWrite;

else
mode = dmModeReadWrite | dmModeShowSecret;

// Get the time formats from the system
preferences.
TimeFormat = sysPrefs.timeFormat;

// Get date formats from system preferences.
LongDateFormat = sysPrefs.longDateFormat;
ShortDateFormat = sysPrefs.dateFormat;

// Get start day of week from system preferences.
StartDayOfWeek = sysPrefs.weekStartDay;

// Get today's date.
TimSecondsToDateTime

(TimGetSeconds (), &dateTime);
Date.year = dateTime.year - firstYear;
Date.month = dateTime.month;
Date.day = dateTime.day;
Developing Palm OS Applications, Part I 39

Application Control Flow
How Events Control an Application
// Find application's data file. Create one if
// none exists.
ApptDB DmOpenDatabaseByTypeCreator

(datebookDBType, sysFileCDatebook, mode);
if (! ApptDB)
{
error = DmCreateDatabase (0, datebookDBName,

sysFileCDatebook, datebookDBType, false);
if (error) return error;

ApptDB = DmOpenDatabaseByTypeCreator
(datebookDBType, sysFileCDatebook, mode);

if (! ApptDB) return (1);

error = ApptAppInfoInit (ApptDB);
if (error) return error;
}

// Read preferences & saved-state information.
if (PrefGetAppPreferences (sysFileCDatebook,

 datebookVersionNum, &prefs,
sizeof (DatebookPreferenceType)))

{
DayStartHour = prefs.dayStartHour;
DayEndHour = prefs.dayEndHour;
AlarmPreset = prefs.alarmPreset;
NoteFont = prefs.noteFont;
SaveBackup = prefs.saveBackup;
}

TopVisibleAppt = 0;
CurrentRecord = noRecordSelected;

return (error);
}

40 Developing Palm OS Applications, Part I

Application Control Flow
How Events Control an Application
The Event Loop
When startup is complete, the application enters an event loop. It
typically remains in that event loop until the system tells it to shut
itself down by sending an appStopEvent (not a action code).

Listing 2.2 Top-level event loop example

static void EventLoop (void)
{
Word error;
EventType event;

do
{
EvtGetEvent (&event, evtWaitForever);

if (! SysHandleEvent (&event))

if (! MenuHandleEvent (NULL, &event, &error))

if (! ApplicationHandleEvent (&event))

FrmDispatchEvent (&event);

}
while (event.eType != appStopEvent);

}

In the event loop, the application iterates through these steps (see
Figure 2.1)

1. Fetch an event from the event queue.
2. Call SysHandleEvent to give the system an opportunity to

handle the event.
The system handles events like power on/ power off, Graffiti
input, tapping silk-screened icons, or pressing buttons. Dur-
ing the call to SysHandleEvent, the user may also be in-
formed about low-battery warnings or may find and search
another application.
Developing Palm OS Applications, Part I 41

Application Control Flow
How Events Control an Application
Note that in the process of handling an event,
SysHandleEvent may generate new events and put them
on the queue. For example, the system handles Graffiti input
by translating the pen events to key events. Those, in turn,
are put on the event queue and are eventually handled by the
application.
SysHandleEvent returns TRUE if the event was completely
handled, that is, no further processing of the event is re-
quired. The application can then pick up the next event from
the queue.

3. If SysHandleEvent did not completely handle the event, the
application calls MenuHandleEvent. MenuHandleEvent
handles two types of events:
– If the user has tapped in the area that invokes a menu,
MenuHandleEvent brings up the menu.

– If the user had tapped inside a menu to invoke a menu
command, MenuHandleEvent removes the menu from
the screen and puts the events that result from the com-
mand onto the event queue.

MenuHandleEvent returns TRUE if the event was com-
pletely handled.

4. If MenuHandleEvent did not completely handle the event,
the application calls ApplicationHandleEvent.
ApplicationHandleEvent handles only the
frmLoadEvent for that event; it loads and activates applica-
tion form resources and sets the event handler for the active
form.

5. If ApplicationHandleEvent did not completely handle
the event, the application calls FrmDispatchEvent.
FrmDispatchEvent first sends the event to the application’s
event handler for the active form. This is the event handler
routine that was established in ApplicationHandleEvent.
Thus the application’s code is given the first opportunity to
process events that pertain to the current form. The applica-
tion’s event handler may completely handle the event and re-
turn TRUE to calls FrmDispatchEvent. In that case, calls
FrmDispatchEvent returns to the application’s event loop.
Otherwise, calls FrmDispatchEvent calls
FrmHandleEvent to provide the system’s default processing
for the event.
42 Developing Palm OS Applications, Part I

Application Control Flow
How Events Control an Application
For example, in the process of handling an event, an applica-
tion frequently has to first close the current form and then
open another one, as follows:
– The application calls FrmGotoForm to bring up another

form. FrmGotoForm queues a frmCloseEvent for the
currently active form, then queues frmLoadEvent and
frmOpenEvent for the new form.

– When the application gets the frmCloseEvent,it closes
and erases the currently active form.

– When the application gets the frmLoadEvent, it loads
and then activates the new form. Normally, the form re-
mains active until it is closes. (Note that this wouldn’t
work if you preload all forms, but that’s really discour-
aged. Applications don’t need to be concerned with the
overhead of loading forms, it’s fast enough so they can do
it when they need it.) The application’s event handler for
the new form is also established.

– When the application gets the frmOpenEvent,it does
whatever initialization of the form is required, then draws
the form on the display.

After FrmGotoForm has been called, any further events that
come though the main event loop and to
FrmDispatchEvent are dispatched to the event handler for
the form that is currently active. The event handler knows for
a particular dialog box or form how it should respond to
events for example, opening, closing, and so on.
FrmHandleEvent invokes the default UI functionality.
After the system has done all it can to handle the event for
the specified form, the application finally calls the active
form’s own event handling function; for example, in the
datebook application, it may call DayViewHandleEvent or
WeekViewHandleEvent.

Note again how the structure of the event flow allows your applica-
tion to rely on system functionality as much as it wants. If your ap-
plication wants to know whether a button is pressed, it has to only
wait for ctlSelectEvent. All the details of the event queue are
handled by the system.

Some events are actually requests for the application to do some-
thing. For example, frmOpenEvent. Typically, all the application
Developing Palm OS Applications, Part I 43

Application Control Flow
How Events Control an Application
does is draw itself using the functions provided by the system and
then waits for events it can handle to arrive from the queue.

Only the active form should process events.

The Stop Routine
The stop routine should first flush all active records and then close
the applications database and saves those aspects of the current
state that are necessary for startup. Listing 2.3 provides an example
of a StopApplication routine from Datebook.c.

Listing 2.3 Example for StopApplication Routine

static void StopApplication (void)
{
DatebookPreferenceType prefs;

// Write preferences & saved-state information.
prefs.noteFont = NoteFont;
prefs.dayStartHour = DayStartHour;
prefs.dayEndHour = DayEndHour;
prefs.alarmPreset = AlarmPreset;
prefs.saveBackup = SaveBackup;

// Write the state information.
PrefSetAppPreferences (sysFileCDatebook,

datebookVersionNum, &prefs,
sizeof (DatebookPreferenceType));

// Send a frmSave event to all open forms.
FrmSaveAllForms ();

// Close all the open forms.
FrmCloseAllForms ();

// Close the application's data file.
DmCloseDatabase (ApptDB);

}

44 Developing Palm OS Applications, Part I

Application Control Flow
How Events Control an Application
Developing Palm OS Applications, Part I 45

Application Control Flow
How Events Control an Application
Figure 2.1 Control Flow in a Typical Application

EvtGetEvent

SysHandleEvent

MenuHandleEvent

FormDispatchEvent

is there an event?

yes

no

is this a system function?
process event,
generate other events
as necessary return (e.g. Power-off, graffiti input)

Handle menu interface,

remain in loop until
there is an event

then go on.

ApplicationHandleEvent

yes

no

,

Is this a menu?

load from resources, set event
handler for form loaded

dispatch event to applications
handler for form

FrmHandleEvent

yes

no

Is this a frmLoadEvent?

Did application handler
complete event processing?

provide default processing
for event

yes

no

no

yes
46 Developing Palm OS Applications, Part I

Application Control Flow
How Action Codes Control the Application
How Action Codes Control the Application
Action codes provide a direct communication mechanism between
the system and an application or between two applications:

• Inter-application communication is implemented through
the action code mechanism. An application can use an action
code to request that another application modify its data or
perform an action. For example, a data collection application
could instruct an email application to queue up a particular
message to be sent.

• The system uses action codes to ask an application to do
something (interrupting other activities if necessary). Exam-
ples are action codes for launching an application, initializing
databases, or hard reset. Another example is the global find.
When the user performs a global find, it would be wasteful to
incur the overhead of a full launch of each application as its
data file is searched. Instead, the system sends an action code
with a special flag to the application has the application per-
form the search without displaying its user interface to other
application overhead.

Action codes may be sent to any application without negative ef-
fects. However, an action code only has an effect if the application
that receives it has been programmed to handle it. When developing
your application, you, handle as many of the standard action codes
as possible. The standard action codes defined by Palm OS are listed
in Table 2.1.

The system delivers action codes to the application at its highest
level (PilotMain). Each action code is accompanied by a parameter
block containing the necessary data. The system sometimes uses
flags with an action code that indicate its circumstances, for exam-
ple, whether the UI is to be displayed. Action codes may be sent
from the system’s top level or from another application’s thread; in
most cases, global variables are not available.

Action Code Example
An application needs to checks for action codes in its main function.
Listing 2.4 shows an example from the datebook application.
Developing Palm OS Applications, Part I 47

Application Control Flow
How Action Codes Control the Application
Listing 2.4 Code Fragment Checking for Action Codes

DWord PilotMain (Word cmd, Ptr cmdPBP, Word
launchFlags)
{
Word error;
Boolean launched;

// Launch code sent by launcher or datebook button.
if (cmd == sysAppLaunchCmdNormalLaunch)
{
error = StartApplication ();
if (error) return (error);

FrmGotoForm (DayView);
EventLoop ();
StopApplication ();
}

// Launch code sent by text search.
else if (cmd == sysAppLaunchCmdFind)
{
Search ((FindParamsPtr)cmdPBP);
}

// This action code is sent when if user taps GoTo
// button in Find Results dialog box (application
// may be already running)

else if (cmd == sysAppLaunchCmdGoTo)
{
//Determine if this app is already running
launched = launchFlags

sysAppLaunchFlagNewGlobals;
if (launched)
48 Developing Palm OS Applications, Part I

Application Control Flow
How Action Codes Control the Application
{
//Not yet running so start it.
error = StartApplication ();
if (error) return (error);

GoToItem ((GoToParamsPtr) cmdPBP, launched);

EventLoop ();
StopApplication ();
}

else
//Go to the search destination
GoToItem ((GoToParamsPtr) cmdPBP, launched);

}

// Launch code sent by sync application to notify
// application that its database was synced.

else if (cmd == sysAppLaunchCmdSyncNotify)
{
SyncNotification ();
}

....

Responding to Action Codes
When an application receives an action code, it must first check if it
can handle it. For example, only applications that have text data
should respond to an action code requesting a string search. If an
application can’t handle an action code, it exits without failure. Oth-
erwise, it performs the action immediately and returns.
Developing Palm OS Applications, Part I 49

Application Control Flow
How Action Codes Control the Application
Predefined Action Codes
A number of action codes are predefined by the system for handling
certain system tasks, for example,

• notifying the application when certain system preferences
like date and time have changed

• performing global find and goto operations
• notifying the application that its data files have been updated

by a sync operation

The action code parameter is a 16-bit word value. All action codes
with values 0-32767 are reserved for use by the system and for fu-
ture enhancements. Action codes 32768 - 65535 are available for pri-
vate use by applications.

Table 2.1 Palm OS Action Codes

Code Request

sysAppLaunchCmdNormalLaunch Normal launch

sysAppLaunchCmdFind Find text string

sysAppLaunchCmdGoTo Launch and go to a particular record and
optionally select the find text

sysAppLaunchCmdSyncNotify Sent to applications whose databases
changed during HotSync after the sync has
been completed

sysAppLaunchCmdTimeChange System time changed

sysAppLaunchCmdSystemReset Sent after System hard resets

sysAppLaunchCmdAlarmTriggered Schedule next alarm

sysAppLaunchCmdDisplayAlarm Display given alarm dialog

sysAppLaunchCmdCountryChange Country has changed

sysAppLaunchCmdSyncRequest HotSync button was pressed
50 Developing Palm OS Applications, Part I

Application Control Flow
How Action Codes Control the Application
Action Code Flags

When the system sends an action code, it may send flags determin-
ing application behavior. Applications should always use zero.

Action Code Parameter Blocks
Some action codes are called in conjunction with a parameter block
structure that provides more information about the request. This
section provides information about available parameter blocks and
the values of their fields for these action codes:

• sysAppLaunchCmdSaveData
• sysAppLaunchCmdSystemReset
• sysAppLaunchCmdInitDatabase
• sysAppLaunchCmdSyncCallApplication
• sysAppLaunchCmdGoto Command
• sysAppLaunchCmdFind

sysAppLaunchCmdSaveData

typedef struct {
Boolean uiComing;

sysAppLaunchCmdSaveData Sent to running app before action codes
that cause data search or manipulation,
such as sysAppLaunchCmdFind.

sysAppLaunchCmdInitDatabase Initialize database; sent by DesktopLink
server to application whose create ID
matches that of the database created in re-
sponse to the create database request.

sysAppLaunchCmdSyncCallApplication Used by DesktopLink Server command
“call application”

Table 2.1 Palm OS Action Codes

Code Request
Developing Palm OS Applications, Part I 51

Application Control Flow
How Action Codes Control the Application
} SysAppLaunchCmdSaveDataType;

uiComing True if system dialog is put up
before action code arrives.

sysAppLaunchCmdSystemReset

typedef struct {
Boolean hardReset;
Boolean createDefaultDB;
} SysAppLaunchCmdSystemResetType;

hardReset True if system was hardReset
createDefaultDB If true, application has to create

default database.

sysAppLaunchCmdInitDatabase

typedef struct SysAppLaunchCmdInitDatabaseType {
DmOpenRef dbP;
ULong creator;
ULong type;
UInt version;

} SysAppLaunchCmdInitDatabaseType;

dbP Database reference.
creator Database creator.
type Database type.
version Database version.

sysAppLaunchCmdSyncCallApplication

typedef struct
SysAppLaunchCmdSyncCallApplicationType {
Word action;
Word paramSize;
52 Developing Palm OS Applications, Part I

Application Control Flow
How Action Codes Control the Application
VoidPtr paramP;
Byte remoteSocket;
Byte tid;
Boolean handled;
} SysAppLaunchCmdSyncCallApplicationType;

action Call action id (application specific).
paramSize Parameter size.
paramP Pointer to parameter.
remoteSocket Remote Socket ID
tid Command transaction
handled Must be set to TRUE by the application

if handled.

sysAppLaunchCmdGoto Command

typedef struct {
Word searchStrLen;
Word dbCardNo;
LocalID dbID;
Word recordNum;
Word matchPos;
Word matchFieldNum;
DWord matchCustom;
} GoToParamsType;

searchStrLen Length of search string.

dbCardNo Card number of the database

dbID LocalID of the database

recordNum; Index of record that contain a match

matchPos Position in record of the match.

matchFieldNum Field number string was found in

matchCustom Application specific info
Developing Palm OS Applications, Part I 53

Application Control Flow
How Action Codes Control the Application
sysAppLaunchCmdFind

typedef struct {

// These fields are used by the applications.
Word dbAccesMode;
Word recordNum;
Boolean more;
Char strAsTyped [maxFindStrLen+1];
Char strToFind [maxFindStrLen+1];

// These fields are private to the Find routine
//and should NOT be accessed by applications.
Word numMatches;
Word lineNumber;
Boolean continuation;
Boolean searchedCaller;
LocalID callerAppDbID;
Word callerAppCardNo;
LocalID appDbID;
Word appCardNo;
Boolean newSearch;
DmSearchStateType searchState;
FindMatchType match [maxFinds];

} FindParamsType;

dbAccessMode read mode and maybe show secret

recordNum index of last record that contained a match

more true if more matches to display

strAsTyped [maxFindStrLen+1]
search string as entered

strToFind [maxFindStrLen+1]
search string is lower case

numMatches System use only.
54 Developing Palm OS Applications, Part I

Application Control Flow
How Action Codes Control the Application
lineNumber System use only.

continuation System use only.

searchedCaller System use only.

callerAppDbID System use only.

callerAppCardNo System use only.

appDbID System use only.

appCardNo System use only.

newSearch System use only.

searchState System use only.

match [maxFinds] System use only.

Creating Your Own Action Codes
In addition to the predefined action codes defined in Table 2.1, de-
velopers may create their own action codes to implement specific
functionality. Both the sending and the receiving application must
know about and handle any developer-defined action codes.
Developing Palm OS Applications, Part I 55

Application Control Flow
How Action Codes Control the Application
56 Developing Palm OS Applications, Part I

3
Palm OS User Interface
Resources

This chapter provides an overview of all Macintosh resources used
by Palm OS, followed by a detailed description of each resource.
The relationship between the Macintosh resources and the struc-
tures provided by Palm OS is discussed in “Palm OS UI Objects”.

Resource Name UI Name ResEdit
Resource

Menu Bar Resource MBAR Menu bar

Menu Resource MENU Menu

Application Icon Name Resource tAIN Application icon name

Alert Resource Talt Alert

Button Resource tBTN Button

Check Box Resource tCBX Check box

Field Resource tFLD Field

Form Bitmap Resource tFBM Form bitmap

Form Resource tFRM Form
Developing Palm OS Applications, Part I 57

Palm OS User Interface Resources
Gadget Resource tGDT Gadget

Graffiti Shift Resource tGSI Graffiti® Shift

Label Resource tLBL Label

List Resource tLST List box

Popup List Resource tPUL Popup list

Popup Trigger Resource tPUT Popup trigger

Push Button Resource tPBN Push button

Repeating Button Resource tREP Repeating control

Selector Trigger Resource tSLT Selector trigger

String Resource tSTR String

Table Resource tTBL Table

Title Resource tTTL Title

Version Number String tver Version number string

Resource Name UI Name ResEdit
Resource
58 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Menu Bar Resource
Menu Bar Resource
 Name MBAR (This is a Macintosh resource.)

UI Name Menu bar

Overview The menu bar UI object groups menus. The menu bar shows all
menus, provided there is room for them. Here’s a picture of a two-
item menu bar, with no menu selected:

Comments If you create more menus than the display can handle, the result is a
runtime error. The display can usually handle four menus at most,
depending on the number of characters each menu name contains.

To create a menu, you need both a MENU resource and an MBAR
resource. The tutorial provides a detailed example for creating a
menu.

See Also MENU resource.

Menu Resource
Name MENU (This is a Macintosh resource.)

UI Name Menu

Overview A menu provides access to commands not available on screen. Tap-
ping the MENU silk-screened icon provides access to the menu
commands.

Each menu can have a Graffiti keystroke equivalent: The user draws
the command stroke and one key to execute a command. For exam-
ple, writing Command-X executes the Cut command.

Attributes # of menus Array of N objects.

Menu res ID MENU resource ID of the nth menu object.
Developing Palm OS Applications, Part I 59

Palm OS User Interface Resources
Menu Resource
The menu UI object lets you define the popup menus triggered from
the menu bar. ResEdit provides a graphical interface for specifying a
menu. The following five-command menu has a separator line after
the fourth item and shortcuts for each item:

Attributes Title String of the menu command.

Comments The Enable check box in the ResEdit dialog has no effect on the Sim-
ulator and is ignored. Separator lines and shortcuts appear as in the
figure above. The display cannot handle more than thirteen com-
mands in a menu. If you create a menu with more commands, a
runtime error results.

The tutorial provides a detailed example for creating a menu.

Event Flow for Menu Resource

User Action System Response

Pen enters menu
window.

winExitEvent to exit previous window.
winEnterEvent to enter menu window.
penDownEvent is also triggered, although the pen has not actu-
ally touched the screen.

User selects a
menu item.

WinExitEvent to exit menu window.
WinEnterEvent to enable the form the menu spawned.
menuEvent (store ID number of the item in EventType).
penUpEvent finally occurs.
60 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Menu Resource
Menus and Menu Bars
A menu consists of a menu bar, menu names indicating the avail-
able menus, and the menus themselves with their commands:

• Menu bar. The menu bar at the top of the screen contains the
names of the available menus. Each application has different
sets of menu names; within an application, different views
may have different menus.

• Menu name. Each menu is displayed below the menu name.
– Record—Place Record to the left of Edit (if applicable).
– Edit—Screens that allow editing need an Edit menu.
– Options—Typically the last menu. The About command

is always an Options command.
• Menu. Menus consist of menu commands and optional

shortcuts. Menu commands should not duplicate functional-
ity available via command buttons. Menus justify left with
the active heading of the menu name when invoked. If the
menu does not fit, it is justified to the right border of the
screen.

NOTE: For each menu, provide shortcuts for all commands or for
none at all.

A pen-up on the menu icon displays the menu bar. The first time a
menu is invoked after an application is launched, no menus are dis-
played unless there is only one menu available. Afterwards, on a
pen-down of the digitizer, the menu and menu item of the last com-
mand executed from the menu are displayed (Graffiti command
equivalents are ignored). For example, if the user selects Copy from
the Edit menu, the menu is popped down and the Copy command
is highlighted the next time the menu bar is displayed. This expe-
dites execution of commonly used commands or grouped com-
mands (e.g., Copy/Paste). The last menu heading is not saved if the
user switches to a different view or a different application.

Each view within an application can have a unique menu (i.e., dif-
ferent menu headings and items). There are no grayed out menu
headings or grayed-out menu items. A command not accessible in a
certain mode does not appear at all.
Developing Palm OS Applications, Part I 61

Palm OS User Interface Resources
Application Icon Name Resource
After a menu command is executed, the menu bar is dismissed.

The menu bar is active when the menu headings in it are active.
When not active, the menu bar is not visible.

The vertical active area of menu headings is 2 pixels beyond the as-
cender and 1 pixel below a potential descender of the menu heading
text. The horizontal active area covers half of the distance to the next
menu heading, leaving no gaps between the headings. If the menu
headings aren’t as wide as the menu bar, part of it may be inactive.

The entire area of the menu, excluding the border, is active. Divider
lines and status items on the launcher menu are inactive; that is,
they do not highlight when tapped.

Application Icon Name Resource
Name tAIN

UI Name Application icon name

Overview This resource associates a name with an application icon. The name
is displayed by the launcher. This name overrides the name of the
application file.

Attributes App icon name Name displayed with the application icon, in
the launcher.
62 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Alert Resource
Alert Resource
Name Talt

UI Name Alert

Overview The alert resource is used to define a modal dialog that displays a
message, an icon, and one or more buttons.

 Attributes Alert Type Determines the sound played and the icon dis-
played when the alert is drawn. There are four pos-
sible icons, informationAlert (Alert Number 0),
confirmationAlert (Alert Number 1), warningAlert
(Alert Number 2), and ErrorAlert (Alert Number 3).

Help Res ID Resource ID of a string resource (tSTR) that is the
help text for the alert dialog box.

of Buttons Number of buttons in the alert form.

Default
Button

Default button for the alert form.

Title Title of the alert form.

Message Message displayed by the alert dialog. May contain
^1, ^2, ^3 as substitution variables to use in con-
junction with FrmCustomAlert.

Button Text Text of the buttons, determined by an entry in the
resource of each button. The label “1) *****” is a
placeholder for the first button. Select this label and
press Command-K to add a new entry.
Developing Palm OS Applications, Part I 63

Palm OS User Interface Resources
Alert Resource
System Alerts
System alerts are text-only dialog boxes that indicate error mes-
sages, alarms, etc. Alerts typically have only an OK or an OK and
Cancel, and no controls. A small icon should indicate the category of
the dialog box; for example, an exclamation mark for an error mes-
sage. The icon appears on the left side of the dialog. The text is justi-
fied left but placed to the right of the dialog icon.

Types Icon Definition Options Example

Informa-
tion

i Lowest-level warning
for an action that
shouldn’t or can’t be
completed, but doesn’t
generate an error or risk
data loss.

OK An alarm setting must
be between 1 and 99.

Confirma-
tion

? Confirm an action or
suggest options.

OK,
Cancel

Change settings before
switching applications?
(For example, when
pressing an application
key with an open dialog
box.)

Warning ! Ask if user wishes to
continue a potentially
dangerous action.

OK,
Cancel

Are you sure you want to
delete this entry?

Error (stop
 sign)

Inform user that an at-
tempted action has gen-
erated an error and/or
cannot be completed.

OK Disk full.
64 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Button Resource
Button Resource
Name tBTN

UI Structure ControlType

UI Name Button

Overview A button is a clickable UI object is often used to trigger events in an
application. A button displays as a text label surrounded by a rect-
angular frame. The frame has rounded corners. The label may be
regular text or a glyph from one of the symbol fonts provided with
your development environment (for example, an arrow):

Attributes Button ID Developer-defined ID to identify the object.
Valid values: 0 – 9999

Left Window-relative position of left side of button.
Valid values: 0 – 159

Top Window-relative position of top of object.
Valid values: 0 - 159

Width Width of button in pixels. Size the buttons to allow
3–6 pixels of white space at each end of the label.
Valid values: 0 – 160

Height Height of the button in pixels. Should be 3 pixels
larger than the font size (for example, height = 12 for
9-point labels).
Valid values: 1 – 160

Usable A nonusable object is not considered part of the ap-
plication interface, and does not draw. Non-usable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)
Developing Palm OS Applications, Part I 65

Palm OS User Interface Resources
Button Resource
Comments The label is centered inside the button. If the label text is wider than
the button, the whole label is centered and both the right and left
sides are clipped.

Place command buttons at the bottom of table views and dialog
boxes. Leave three pixels between the dialog bottom and buttons.

Increment arrows are a special case; they are buttons that let users
increment the value displayed in a data field.

To create an increment arrow, use an arrow character from the sym-
bol font as a label. Several arrow styles and sizes are available.

Left anchor Controls how the object resizes itself when its text
label is changed. If the attribute is TRUE, the left
bound of the object is fixed; if FALSE, the right
bound is fixed.
Valid values: true (left bound fixed)

false (right bound fixed)

Frame If set to true, a rectangular frame with rounded cor-
ners is drawn around the button. Most buttons have
frames. Buttons whose labels are single symbol char-
acters, such as scroll buttons, don’t have frames.
Valid values: true (framed)

false (not framed)

Non-bold
frame

If set to TRUE, a one-pixel-wide rectangular frame
with rounded corners is drawn around the button. If
set to false, a bold frame (two pixels wide) is drawn
around the button. Nonbold frames are standard.
Valid values: true (one-pixel-wide frame)

false (two-pixel-wide frame)

Font ID of font used to draw the text label of the button
Valid values: 0 (9-point font)

1 (9-point bold font)
2 (12-point font)

Label Text displayed inside the button: one line of text, or a
single character from a symbol font to create an in-
crement arrow.
66 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Check Box Resource
Event Flow for Button Resource

Check Box Resource
Name tCBX

UI Name Check box

UI Structure ControlType

Overview A check box is a small, square UI object that lets users turn some-
thing on or off; for example, an alarm. A check box displays a check
to indicate it’s on, and an optional text label to the right of the box.

The figure below shows a checked and an unchecked check box
with a label to the left.

User Action System Response

Pen goes down on a
button.

penDownEvent (store x and y coordinates in EventType).
ctlEnterEvent (store button ID number in EventType).

Pen is lifted from but-
ton.

ctlSelectEvent (store button ID number in EventType).
ctlSelectEvent can be triggered only if a
ctlEnterEvent with the same button ID number has just
occurred.
penUpEvent (store x and y coordinates in EventType).

Pen is lifted outside
button.

Nothing happens.
Developing Palm OS Applications, Part I 67

Palm OS User Interface Resources
Check Box Resource
Attributes Check
Box ID

Developer-defined ID to identify the object.
Valid values: 0 – 9999

Left Window-relative position of left side of object.
Valid values: 0 – 159

Top Window-relative position of top of object.
Valid values: 0 – 159

Width Width of the picking area around the check box.
Valid values: 0 – 160

Height Height of the picking area around the check box.
Valid values: 1– 160

Usable A nonusable object is not considered part of the ap-
plication interface, and does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)

Selected Initial selection state of the checkbox.
Valid values: true (checked)

false (unchecked)

Group Group ID of a check box that is part of an exclusive
group. Ungrouped (nonexclusive) check boxes have
zero as a group ID.
Valid values: 0 – 65535

Font ID of the font used to draw the text label.
Valid values: 0 (9-point font)

1 (9-point bold font)
2 (12-point font)

Label Text displayed to the right of the check box. This text
is part of the activation area. To create a (nonactive)
label on the left of the check box, leave this attribute
blank and create a separate Label resource.
68 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Check Box Resource
Comments Make sure that only one check box in a group is initially checked.

All check boxes are the same size. The bounds determine the toggle
area (the screen area the user needs to press to check or uncheck the
box).

If a label attribute is defined, it’s part of the activation area.

Event Flow for Check Box Resource

User Action System Response

Pen goes down
on check box.

penDownEvent (store x and y coordinates in EventType).
ctlEnterEvent (store check box’s ID number in EventType).

• If the check box is unchecked, a check appears.
• If the check box is already checked, and is grouped, there is

no change in appearance.
• If the check box is already checked, and is ungrouped, the

check disappears.

Pen is lifted from
check box.

ctlSelectEvent (store check box’s ID number in EventType,
switch check box on (1) or off (0) internally). A ctlSelectEvent
can be triggered only if a ctlEnterEvent with the same check
box ID number has just occurred.
penUpEvent (store x and y coordinates in EventType).

Pen is lifted out-
side button.

Nothing happens.
Developing Palm OS Applications, Part I 69

Palm OS User Interface Resources
Field Resource
Field Resource
Name tFLD

UI Name Field

UI Structure FieldType

Overview The field UI object is for user data entry in an application. It displays
one or more lines of editable text. A field can be underlined, justified
left or right, and selectable or unselectable.

The following is an underlined, left-justified field containing data:

Attributes Field ID Developer-defined ID to identify the object.
Valid values: 0 – 9999

Left Window-relative position of left side of object.
Valid values: 0 – 159

Top Window-relative position of top of object.
Valid values: 0 – 159

Width Width of the object in pixels.
Valid values: 0 – 160

Height Height of the object in pixels.
Valid values: 1– 160

Usable A nonusable object is not considered part of an ap-
plication interface and does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)

Editable Noneditable fields don’t accept user input but can be
changed programmatically.
Valid values: true (editable), false (noneditable)
70 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Field Resource
Comments Text fields can be located anywhere but in menus and in the com-
mand button area.

Multiline text fields expand. An empty field may display one or
more blank lines; for example, records in a To Do list or a text page.

Under-
lined

If set, each line of text is underlined with a gray line.

Single Line If set to TRUE, the field doesn’t scroll horizontally
and doesn’t accept Return or Tab characters. Only a
single line of text is displayed. If the user attempts to
enter text beyond this, the system beeps. See Com-
ments for more information on multiline fields.
Valid values: true (single line)

false (multiline)

Dynamic
Size

If TRUE, the height of the field is expanded or com-
pressed as characters are added or removed. Set this
attribute to FALSE if the Single Line attribute is set.
Valid values: true (dynamically resizes)

false (doesn’t dynamically resize)

Left Justi-
fied

Text justification. Supported only for fields that have
the Single Line attribute set to TRUE.
Valid values: true (left-justified)—recommended

false (right-justified)

Max chars Maximum number of characters the field accepts.
This is a limit on the number of characters a user can
enter, but not on what can be displayed. All fields
can display up to 32767 characters regardless of this
setting.
Valid values: 0 – 32767

Font ID of the font used to draw the text
Valid values: 0 (9-point font)

1 (9-point bold font)
2 (12-point font)
Developing Palm OS Applications, Part I 71

Palm OS User Interface Resources
Form Bitmap Resource
Event Flow for Field Resource

Form Bitmap Resource
Name tFBM

UI Name Form bitmap

Overview Places predefined bitmaps on a given form. Used for icons in Alert
dialogs for warnings, errors, information, etc.

User Action System Response

Pen goes down on a
field.

penDownEvent (store x and y coordinates in EventType).
fldEnterEvent (store the field’s ID number in EventType).

Pen is lifted penUpEvent (store x and y coordinates in EventType). A
field remains selected until another field is selected or the
form that contains the field is closed.

User enters charac-
ters into selected field.

keyDownEvent (store ASCII value in EventType).

Attributes X Position Left bounds of bitmap.

Y Position Top bounds of bitmap.

Bitmap Rsc ID ID of a PICT resource containing the graphic.

Usable Set to TRUE if the bitmap should be drawn.
72 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Form Resource
Form Resource
Name tFRM

UI Name Form

Overview A form is a container for one or more of the following UI objects:

• Bitmap

• Button
• Check box
• Field
• Gadget
• Graffiti shift state indicator
• Help string for tips (if modal)
• Label
• List
• Menu bar
• Popup trigger
• Push button
• Repeating button
• Selector trigger
• Table
• Title

An application may contain several different forms the user can
trigger from buttons or other control UI objects. A form is a con-
tainer for other UI objects. Most UI objects are displayed only if they
are contained within a form.
Developing Palm OS Applications, Part I 73

Palm OS User Interface Resources
Form Resource
Attributes Left Window-relative position of left side of object.
Valid values: 0 – 159

Top Window-relative position of top of object.
Valid values: 0 – 159

Width Window-relative position of width of the object.
Valid values: 0 – 160

Height Height of the button in pixels.
Valid values: 1– 160

Usable A nonusable object is not considered part of the ap-
plication interface, and does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)

Modal Indicates if the form is modal. Modal forms ignore
pen events outside their boundaries.

Save behind If this field contains a non-zero value, the region
obscured by the form is saved when it is drawn and
restored when it is erased.
Valid values: zero (don’t save), non-zero (save)

Form ID Developer-defined ID used to identify the object.
Valid values: 0 – 9999

Help Rsc ID Contains the resource ID of a string resource (tSTR)
that is the help text from the dialog box. Currently
only modal dialogs have a help resource.
Valid values: 0 – 9999

Default But-
ton ID

Defines the ID of the default button. The system
simulates pressing the default button where it dis-
misses the form automatically; for example, when it
switches to another application.
74 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Form Resource
Comments The total display is 160 pixels by 160 pixels. If you want your whole
form to be seen, make sure it fits within the display area.

There is an entry in the form resource for each object contained in
the form. An entry consists of a resource ID and resource type. The
label “1) *****” is a placeholder for the first entry. Select this label
and press Command-K to add a choice to the list.

Here are some general design guidelines:

• Each form has a title that displays the name or view of the
application (or both.)

• Scroll indicators appear and disappear dynamically, depend-
ing on the size of the object. Place them to the right of com-
mand buttons.

• Modal dialogs always occupy the full width of the screen and
are justified to the bottom of the screen. They hide the com-
mand buttons of the base application but don’t obscure the
title bar of the base application if possible. There should be a
minimum of three pixels between the top of the modal dialog
title bar and the bottom of the application title bar. If the dia-

Object ID Resource ID of the form.
Valid values: 0 – 9999

Object Type The resource ID of one or more UI objects.
Valid values: tFBM - Bitmap

tBTN - Button
tCBX - Check box
tFLD - Field
tGDT - Gadget
TGSI - Graffiti shift state indicator
tLBL - Label
tLST - List
tPUT - Popup trigger
tPBN - Push button
tREP - Repeating button
tSLT - Selector trigger
tTBL - Table
tTTL - Title
Developing Palm OS Applications, Part I 75

Palm OS User Interface Resources
Form Resource
log is too large to accommodate this, the entire application
title bar should be obscured.

• Screen command buttons should always be at the bottom of
the screen.

• Dialog command buttons appear four pixels above the bot-
tom of the dialog box frame (two-pixel default ring is three
pixels above the bottom, and the baseline of the text within
the buttons should be aligned).

• Command buttons should be centered so that the spaces be-
tween the buttons are twice the width of the spaces between
the edges and the border. (See diagram below.) If possible, all
buttons should be the same width.

Event Flow When a form is opened, a frmOpenEvent is triggered and the
form’s ID is stored. A winEnterEvent is triggered whenever a
form is opened and a winExitEvent is triggered whenever a form
is closed.

One button Two buttons Three buttons

A B C A B C D

Distance B = 2 x A = 2 x C Distance B = C = 2 x A = 2 x D

A B

Distance A = B
76 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Gadget Resource
Gadget Resource
Name tGDT

UI Name Gadget

Overview A gadget object lets developers implement a custom UI gadget. The
gadget resource contains basic information about the custom gadget
which is useful to the gadget writer for drawing and processing
user input.

Attributes Gadget ID Developer-defined ID used to identify the object.

Left Window-relative position of left side of object.
Valid values: 0 – 159

Top Window-relative position of top of object.
Valid values: 0 – 159

Width Window-relative position of width of the object.
Valid values: 0 – 160

Height Height of the gadget in pixels.
Valid values: 1– 160

Usable A nonusable object is not considered part of the ap-
plication interface, and does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable), false (nonusable)
Developing Palm OS Applications, Part I 77

Palm OS User Interface Resources
Graffiti Shift Resource
Graffiti Shift Resource
Name tGSI

UI Name Graffiti® Shift

Overview Indicates the window- (form) relative position of the Graffiti shift
state indicator. The different states are punctuation, symbol, upper-
case shift, and uppercase lock. These should appear at the bottom-
right of every form that has an editable text field.

Label Resource
Name tLBL

UI Name Label

Overview A label is used to display noneditable text or labels on a form (dia-
log box or full-screen).

Comments Pressing return in a label wraps the text to the next line.

Attributes x pos: Left bounds of text, relative to the form.

y pos: Top bounds of text, relative to the form.

Attributes Label ID Developer-defined ID to identify the object.
Valid values: 0 – 9999

Left Window-relative position of left side of object.
Valid values: 0 – 159

Top Window-relative position of top of object.
Valid values: 0 – 159
78 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
List Resource
List Resource
Name tLST

UI Name List box

UI Structure ListType

Overview A list box is a UI object you can use to provide a box with a list of
choices to the user. The list is scrollable if there are more choices
than the size of the list box allows.

A list appears as a vertical list of choices surrounded by a rectangu-
lar frame. The current selection of the list is inverted. Arrows for
scrolling the list appear in the right margin if necessary.

Lists may also appear as popup lists when used with popup trig-
gers. See Popup List Resource and Popup Trigger Resource.

Usable A nonusable object is not considered part of an appli-
cation interface, and does not draw. Nonusable objects
can programmatically be set to usable.
Valid values: true (usable), false (nonusable)

Font ID ID of the font used to draw the text.
Valid values: 0 (9-point font)

1 (9-point bold font)
2 (12-point font)

Text Text of the label.

Attributes List ID Developer-defined ID to identify the object.
Valid values: 0 – 9999

Left Window-relative position of left side of object.
Valid values: 0 – 159

Top Window-relative position of top of object.
Valid values: 0 – 159
Developing Palm OS Applications, Part I 79

Palm OS User Interface Resources
List Resource
Comments Errors may occur if the number of visible items is greater than the
actual number of items. An item’s text is not clipped against the list
box’s borders. Set a list box to not usable if it’s linked to a popup
trigger.

Use a list to let users choose between items of data; use a menu to
activate a command. If a list becomes too tall to fit below the trigger,
it is justified up. If it becomes to large for the screen, it scrolls.

Event Flow for List Resource

Width Width of the list.
Valid values: 0 – 160

Usable A nonusable object is not considered part the applica-
tion interface, and does not draw. Nonusable objects
can programmatically be set usable.
Valid values: true (usable), false (nonusable)

Font ID ID of the font used to draw the text.
Valid values: 0 (9-point font)

1 (9-point bold font)
2 (12-point font)

Visible
items

Height of the list box, in items (choices). For example,
if the list has six items but only four fit, specify four.

Items Items in the list. There is an entry in the resource for
each item. The label “1) *****” is the placeholder for
the first entry. Select this label and press Command-K
to create the first item in the list.

User Action System Response

Pen goes down
on a list box.

penDownEvent (store x and y coordinates in EventType).
lstEnterEvent (store list ID and selected item in EventType).

Pen is lifted from
the list box.

lstSelectEvent is triggered (store button’s ID number and
number of selected item in EventType).
penUpEvent (store x and y coordinates in EventType).
80 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Popup List Resource
Popup List Resource
Name tPUL

UI Name Popup list

Overview A popup list links a popup trigger to a list box. The popup list itself
is not visible.

Comments To create a popup list and its trigger, you need to also create a
Popup Trigger Resource (tPUT) and a List Resource (tLST resource).

Note that this popup resource behaves differently from resources on
the Macintosh.

Event Flow See Event Flow for Popup Trigger Resource.

Popup Trigger Resource
Resource tPUT

UI name Popup Trigger

UI structure ControlType

Overview The popup trigger shows the selection of a list. The user can press
the popup trigger to pop up the list and change the selection.

A popup trigger displays a text label and a triangle to the left of the
label that indicates the object is a popup trigger.

When the user selects a popup trigger, a list of items pops up.

Attributes Control ID Developer-defined ID of a popup trigger object.
Valid values: 0 – 9999

List ID Developer-defined id of a list object.
Valid values: 0 – 9999
Developing Palm OS Applications, Part I 81

Palm OS User Interface Resources
Popup Trigger Resource

Comments: See also tPUL and tLST.

Attributes Popup
Trigger ID

Developer-defined ID used to identify the button.
Valid values: 0 - 9999

Left Window-relative position of left side of button.
Valid values: 0 – 159

Top Window-relative position of top of button.
Valid values: 0 – 159

Width Width of the button’s picking area in pixels.
Valid values: 1 – 160

Height Height of the button’s picking area in pixels.
Valid values: 1 –160

Usable A nonusable object is not considered part of the ap-
plication interface, and it does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable)

false (non-usable)

Left
anchor

Controls how the object resizes itself when its text
label is changed.
Valid values: true (left bound fixed)

false (right bound fixed)

Font ID ID of font used to draw text label:
Valid values: 0 (9-point font)—Recommended

1 (9-point bold font)
2 (12-point font)

Label Text displayed in the popup trigger (right of arrow).
82 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Push Button Resource
Event Flow for Popup Trigger Resource

Push Button Resource
Name tPBN

UI Name Push button

UI Structure ControlType

Overview Push buttons allow users to select an option from a group of items.
The choices should have few characters; if they are long, check
boxes are preferable.

User Action System Response

Pen goes down on
popup trigger.

penDownEvent (store x and y coordinates in EventType).
ctlEnterEvent (store popup trigger ID number in EventType).

Pen is lifted from
popup trigger.

ctlSelectEvent (store popup trigger ID number in
EventType). A ctlSelectEvent can be triggered only if a
ctlEnterEvent with the same popup trigger ID number has
just occurred.
winExitEvent (pass control to a popup list object).

Popup list pops
up.

winEnterEvent
penUpEvent (a penDownEvent to pop up the popup list).

Pen goes down on
item in popup list.

penDownEvent occurs.

Pen is lifted from
popup list.

lstSelectEvent (store the popup list ID and the selected item
number in EventType).
winExitEvent causes popup list to disappear; control passes
back to the popup trigger.
winEnterEvent occurs.
popSelectEvent is triggered if an item was selected in the
popup list (store popup trigger ID, the popup list ID, and the item
number selected in EventType).
penUpEvent occurs.
Developing Palm OS Applications, Part I 83

Palm OS User Interface Resources
Push Button Resource
Push buttons display a text label surrounded by a 1-pixel-wide rect-
angular frame. They appear in a horizontal or vertical row with no
pixels between the buttons. The buttons share a common border so
there appears to be a one pixel line between two controls. The cur-
rent selection is highlighted.

.

The List By dialog of the Address Book and the Details dialog of the
To Do List contain examples of rows of push buttons.

Attributes Push but-
ton ID

Developer-defined ID used to identify the button.
Valid values: 0 – 9999

Left Window-relative position of left side of button.
Valid values: 0 – 159

Top Window-relative position of top of button.
Valid values: 0 – 159

Width Width of the button in pixels. Should be size of label
plus two pixels at each end.
Valid values: 1 – 160

Height Height of the button in pixels. Should be font size
plus two pixels.
Valid values: 1 – 160

Usable A nonusable object is not considered part of the appli-
cation interface, and it does not draw. Nonusable ob-
jects can programmatically be set to usable. Always
mark all buttons in a group usable or nonusable to-
gether.
Valid values: true (usable)

false (nonusable)
84 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Push Button Resource
Comment To create a row of push buttons, create a number of individual push
button resources with the same height and align them by specifying
the same top position for each button.

Event Flow for Push Button Resource

Left
anchor

Controls how the object resizes itself when its text
label is changed.
Valid values: true (left bound fixed)

false (right bound fixed)

Group Group ID of a push button that is part of an exclusive
group. Only one push button in an exclusive group
may be depressed at a time. Ungrouped (non-exclu-
sive) push buttons have zero as a group ID.
Valid values: 0 – 65535

Font ID ID of the font used to draw the text label of the push
button.
Valid values: 0 (9-point font) —recommended

1 (9-point bold font)
2 (12-point font)

Label Text displayed inside the push button.

User Action System Response

Pen goes down on
push button.

penDownEvent (store x and y coordinates in EventType).
ctlEnterEvent (store push button ID number in EventType).
Push button is highlighted.
If push button is grouped and highlighted, no change.
If push button is ungrouped and highlighted, it becomes
unhighlighted.

Pen is lifted from
push button.

ctlSelectEvent (store button ID number and its current state;
on = 1; off = 0).
ctSelectEvent can be triggered only if a ctlEnterEvent with
the same push button ID number just occurred.
penUpEvent (store the x and y coordinates).
Developing Palm OS Applications, Part I 85

Palm OS User Interface Resources
Repeating Button Resource
Repeating Button Resource
Name tREP

UI Name Repeat control

Overview The repeat control object is identical to the button object in its ap-
pearance. The repeat control object is used for buttons that need to
be triggered continuously by holding the pen down on them.

Attributes Button ID Developer-defined ID used to identify the button.
Valid values: 0 – 9999

Left Window-relative position of left side of button.
Valid values: 0 – 159

Top Window-relative position of top of button.
Valid values: 0 – 159

Width Width of the button in pixels.
Valid values: 1 – 160

Height Height of the button in pixels.
Valid values: 1 – 160

Usable A nonusable object is not considered part of the ap-
plication interface, and it does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable)

false (nonusable)

Left an-
chor

Controls how the object resizes itself when its text
label is changed.
Valid values: true (left bound fixed)

false (right bound fixed)

Frame If set to TRUE, a rectangular frame with rounded cor-
ners is drawn around the button.
Valid values: true (framed)

false (not framed)
86 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Repeating Button Resource
Comments The attributes match those of the Button Resource (tBTN); the be-
havior differs.

You can also use repeating buttons to create increment arrows. See
Button Resource for more information.

Event Flow for Repeating Button Resource
A repeating button is similar in appearance to a button but it gener-
ates different events. A button generates a ctlEnterEvent when it
is pressed and a ctlSelect event when it is released. A repeating
button generates a ctlEnterEvent when it is pressed and a
ctlRepeatEvent as long as it remains pressed. Here’s a more de-
tailed discussion of the events:

Nonbold
frame

Determines the width of the rectangular frame drawn
around the object.
Valid values: true (1-pixel-wide frame)

false (2-pixel-wide frame)

Font ID ID of the font used to draw the text label. Use a single
character from one of the Symbol fonts to create in-
crement arrows.
Valid values: 0 (9-point font)

1 (9-point bold font)
2 (12-point font)

Label Text displayed inside the button.

User Action System Response

Pen goes down on a
repeating button.

penDownEvent (store x and y coordinates in EventType).
ctlEnterEvent (store button’s ID number in EventType).

Pen remains on
repeating button.

For every given amount of time the pen is down on the repeat
control object, a ctlRepeatEvent is generated.

Pen is dragged off
the repeating button.

No additional ctlRepeateEvent occurs.
Developing Palm OS Applications, Part I 87

Palm OS User Interface Resources
Selector Trigger Resource
Selector Trigger Resource
Name tSLT

UI Name Selector Trigger

UI Structure ControlType

Overview Users can tap a selector trigger to pop up a dialog that lets them se-
lect an item. The selected item becomes the label of the selector trig-
ger. For example, a selector trigger for time pops up a time selector.
The selected time is entered into the selector trigger.

A selector trigger displays a text label surrounded by a gray rectan-
gular frame, as follows:

Pen is dragged back
onto the button.

ctlRepeatEvent begins to occur again.

Pen is lifted. penUpEvent (store x and y coordinates in EventType)

User Action System Response

Attributes Selector
Trigger ID

Developer-defined ID used to identify the object.
Valid values: 0 – 9999

Left Window-relative position of the left side of the object.
Valid values: 0 – 159

Top Window-relative position of top of object.
Valid values: 0 – 159

Width Width of the object in pixels.
Valid values: 1– 160
88 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Selector Trigger Resource
Event Flow for Selector Trigger Resource

Height Height of the object in pixels. Height extends two
pixels above and one pixel below the 9-point plain
font. Height is one pixel above command buttons to
accommodate the gray frame.
Valid values: 1– 160

Usable A nonusable object is not considered part of the ap-
plication interface, and it does not draw. Nonusable
objects can programmatically be set to usable.
Valid values: true (usable)

false (nonusable)

Left
anchor

Controls how the object resizes itself when its text
label is changed. If TRUE, the left bound of the object
is fixed, if FALSE the right bound is fixed.
Valid values: true (left bound fixed)

false (right bound fixed.)

Font ID ID of the font used to draw the text label.
Valid values: 0 (9-point font)—Recommended

1 (9-point bold font)
2 (12-point font)

User Action System Response

Pen goes down on
a selector trigger.

penDownEvent (store x and y coordinates in EventType).
ctlEnterEvent (store selector trigger ID number in Event-
Type).

Pen is lifted from
the selector trigger.

ctlSelectEvent (store selector trigger ID number in
EventType). A ctlSelectEvent can only be triggered if a
ctlEnterEvent with the same selector trigger ID number has
just occurred.
frmOpenEvent followed by a winExitEvent, control is passed
to a form object. When control is passed back to the selector trig-
ger, a winEnterEvent and a penUpEvent occur.
Developing Palm OS Applications, Part I 89

Palm OS User Interface Resources
String Resource
String Resource
Name tSTR

UI Name String

Overview Stores data strings used by the program. String resources may be en-
tered as text strings or as a series of hexadecimal characters.

Comments The string resource uses either the string or data. If both are entered,
they are concatenated.

Table Resource
Name tTBL

UI Name Table

Overview The table object allows the developer to organize a collection of ob-
jects on the display. For example, a table may contain a column of la-
bels that correspond to a column of fields.

Attributes String The text string to be stored (in decimal ASCII).

Data The text string to be stored (in hexadecimal ASCII).

Attributes Table ID Developer defined ID used to identify the object.
Valid values: 0 – 9999

Left Window-relative position of the left side of the object.
Valid values: 0 – 159

Top Window-relative position of top of object.
Valid values: 0 – 159

Width Width of the object in pixels.
Valid values: 1– 160
90 Developing Palm OS Applications, Part I

Palm OS User Interface Resources
Title Resource
Comments Since tables are scrollable, they may be larger than the display.

Title Resource
Name tTTL

UI Name Title

Overview This resource lets you place a title at the top of a form (dialog box or
view). If the form is modal, the title is drawn centered at the top of
the form, if nonmodal the title is drawn left-aligned. A title is drawn
within the bounds of the form, not above the form’s bounds.

The figure below shows a form with a title.

Attributes Title Title string displayed.

Comments The title must be one line; it uses about 13 pixels of the top of the
form.

Height Height of the object in pixels.
Valid values: 1–160

Rows Number of rows in the table.

Columns Number of columns in the table.

Column
width

Width of the nth column.
Developing Palm OS Applications, Part I 91

Palm OS User Interface Resources
Version Number String
Version Number String
Name tver

Overview Specifies the version number display by the “About Dialog Box.”

Attributes Version string. This consists of a major version number and a minor
version number separated by a decimal point.

Supported Fonts
The following fonts are supported:

FontID Name

0 stdFont

1 boldFont

2 largeFont

3 symbolFont

4 checkboxFont
92 Developing Palm OS Applications, Part I

4
Palm OS Events

appStopEvent
When the system wants to launch a different application than the
one currently running, the event manager sends this event to re-
quest the current application to terminate. In response, an applica-
tion has to exit its event loop, close any open files and forms, and
exit. If an application does not respond to this event by exiting, the
system can’t start the other application.

ctlEnterEvent
The control routine CtlHandleEvent sends this event when it re-
ceives a penDownEvent within the bounds of a control. The follow-
ing data is passed with the event:

ctlExitEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of a control, a ctlSelectEvent is added to the event
queue; if not, a cltExitEvent is added to the event queue.

The following data is passed with the event:

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).
Developing Palm OS Applications, Part I 93

Palm OS Events
ctlRepeatEvent
ctlRepeatEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent in a Repeat control
(tREP), it sends a ctlRepeatEvent. When CtlHandleEvent re-
ceives a ctlRepeatEvent in a repeat control, it sends another
ctlRepeatEvent if the pen remains down within the bounds of
the control for 1/2 second beyond the last ctlRepeatEvent.

The following data is passed with the event:

ctlSelectEvent
The control routine CtlHandleEvent sends this event. When
CtlHandleEvent receives a ctlEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of the
same control it went down in, a cltSelectEvent is added to the
event queue; if not, a ctlExitEvent is added to the event queue.

The following data is passed with the event:

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

time System ticks count when the event is added to
the queue.

controlID Developer-defined ID of the control.

pControl Pointer to a control structure (ControlType).

on TRUE when the control is depressed; otherwise
FALSE.
94 Developing Palm OS Applications, Part I

Palm OS Events
daySelectEvent
daySelectEvent
The DayHandleEvent routine, which handles events in the day se-
lector object, handles this event. When the day selector object dis-
plays a calendar month, the user can select a day by tapping on it.

This event is sent when the pen touches and is lifted from a day
number.

The following data is passed with the event:

fldChangedEvent
The field routine FldHandleEvent sends this event when the text
of a field has been scrolled as a result of drag-selecting. When
FldHandleEvent receives a fldEnterEvent, it positions the in-
sertion point and tracks the pen until it’s lifted. Text is selected
(highlighted) appropriately as the pen is dragged.

The following data is passed with the event:

pSelector Pointer to a day selector structure
(DaySelectorType).

selection Not used.

useThisDate Set to TRUE to automatically use the selected
date.

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).
Developing Palm OS Applications, Part I 95

Palm OS Events
fldEnterEvent
fldEnterEvent
The field routine FldHandleEvent sends this event when the field
receives a penDownEvent within the bounds of a field. The follow-
ing data is passed with the event:

fldHeightChangedEvent
The field routine FldHandleEvent sends this event. The field API
supports a feature that allows a field to dynamically resize its visible
height as text is added or removed from it. Functions in the field API
send a fldHeightChangedEvent to change the height of a field.
Applications don’t usually send or handle this event.

The following data is passed with the event:

frmCloseEvent
The form routines FrmGotoForm and FrmCloseAllForms send
this event. FrmGotoForm sends a frmCloseEvent to the currently
active form; FrmCloseAllForms sends a frmCloseEvent to all
forms an application has loaded into memory. If an application does
not intercept this event, the routine FrmHandleEvent erases the
specified form and releases any memory allocated for it.

The following data is passed with the event:

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

fieldID Developer-defined ID of the field.

pField Pointer to a field structure (FieldType).

newHeight New visible height of the field, in number of lines.

currentPos Current position of the insertion point.

formID Developer-defined ID of the form.
96 Developing Palm OS Applications, Part I

Palm OS Events
frmLoadEvent
frmLoadEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. It is a request that the application load a form into memory.

The application is responsible for handling this event.

The following data is passed with the event:

frmOpenEvent
The form routines FrmGotoForm and FrmPopupForm send this
event. It is a request that the application initialize and draw a form.

The application is responsible for handling this event.

The following data is passed with the event:

frmSaveEvent
The form routine FrmSaveAllForms sends this event. It is a request
that the application save any data stored in a form.

The application is responsible for handling this event.

No data is passed with this event.

formID Developer-defined ID of the form.

formID Developer-defined ID of the form.
Developing Palm OS Applications, Part I 97

Palm OS Events
frmUpdateEvent
frmUpdateEvent
The form routine FrmUpdateForm, or in some cases the routine
FrmEraseForm, sends this event when it needs to redraw the re-
gion obscured by the form being erased. Generally, the region ob-
scured by a form is saved and restored by the form routines without
application intervention. However, in cases where the system is run-
ning low on memory, the form’s routine may not save obscured re-
gions itself and therefore must ask applications to redraw the
regions themselves.

An application can also use this event to update a form, usually
when changes made to one form need to be reflected in another
form.

The following data is passed with the event:

formID Developer-defined ID of the form.

updateCode The reason for the update request.
FrmEraseForm sets this code to zero. Applica-
tion developers can define their own
updateCode. The updateCode is passed as a
parameter to FrmUpdateForm.
98 Developing Palm OS Applications, Part I

Palm OS Events
keyDownEvent
keyDownEvent
This event is sent by the system when the user enters a Graffiti char-
acter, presses one of the buttons below the display, or taps one of the
icons in the icon area (for example, the Find icon).

The following data is passed with the event:

chr ASCII code of character, or zero if the key is a
virtual key code (for example, the Find key).

keyCode Virtual key code; for example, the Find key.

modifiers One of the following:

shiftKeyMask True if Graffiti is in case-shift
mode.

capsLockMask True if Graffiti is in cap-shift mode.

numLockMask True if Graffiti is in numeric-shift
mode.

commandKeyMask True if the Graffiti glyph was the
menu command glyph.

optionKeyMask Not implemented. Reserved.

controlKeyMask Not implemented. Reserved.

autoRepeatKeyMask True if generated due to auto-
repeat.

doubleTapKeyMask Not implemented. Reserved.

poweredOnKeyMask True if the key press caused the
system to be powered on.
Developing Palm OS Applications, Part I 99

Palm OS Events
lstEnterEvent
lstEnterEvent
The List routine LstHandleEvent sends this event when it receives
a penDownEvent within the bounds of a list object.

The following data is passed with the event:

lstExitEvent
The List routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

The following data is passed with the event:

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

selection Item number (zero-based) of the new selection.

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).
100 Developing Palm OS Applications, Part I

Palm OS Events
lstSelectEvent
lstSelectEvent
The List routine LstHandleEvent sends this event. When
LstHandleEvent receives a lstEnterEvent, it tracks the pen
until the pen is lifted. If the pen is lifted within the bounds of a list, a
lstSelectEvent is added to the event queue; if not, a
lstExitEvent is added to the event queue.

The following data is passed with the event:

menuEvent
The menu routine MenuHandleEvent sends this event:

• when the user selects an item from a pull-down menu or
• when the user writes the menu the Graffiti Command short-

cut followed by an available command, for example, Com-
mand-C for copy

The following data is passed with the event:

listID Developer-defined ID of the list.

pList Pointer to a list structure (ListType).

selection Item number (zero-based) of the list selection.

itemID Item ID of the selected menu command, which is the
Menu ID assigned to the MENU resource in ResEdit,
plus the position of the command in the pull-down
menu. For example, for an Edit menu with the
Menu ID 300 that contains the commands Undo,
Cut, Copy, and Paste, the Item ID of the Copy com-
mand is 302.
Developing Palm OS Applications, Part I 101

Palm OS Events
nilEvent
nilEvent
The event manager sends this event when there are no events in the
event queue. This happens only if the routine EvtGetEvent is
passed a time out value (a value other then evtWaitForever, -1). If
EvtGetEvent is unable to return an event in the specified time, it
returns a nilEvent. A nilEvent is useful for animation, polling,
and similar situations.

penDownEvent
The event manager sends this event when the pen first touches the
digitizer.

The following data is passed with the event:

penMoveEvent
The event manager sends this event when the pen is moved on the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penMoveEvent is
generated.

The following data is passed with the event:

penDown Always true.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

penDown Always true.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).
102 Developing Palm OS Applications, Part I

Palm OS Events
penUpEvent
penUpEvent
The event manager sends this event when the pen is lifted from the
digitizer. Note that several kinds of UI objects, such as controls and
lists, track the movement directly, and no penUpEvent is generated.

The following data is passed with the event:

popSelectEvent
The form routine FrmHandleEvent sends this event when the user
selects an item in a popup list.

The following data is passed with the event:

penDown Always false.

screenX Window-relative position of the pen in pixels (num-
ber of pixels from the left bound of the window).

screenY Window-relative position of the pen in pixels (num-
ber of pixels from the top left of the window).

start Display-relative start point of the stroke.

end Display-relative end point of the stroke.

controlID Developer-defined ID of the resource.

pControl Pointer to the control structure (ControlType)
of the popup trigger object.

listID Developer-defined ID of the popup list object.

listP Pointer to the list structure (ListType) of the
popup list object.

selection Item number (zero-based) of the new list
selection.

priorSelection Item number (zero-based) of the prior list
selection.
Developing Palm OS Applications, Part I 103

Palm OS Events
tblEnterEvent
tblEnterEvent
The table routine TblHandleEvent sends this event when it re-
ceives a penDownEvent within the bounds of an active item in a
table object.

The following data is passed with the event:

tblExitEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until it is lifted from the display. If the pen is lifted within the
bounds of the same item it went down in, a tblSelectEvent is
added to the event queue; if not, a tblExitEvent is added to the
event queue.

The following data is passed with the event:

tableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.

TableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.
104 Developing Palm OS Applications, Part I

Palm OS Events
tblSelectEvent
tblSelectEvent
The table routine TblHandleEvent sends this event. When
TblHandleEvent receives a tblEnterEvent, it tracks the pen
until the pen is lifted from the display. If the pen is lifted within the
bounds of the same item it went down in, a tblSelectEvent is
added to the event queue; if not, a tblExitEvent is added to the
event queue.

The following data is passed with the event:

TableID Developer-defined ID of the table.

pTable Pointer to a table structure (TableType).

row Row of the item.

column Column of the item.
Developing Palm OS Applications, Part I 105

Palm OS Events
winEnterEvent
winEnterEvent
The event manager sends this event when a window becomes the
active window. This can happen in two ways: a call to
WinSetActiveWindow is issued (FrmSetActiveForm calls this
routine), or the user taps within the bounds of a window that is vis-
ible, but not active.

All forms are windows but not all windows are forms, for example
the menu bar is a window but not a form.

The following data is passed with the event:

winExitEvent
This event is sent by the event manager when a window is deacti-
vated. A window is deactivated when another window becomes the
active window (see winEnterEvent).

The following data is passed with the event:

enterWindow Pointer to the window we are entering. If the
window is a form, this is a pointer to a
FormType structure; if not, it is a pointer to a
WindowType structure.

exitWindow Pointer to the window we are exiting, if there is
currently an active window, or zero if there is no
active window. If the window is a form, this is a
pointer to a FormType structure; if not, it is a
pointer to a WindowType structure.

enterWindow Pointer to the window we are entering. If the
window is a form then this is a pointer to a
FormType structure; if not, it is a pointer to a
WindowType structure.

exitWindow Pointer to the window we are exiting. If the win-
dow is a form then this is a pointer to a
FormType structure; if not, it is a pointer to a
WindowType structure.
106 Developing Palm OS Applications, Part I

5
Palm OS UI Objects
A Palm OS UI object is a C structure that is linked with one or more
items on the screen. By changing field values of the C structure, an
application can manipulate its user interface. Note that Palm UI ob-
jects are just structures, not the more elaborate objects found in
some systems. This is useful because a C structure is more compact
than other objects could be.

This chapter helps you develop your application’s user interface by
providing information about each object’s structure, associated
events, associated UI resource files, and all API calls available for
manipulating the structure. It discusses these topics:

• Control Objects
• Field Objects
• Form Objects
• List Object
• Menu Objects
• Date and Time UI Objects
• Insertion Point Object
• Table Objects
• Window Objects

Control Objects
This section provides the following information about control
objects:

• Control Object Overview

• Control Object Events
• Structure of a Control
• Associated Resources
• Control Functions
Developing Palm OS Applications, Part I 107

Palm OS UI Objects
Control Objects
Control Object Overview
Control objects are objects you can add to your forms to allow for
user interaction. There are six types of control objects:

• Buttons display a text label in a box. The default style for a
button is a text string centered within a rounded rectangle.
Touching a button with the pen highlights the button until
the pen is released or dragged outside the bounds of the but-
ton. Buttons have rounded corners unless a rectangular
frame is specified. A button without a frame inverts a
rounded rectangular region when pressed.

• A popup trigger displays a text label followed by a graphic
element (always on the right) that signifies the control ini-
tiates a popup list. If the text label changes, the width of the
control expands or contracts to the width of the new label
plus the graphic element.

• A selector trigger displays a text label surrounded by a gray
rectangular frame. If the text label changes, the width of the
control expands or contracts to the width of the new label.

• A repeat control looks like a button. In contrast to buttons,
however, users can repeatedly select repeat controls if they
don’t lift the pen when the control has been selected. The ob-
ject is selected repeatedly until the pen is lifted.

• Push buttons look like buttons but the frame always has
square corners. Touching a push button with the pen inverts
the bounds. If the pen is released within the bounds, the but-
ton remains inverted.

• Check boxes display a setting, either on (checked) or off (un-
checked). Touching a check box with the pen toggles the set-
ting. The check box appears as a square, which contains a
check mark if the check box’s setting is on. A check box can
have a text label attached to it; selecting the label also toggles
the check box.

Push buttons and check boxes can be arranged into exclusive
groups; one and only one control in a group can be on at a time.
108 Developing Palm OS Applications, Part I

Palm OS UI Objects
Control Objects
Control Object Events
Control objects generate four types of events: ctlEnterEvent,
ctlExitEvent, ctlRepeatEvent, and ctlSelectEvent. All
these events are generated by the control event handler
(CtlHandleEvent).

When CtlHandleEvent receives a penDownEvent with the pen
position in the bounds of the control object, it adds a
ctlEnterEvent to the event queue.

When CtlHandleEvent receives a ctlEnterEvent, it inverts the
control and tracks the pen until the pen comes up or until the pen is
dragged outside the bounds of the control.

• If the pen comes up in the bounds of the control, a
ctlSelectEvent is added to the event queue.

• If the pen is dragged outside the bounds of the control, the
control reverts to its original visual state and a
ctlExitEvent is added to the event queue.

When CtlHandleEvent receives a ctlEnterEvent, for a repeat
control, it sends a ctlRepeatEvent. When a repeat control receives
a ctlRepeatEvent, it tracks the pen for a period of time and then
sends another ctlRepeatEvent if the pen is still within the bounds
of the control.

When CtlHandleEvent receives a ctlExitEvent, it tracks the
pen until the pen comes up or is dragged inside the bounds of the
control. If the pen is dragged into the control, a ctlEnterEvent is
added to the event queue. If the pen is released outside the control,
no event is posted.

All events posted by the control handler contain the ID of the con-
trol and a pointer to the control data structure.
Developing Palm OS Applications, Part I 109

Palm OS UI Objects
Control Objects
Structure of a Control

typedef struct {
word id;
CharPtr text;
RectangleType bounds;
ControlAttrType attr;
ControlStyleType style;
FontID font;
byte group;
} ControlType;

typedef ControlType* ControlPtr;

typedef struct {
Byte usable :1;
Byte enabled :1;
Byte visible :1;
Byte on :1;
Byte leftAnchor :1;
Byte frame :3;
} ControlAttrType;

enum controlStyles {buttonCtl, pushButtonCtl,
checkboxCtl, popupTriggerCtl,

 selectorTriggerClt, repeatingButtonCtl};
typedef enum controlStyles ControlStyleType;

enum buttonFrames {noButtonFrame,
standardButtonFrame, boldButtonFrame,
rectangleButtonFrame};

typedef enum buttonFrames ButtonFrameType;
110 Developing Palm OS Applications, Part I

Palm OS UI Objects
Control Objects
Fields of a ControlType Structure

The id field holds the symbolic ID of the control that was specified
by the application developer. By convention, these should match the
Macintosh resource IDs, but this is not mandatory.

The bounds field contains the bounds of the control, in window-
relative coordinates. The control’s text label is clipped to the con-
trol’s bounds. The control’s frame is drawn around (outside) the
bounds of the control.

The text field is a pointer to the control’s label; if it’s NULL the
control has no label. Only buttons, push buttons, and text boxes
have text labels.

The attr field contains the control’s attributes. The attr field is a
bit field that contains the following members: usable, enabled,
visible, on, leftAnchor, and frame.

• A control that does not have the usable attribute set is not
considered to be part of the interface of the current applica-
tion, and it does not appear on screen.

• A control that does not have the enable attribute set appears
“grayed out,” and does not respond to the pen. This is
strongly discouraged because it’s a poor use of screen real
estate.

• The visible attribute is set and cleared internally when the
control is drawn and erased.

• The leftAnchor attribute is used by controls that expand
and shrink their width when their label is changed. If the at-
tribute is set, the left bound of the control is fixed.

• The frame field specifies the type of frame drawn around the
button controls. Only button controls use this attribute; for all
other types of controls the ControlStyle determines the
frame.

The style field holds the control’s style: button, push button, check
box, popup trigger, popup selector, or repeating button. (See the
ControlStyleType enum listed under Structure of a Control.)

The font field specifies the font to use to draw the control’s label.

The group field contains the group ID of a push button or a check
box that is part of an exclusive group. The control routines do not
automatically turn one control off when another is hit. It is up to the
Developing Palm OS Applications, Part I 111

Palm OS UI Objects
Control Objects
application or a higher-level object, like a dialog box, to manage
this.

Associated Resources
Different resources are associated with different controls as follows:

• Button—Button Resource (tBTN)
• Popup trigger— Popup Trigger Resource (tPUT)
• Selector trigger—Selector Trigger Resource (tSLT)
• Repeat control—Repeating Button Resource (tREP)
• Push button—Push Button Resource (tPBN)
• Check box—Check Box Resource (tCBX)

Control Functions
• CtlDrawControl

• CtlEraseControl

• CtlGetLabel

• CtlGetValue

• CtlHandleEvent

• CtlHideControl

• CtlHitControl

• CtlEnabled

• CtlSetEnabled

• CtlSetLabel

• CtlSetUsable

• CtlSetValue

• CtlShowControl
112 Developing Palm OS Applications, Part I

Palm OS UI Objects
Field Objects
Field Objects
This section provides the following information about field objects:

• Field Object Overview
• Field Object Events
• Structure of a Field
• Associated Resources
• Field Functions

Field Object Overview
A field object displays one or more lines of editable text, supporting
these features:
• Proportional fonts (only one font per field)
• Drag-selection
• Scrolling for multiline fields
• Cut, copy, and paste
• Left and right text justification
• Tab stops
• Editable/noneditable attribute
• Expandable field height (the height of the field expands as

more text is entered)
• Underlined text (each line of the field is underlined.)
• Maximum character limit (the field stops accepting charac-

ters when the maximum is reached)
• Special keys (Graffiti strokes) to support cut, copy, and paste
• Insertion point positioning with pen (the insertion point is

positioned by touching the pen between characters)

The field object does not support overstrike input mode; scroll bars;
horizontal scrolling for single line fields; word selection; character
filters (for example, only numeric characters accepted); numeric for-
matting; or special keys for page up, page down, left word, right
word, home, end, left margin, right margin, and backspace.
Developing Palm OS Applications, Part I 113

Palm OS UI Objects
Field Objects
Field Object Events
Events in field objects are handled by FldHandleEvent.
FldHandleEvent handles events of type penDownEvent,
fldEnterEvent, and keyDownEvent.

When FldHandleEvent receives a penDownEvent with the pen
position within the bounds of the field, it adds a fldEnterEvent to
the event queue.

When FldHandleEvent receives a fldEnterEvent, it sets the in-
sertion point position to the position of the pen and tracks the pen
until it is released. Drag-selection and drag-scrolling are supported.

A keyDownEvent with the following special characters is handled
by FldHandleEvent:

• up arrow—Move insertion point up a line.
• down arrow—Move insertion point down a line; the inser-

tion point doesn’t move beyond the last line that contains
text.

• left arrow—Move insertion point one character position to
the left; when the left margin is reached move to the end of
the previous line.

• right arrow—Move insertion point one character position to
the right; when the right margin is reached move to the start
of the next line.

• cut key—Cut the current selection to the text clipboard.
• copy key—Copy the current selection to the text clipboard.
• paste key—Insert clipboard text into the field at insertion

point.
114 Developing Palm OS Applications, Part I

Palm OS UI Objects
Field Objects
Structure of a Field

typedef struct {
Word id;
RectangleType rect;
FieldAttrType attr;
CharPtr text;
VoidHand textHandle;
LineInfoPtr lines;
Word textLen;
Word textBlockSize;
Word maxChars;
Word selFirstPos;
Word selLastPos;
Word insPtXPos;
Word insPtYPos;
FontID fontID;
} FieldType;

typedef FieldType* FieldPtr;
typedef struct {
Word usable :1;
Word visible :1;
Word editable :1;
Word singleLine :1;
Word hasFocus :1;
Word dynamicSize :1;
Word insPtVisible :1;
Word dirty :1;
Word underlined :2;
Word justification :2;
} FieldAttrType;

typedef struct {
Word start;
Word length;
} LineInfoType;
Developing Palm OS Applications, Part I 115

Palm OS UI Objects
Field Objects
typedef LineInfoType* LineInfoPtr;

Fields of a Field Structure

The id field holds an ID value specified by the application devel-
oper. This ID value is included as part of the event data of
fldEnterEvent.

The rect field contains the position and size of the field object.

The attr field contains the field object’s attributes. The attr field is
a bits field that contains the following members: usable, visible,
editable, singleLine, hasFocus, dynamicSize,
insPtVisible, dirty, underlined, and justification.

• A field object that does not have the usable attribute set is
not considered part of the current interface of the application,
and it doesn’t appear on screen.

• The visible attribute is set or cleared internally when the
field object is drawn or erased.

• A field object that does not have its editable attribute set
does not accept Graffiti input or edit commands and the in-
sertion point cannot be positioned with the pen.

• If the singleLine attribute is set, the height of the single-
Line field doesn’t expand to accommodate more text.

• The hasFocus attribute is set internally when the field has
the current focus. The blinking insertion point appears in the
field that has the current focus.

• If the dynamicSize attribute is set, the height of the field ex-
pands as characters are entered into the field.

• If the insPtVisible attribute is set, the insertion point is
scrolled into view. This attribute is set and cleared internally.

• If a field has its dirty attribute set, the user has modified the
field.

• If a field has its underlined attribute set each line of the
field, including blank lines, is underlined.

• The justification attribute specifies the text alignment
(left or right justification only; center justification is not sup-
ported).
116 Developing Palm OS Applications, Part I

Palm OS UI Objects
Field Objects
The text field holds a pointer to the null-terminated string that is
displayed by the field object.

The textHandle field contains the handle to the stored text.

The lines field holds a pointer to an array of LineInfoType struc-
tures. There is one entry in this array for each visible line of the text.
The LineInfoType structure contains the character position, in the
field’s text string, of the first character displayed by a line and the
number of characters displayed.

The textLen field holds the current number of characters in the
string displayed by the field object, the null-terminator is excluded.

The textBlockSize field holds the allocated size of the memory
block that holds the field object’s text string.

The maxChars field specifies the maximum number of characters
the field object accepts.

The selFirstPos field is the starting character position of the cur-
rent selection.

The selLastPos field is the ending character position of the cur-
rent selection. When selFirstPos equals selLastPos, there is
no selection.

The insPtXPos contains the column position of the insertion point.

The insPtYPos contains the display line where the insertion point
is positioned.

The first display line is zero.

Associated Resources
The Field Resource (tFLD) represents a field on screen.
Developing Palm OS Applications, Part I 117

Palm OS UI Objects
Field Objects
Field Functions
• FldCalcFieldHeight

• FldCompactText

• FldCopy

• FldCut

• FldDelete

• FldDirty

• FldDrawField

• FldEraseField

• FldFreeMemory

• FldGetAttributes

• FldGetBounds

• FldGetFont

• FldGetInsPtPosition

• FldGetMaxChars

• FldGetScrollPosition

• FldGetSelection

• FldGetTextAllocatedSize

• FldGetTextHandle

• FldGetTextHeight

• FldGetTextLength

• FldGetTextPtr

• FldGetVisibleLines

• FldGrabFocus

• FldHandleEvent

• FldInsert

• FldMakeFullyVisible

• FldPaste

• FldRecalculateField

• FldReleaseFocus

• FldScrollable

• FldScrollField

• FldSendChangeNotification
118 Developing Palm OS Applications, Part I

Palm OS UI Objects
Form Objects
• FldSendHeightChangeNotification

• FldSetAttributes

• FldSetBounds

• FldSetDirty

• FldSetFont

• FldSetFont

• FldSetInsPtPosition

• FldSetMaxChars

• FldSetScrollPosition

• FldSetSelection

• FldSetText

• FldSetTextAllocatedSize

• FldSetTextHandle

• FldSetTextPtr

• FldSetUsable

• FldUndo

• FldWordWrap

Form Objects
This section provides the following information about form objects:

• Form Object Overview
• Structure of a Form
• Associated Resources
• Form Functions

Form Object Overview
A form object is used as a container for all other UI objects. A form is
a window and everything contained within it. Events in form ob-
jects are handled by the FrmHandleEvent routine.

When FldHandleEvent receives a penDownEvent with the pen
position within the bounds of the form object, it checks the list of ob-
jects contained by the form to determine if the pen is within the
bounds of one of the objects. If it is, the appropriate handler is called
Developing Palm OS Applications, Part I 119

Palm OS UI Objects
Form Objects
to handle the event, for example, if the pen is in a control,
CtlHandleEvent is called.

When FrmHandleEvent receives a keyDownEvent, it passes the
event to the handler for the object that has the focus. If no object has
the focus, the event is ignored.

When FldHandleEvent receives a ctlEnterEvent, it checks if
the control is in an exclusive control group. If it is, it deselects the
currently selected control of the group and passes the event to a
pointer to the object the event occured in to CtlHandleEvent. The
object pointer is obtained from the event data.

When FldHandleEvent receives a ctlRepeatEvent, it passes the
event and a pointer to the object the event occured in to the appro-
priate handler. The object pointer is obtained from the event data.

When FldHandleEvent receives a ctlSelectEvent, it checks if
the control is a popupTriggerCtl. If it is, the list associate with the
popup trigger is displayed until the user makes a selection or
touches the pen outside the bounds of the list. If a selection is made,
a popSelectEvent is added to the event queue.

When FldHandleEvent receives a popSelectEvent, it sets the
label of the popup trigger to the current selection of the popup list.

When FldHandleEvent receives a lstEnterEvent or
tblEnterEvent, it passes the event and a pointer to the object the
event occurred in to the appropriate handler. The object pointer is
obtained from the event data.

When FldHandleEvent receives a fldEnterEvent or
fldHeightChangedEvent, it checks if a field object or a table ob-
ject has the focus and passes the event to the appropriate handler.
The table object is also a container object, which may contain a field
object. If TblHandleEvent receives a field event, it passes the event
to the field object contained within it.

When FldHandleEvent receives a frmCloseEvent, it erases the
form and releases any memory allocated for it.

When FldHandleEvent receives a frmUpdateEvent, it redraws
the form.

When FldHandleEvent receives a menuEvent, it checks if the
menu command is one of the system edit menu commands. The sys-
120 Developing Palm OS Applications, Part I

Palm OS UI Objects
Form Objects
tem provides a standard edit menu which contains the commands
Undo, Cut, Copy, Paste, Select All, and Keyboard.
FldHandleEvent responds to these commands.

Structure of a Form

typedef struct {
WindowType window;
Word formId;
FormAttrType attr;
WinHandle bitsBehindForm;
FrmEventHandlerPtr handler;
Word focus;
Word defaultButton;
Word helpRscId;
Word menuRscId;
Word numObjects;
FormObjListType* objects;
} FormType;

typedef FormType * FormPtr;

typedef struct {
Word usable :1;
Word enabled :1;
Word visible :1;
Word dirty :1;
Word saveBehind :1;
Word graffitiShift :1;
Word reserved :11;
} FormAttrType;

typedef struct {
FormObjectKind objectType;
FormObjectType object;
} FormObjListType;
Developing Palm OS Applications, Part I 121

Palm OS UI Objects
Form Objects
typedef union {
void * ptr;
FieldType* field;
ControlType* control;
ListType* list;
TableType* table;
FormBitmapType* bitmap;
FormLabelType * label;
FormTitleType* title;
FormPopupType* popup;
FormGraffitiStateType* grfState;
FormGadgetType* gadget;
} FormObjectType;

enum formObjects {
frmFieldObj,
frmControlObj,
frmListObj,
frmTableObj,
frmBitmapObj,
frmLineObj,
frmFrameObj,
frmRectangleObj,
frmLabelObj,
frmTitleObj,
frmPopupObj,
frmGraffitiStateObj,
FrmGadgetObj};

typedef enum formObjects FormObjectKind;

typedef struct {
Word usable :1; // Set if part of ui
} FormObjAttrType;
122 Developing Palm OS Applications, Part I

Palm OS UI Objects
Form Objects
typedef struct {
FormObjAttrType attr;
PointType pos;
Word rscID;
} FormBitmapType;

typedef struct {
FormObjAttrType attr;
PointType point1;
PointType point2;
} FormLineType;

typedef struct {
Word id;
FormObjAttrType attr;
RectangleType rect;
Word frameType;
} FormFrameType;

typedef struct {
FormObjAttrType attr;
RectangleType rect;
} FormRectangleType;

typedef struct {
Word id;
PointType pos;
FormObjAttrType attr;
FontID fontID;
char * text;
} FormLabelType;

typedef struct {
RectangleType rect;
char * text;
} FormTitleType;
Developing Palm OS Applications, Part I 123

Palm OS UI Objects
Form Objects
typedef struct {
unsigned short controlID;
unsigned short listID;
} FormPopupType;

typedef struct{
PointerType pos;
}FrmGraffitiStateType;

typedef struct{
Word id;
FormObjAttrType attr;
RectangleType rect;
VoidPtr date;
}FormGadgetType;

Fields of Form Objects

The window field is the structure of the window object that corre-
sponds to the form.

The formId field contains the ID number of the form specified by
the application developer. This ID value is part of the event data of
frmOpenEvent. The ID should match the form’s Macintosh re-
source ID.

The attr field contains form object’s attributes. The attr field is a
bit field that contains the members: usable, enable, visible,
dirty, saveBehind, and reserved.

• If usable is set TRUE, the form is considered part of the user
interface.

• The enable attribute specifies whether or not the user can
interact with the form.

• If visible is set, the form is drawn.
• The dirty attribute is set if the form has been modified in

any way. Modifications include the changing of a field or
check box (not currently supported).

• The saveBehind attribute is set if the bits behind the form
are to be saved when the form is drawn.
124 Developing Palm OS Applications, Part I

Palm OS UI Objects
Form Objects
The bitsBehindForm field is used to save all the bits behind the
form so the screen can be properly refreshed when the form is
closed.

The focus field contains the index of a field or table object within
the form that contains the focus. Any keyDownEvent is passed to
the object that has the focus.

The handler field contains the routine called when the form needs
to handle an event, typically set by the application in the
ApplicationHandleEvent function.

The defaultButton field contains the index of the object defined
as the default button. This value is used by the routine
FrmDoDialog

The helpRscId field contains the resource ID number of the help
resource. The help resource is of type tSTR.

The MenuRscId field contains the ID number of a menu bar to use if
the form is a menu, or zero if the form is not a menu.

The numObjects field specifies the number of objects contained
within the form.

The objects field contains a pointer to the array of objects con-
tained within the form.

Associated Resource
The Form Resource (tFRM) is used to represent forms on screen.

Form Functions
• FrmAlert

• FrmCloseAllForms

• FrmCopyLabel

• FrmCopyTitle

• FrmCustomAlert

• FrmDeleteForm

• FrmDispatchEvent

• FrmDoDialog

• FrmDrawForm
Developing Palm OS Applications, Part I 125

Palm OS UI Objects
Form Objects
• FrmEraseForm

• FrmGetActiveForm

• FrmGetActiveFormID

• FrmGetControlGroupSelection

• FrmGetControlValue

• FrmGetFirstForm

• FrmGetFocus

• FrmGetFormBounds

• FrmGetFormId

• FrmGetFormPtr

• FrmGetGadgetData

• FrmGetLabel

• FrmGetNumberOfObjects

• FrmGetObjectBounds

• FrmGetObjectId

• FrmGetObjectIndex

• FrmGetObjectPositon

• FrmGetObjectPtr

• FrmGetObjectType

• FrmGetTitle

• FrmGetUserModifiedState

• FrmGetWindowHandle

• FrmGotoForm

• FrmHandleEvent

• FrmHelp

• FrmHideObject

• FrmInitForm

• FrmPopupForm

• FrmReturnToForm

• FrmSaveAllForms

• FrmSetActiveForm

• FrmSetCategoryLabel

• FrmSetControlGroupSelection
126 Developing Palm OS Applications, Part I

Palm OS UI Objects
List Object
• FrmHideObject

• FrmInitForm

• FrmPopupForm

• FrmReturnToForm

• FrmSaveAllForms

• FrmSetActiveForm

• FrmSetCategoryLabel

• FrmSetControlGroupSelection

• FrmSetControlValue

• FrmSetEventHandler

• FrmSetFocus

• FrmSetGadgetData

• FrmSetNotUserModified

• FrmSetObjectPositon

• FrmSetTitle

• FrmShowObject

• FrmUpdateScrollers

• FrmUpdateForm

• FrmVisible

List Object
This section provides information about list objects by discussing
these topics:

• List Object Overview
• List Object Events
• Structure of a List
• Associated Resources
• List Functions
Developing Palm OS Applications, Part I 127

Palm OS UI Objects
List Object
List Object Overview
The list object appears as a vertical list of choices in a box. The cur-
rent selection of the list is inverted. If there are more choices than
can be displayed, the system draws small arrows (scroll indicators)
in the right margin next to the first and last visible choice.

When the pen comes down and up on a scroll indicator, the list is
scrolled. When the user scrolls down, the last visible item becomes
the first visible item, if there are enough items to fill the list. If not,
the list is scrolled so that the last item of the list appears at the bot-
tom of the list. The reverse is true for scrolling up. Scrolling does not
change the current selection.

Bringing the pen down on a list item unhighlights the current selec-
tion and highlights the item under the pen. Dragging the pen
through the list highlights the item under the pen. Dragging the pen
above or below the list causes the list to scroll if it contains more
choices than are visible.

When the pen is released over an item, that item becomes the cur-
rent selection. When the pen is dragged outside the list, the item
that was highlighted before the penDownEvent is highlighted again
if it’s visible. If it’s not, no item is highlighted.

List Object Events
The list object generates two types of event structures:
lstEnterEvent and lstSelectEvent. Both events are generated
by the list event-handler function LstHandleEvent.

When LstHandleEvent receives a penDownEvent, it adds a
lstEnterEvent to the event queue if the pen position is within the
bounds of the list.

When LstHandleEvent receives a lstEnterEvent, it tracks the
pen until it’s released. If the pen is released on a list choice, a new
selection is made (the data structure is modified) and a
lstSelectEvent is added to the event queue. If the pen is released
outside the list, the selection is unchanged and no event is posted.

A lstEnterEvent contains the following data:

• list ID
• a pointer to the list object
128 Developing Palm OS Applications, Part I

Palm OS UI Objects
List Object
• the item the pen is on

A lstSelectEvent contains the following data:
• list ID
• a pointer to the list object
• the item selected

Structure of a List

typedef struct {
Word id;
RectangleType bounds;
ListAttrType attr;
CharPtr* itemsText;
Word numItems;
Word currentItem;
Word topItem;
FontID font;
WinHandle popupWin;
ListDrawDataFuncPtr drawItemCallback;
} ListType;

typedef struct {
unsigned usable :1;
unsigned enabled :1;
unsigned visible :1;
unsigned poppedUp :1;
unsigned reserved :4;
} ListAttrType;

List Object Fields

The id field holds an ID value, specified by the application devel-
oper. This ID value is part of the event data of lstEnterEvent and
lstSelectEvent.

The bounds field contains the bounds of the list, relative to the
window.
Developing Palm OS Applications, Part I 129

Palm OS UI Objects
List Object
The attr field contains the list’s attributes. The attr field is a bit
field that contains the following members: usable, enable,
visible, and poppedUp:

• A list that does not have the usable attribute set is not con-
sidered part of the current interface of the application, and it
doesn’t appear on screen.

• The enable attribute is set if users can interact with the list.
• The visible attribute is set or cleared internally when the

list is drawn or erased.
• The poppedUp attribute is set if the choices are displayed in a

popup window. This attribute is set and cleared internally.

The itemsText field holds a pointer to an array of pointers to the
text of the choices.

The font field holds the ID of the font used to draw all list text
strings.

The popupWin is the handle of the window created when a list is
displayed if the poppedUp attribute is set.

The drawItemsCallback is the function used to draw an item in
the list. If null, the default drawing routine is used instead.
void ListDrawDataFuncType

(UInt itemNum,
RectanglePtr bounds,
CharPtr *itemsText)

The numItems field contains the number of choices in the list.

The currentItem field holds the currently selected list choice (0 =
first choice).

The topItem field holds the first choice displayed in the list.

Associated Resources
The resources tLST (List Resource), tPUL (Popup List Resource),
and tPUT (Popup Trigger Resource) are used together to represent
an active list.
130 Developing Palm OS Applications, Part I

Palm OS UI Objects
Menu Objects
List Functions
• LstDrawList
• LstEraseList

• LstGetNumberOfItems

• LstGetSelection

• LstGetSelectionText

• LstHandleEvent

• LstMakeItemVisible

• LstPopupList

• LstSetDrawFunction

• LstSetHeight

• LstSetListChoices

• LstSetPosition

• LstSetSelection

• LstSetTopItem

• LstSetPosition

Menu Objects
This section provides information about menu objects by discussing
these topics:

• Menu Object Overview

• Menu Events

• Associated Resources
• Menu Functions

Menu Object Overview
A menu bar is displayed when the user taps a menu icon. The menu
bar, a horizontally oriented list of menu titles, appears at the top of
the screen in its own window, above all the application’s windows.
Pressing a menu title highlights the title and “pulls down” the menu
below the title.
Developing Palm OS Applications, Part I 131

Palm OS UI Objects
Menu Objects
When the user drags the pen through the menu, the command
under the pen is highlighted.

• If the pen is released over a menu item, that item is selected,
and the menu bar and menu disappear.

• If the pen is released outside both the menu bar and the
menu, both disappear and no selection is made.

• If the pen is released in a menu title, the menu bar and the
menu remain displayed until a selection is made from the
menu.

• If the pen is tapped outside the menu and the menu bar, both
are dismissed.

A menu has the following features:
• Item separators; lines to group menu items.
• Keyboard shortcuts; the shortcut labels are right justified in

menu items.
• A menu remembers its last selection, the next time a menu is

displayed the prior selection appears highlighted.
• The bits behind the menu bar and the menus are saved and

restored by the menu routines.
• When the menu is visible, the insertion point is turned off.
• Selecting a separator with the pen dismisses the menu, but

no event is posted.

Menu Events
Menu events are handled by the routine MenuHandleEvent, which
handles events of type penDownEvent and keyDownEvent.

When a menu item is chosen, the menu event handler adds a
menuEvent that identifies the chosen item to the event queue.
132 Developing Palm OS Applications, Part I

Palm OS UI Objects
Menu Objects
Structure of a Menu

typedef struct {
WinHandle barWin;
WinHandle bitsBehind;
WinHandle savedActiveWin;
WinHandle bitsBehindStatus;
MenuBarAttrType attr;
SWord curMenu;
SWord curItem;
long commandTick;
SWord numMenus;
MenuPullDownPtr menus;
} MenuBarType;

typedef MenuBarType * MenuBarPtr;

typedef struct {
Word visible :1;
Word commandPending :1;
Word insPtEnabled :1;
} MenuBarAttrType;

typedef struct {
WinHandle menuWin;
RectangleType bounds;
WinHandle bitsBehind;
RectangleType titleBounds;
CharPtr title;
Word numItems;
MenuItemType *items;
} MenuPullDownType;

typedef MenuPullDownType * MenuPullDownPtr;
Developing Palm OS Applications, Part I 133

Palm OS UI Objects
Menu Objects
typedef struct {
Word id;
char command;
CharPtr itemStr;
} MenuItemType;

Menu Object Fields

The barWin field is the handle for the window that contains the
menu bar.

The bitsBehind field holds a handle of a window that contains the
region obscured by the menu bar.

The savedActiveWin field stores the currently active window be-
hind the menu.

The bitsBehindStatus field stores the bits behind the status mes-
sage so that when the message display terminates, the bits can be re-
stored.

The attr field contains the menu bar’s attributes. The attr field is
a bit field that contains the following members: visible,
commandPending, and insPtEnabled.

• If visible is set, the menu bar is drawn.
• commandPending is set if the next key is a command.
• insPtEnable is set if the insertion point was on when the

menu was drawn.

The curMenu field holds the menu number of the currently visible
menu; the menus are numbered sequentially, starting with zero.
This value is preserved when the menu bar is dismissed; the next
time the menu is displayed, the previously visible pull-down menu
can also be redisplayed. A value of -1 indicates that there is no cur-
rent pull-down menu.

The curItem field holds the item number of the currently high-
lighted menu item. The items in each menu are numbered sequen-
tially, starting with zero.

The commandTick field is used to store the tick count at which the
status message should be erased.
134 Developing Palm OS Applications, Part I

Palm OS UI Objects
Menu Objects
The numMenus field holds the number of pull-down menus on the
menu bar.

The menus field is a pointer to an array of MenuPullDownType
structures. The MenuPullDownType structure defines a pull-down
menu.

Menu Pull-Down Fields

The menuWin field is the handle for the window that contains the
menu.

The bounds field holds the position and size (in pixels) of the pull-
down menu.

The bitsBehind field holds a handle of a window that contains the
region obscured by the menu.

The title field holds a pointer to the menu title (null-terminated).

The numItems field holds the number of items in a menu (separa-
tors count as items).

The items field is a pointer to an array of MenuItemType struc-
tures. A MenuItemType structure defines a menu item.

Menu Item Fields

The id field holds an ID value specified by the application devel-
oper. This ID value is included as part of the event data of a
menuEvent.

The command field holds the shortcut key.

The itemStr field holds a pointer to the text display for a menu
item. The shortcut key description is included in this string. The
item label and the shortcut key description are delimited with a tab
character.

Associated Resources
The resources MBAR (menu bar) and MENU (menu) are used
jointly to represent a menu object on screen.
Developing Palm OS Applications, Part I 135

Palm OS UI Objects
Date and Time UI Objects
Menu Functions
• MenuDispose

• MenuDrawMenu

• MenuEraseStatus

• MenuGetActiveMenu

• MenuHandleEvent

• MenuInit

• MenuSetActiveMenu

Date and Time UI Objects
The Palm OS UI provides two system resources for accepting date
and time input values. These resources are dialog boxes that contain
UI gadgetry for entering dates and times. The Palm OS UI also pro-
vides routines to manage the interaction with these resources.

Date and Time Functions
Currently defined date and time functions SelectDay and
SelectTime

Insertion Point Object
The insertion point is a blinking indicator that shows where text is
inserted when users write Graffiti characters or paste clipboard text.

In general, an application does not need to be concerned with the in-
sertion point; the Palm OS UI manages the insertion point.

Insertion Point Functions
• InsPtEnable

• InsPtEnabled

• InsPtGetHeight

• InsPtGetLocation

• InsPtSetHeight

• InsPtSetLocation
136 Developing Palm OS Applications, Part I

Palm OS UI Objects
Table Objects
Table Objects
The table object is used to organize several types of UI objects. The
number of rows and the number of columns must be specified for
each table object. A UI object can be placed inside a “square” of a ta-
ble. Tables often consist of rows or columns of the same object. For
example, a table might have one column of labels and another col-
umn of fields. Tables can only be scrolled vertically.

This section provides information about table objects by discussing
these topics:

• Table Events
• Structure of a Table
• Associated Resource
• Table Functions

Table Events
The table object generates the event tblSelectEvent. This event
contains:
• the table’s ID number
• the row of the table selected
• the column of the table that has been selected

When tblSelectEvent is sent to a table, the table generates an
event to handle any possible events within the item’s UI object.

Structure of a Table

typedef struct {
Word id;
RectangleType bounds;
TableAttrType attr;
Word numColumns;
Word numRows;
Word currentRow;
Word currentColumn;
Word topRow;
TableColumnAttrType * columnAttrs;
Developing Palm OS Applications, Part I 137

Palm OS UI Objects
Table Objects
TableRowAttrType * rowAttrs;
TableItemPtr items;
FieldType currentField;
} TableType;
typedef TableType * TablePtr;

typedef struct {
Word visible:1;
Word editable:1;
Word editing:1;
Word selected:1;
} TableAttrType;

typedef struct {
TableItemStyleTypeitemType;
FontID fontID; //font for drawing text
Word intValue;
CharPtr ptr;
} TableItemType;
typedef TableItemType * TableItemPtr;

typedef struct {
Word width; // in pixels
Boolean usable;
Word spacing;
TableDrawItemFuncPtr drawCallback;
TableLoadDataFuncPtr loadDataCallback;
TabelSaveDataFuncPtr SaveDataCallback;
} TableColumnAttrType;

typedef struct {
Word id;
Word height; // row height in pixels
DWord data;
Boolean usable;
Boolean selectable;
Boolean invalid; // true if redraw needed
} TableRowAttrType;
138 Developing Palm OS Applications, Part I

Palm OS UI Objects
Table Objects
Fields of a Table Structure

The id field holds the ID value the application developer specified.

The bounds field contains the position and size of the table object.

The attr field contains the table object’s attributes. The attr field
is a bit field that contains the following members: visible,
editable, editing, and selected.

• If a table is set to visible, it is drawn on the screen.
• A table is editable if a user can modify it.
• If the table is in edit mode, editing is set on.
• If the current item is selected, selected is set on.

The numColumns field specifies the number of columns in the table
object.

The numRows field specifies the number of rows in the table object.

The currentRow field contains the row of the table set to current.

The currentColumn field contains the column of the table set to
current.

The topRow field contains the first row in the table object.

The columnAttrs field contains the column’s attributes, such as its
width, its usability, and how to draw itself.

The rowAttrs field contains the row’s attributes, such as its ID,
height, and whether or not it is usable, selectable, or invalid.

The items field contains the item’s attributes, such as the item type,
font ID, an integer value, and a character pointer.

The currentField field is the field object that is currently being
edited.

Associated Resource
The Table Resource (tTBL) represents a table on screen.
Developing Palm OS Applications, Part I 139

Palm OS UI Objects
Table Objects
Table Functions
• TblDrawTable

• TblEditing

• TblEraseTable

• TblFindRowData

• TblFindRowID

• TblGetBounds

• TblGetColumnSpacing

• TblGetColumnWidth

• TblGetCurrentField

• TblGetItemBounds

• TblGetItemInt

• TblGetLastUsableRow

• TblGetNumberOfRows

• TblGetRowData

• TblGetRowHeight

• TblGetRowID

• TblGetSelection

• TblGrabFocus

• TblHandleEvent

• TblInsertRow

• TblMarkRowInvalid

• TblMarkTableInvalid

• TblRedrawTable

• TblReleaseFocus

• TblRemoveRow

• TblRowSelectable

• TblRowUsable

• TblSelectItem

• TblSetColumnSpacing

• TblSetColumnUsable

• TblSetColumnWidth

• TblSetCustomDrawProcedure
140 Developing Palm OS Applications, Part I

Palm OS UI Objects
Window Objects
• TblSetItemInt

• TblSetItemPtr

• TblSetItemStyle

• TblSetLoadDataProcedure

• TblSetRowData

• TblSetRowHeight

• TblSetRowID

• TblRowInvalid

• TblSetRowSelectable

• TblSetRowUsable

• TblSetSaveDataProcedure

• TblUnhighlightSelection

Window Objects
A window defines a drawing region. This region may be on the dis-
play or a memory buffer (and offscreen window). Offscreen win-
dows are useful for saving and restoring regions of the display that
are obscured by other UI objects. All forms are windows, but not all
windows are forms.

The window object is the portion of the form object that determines
how the form’s window looks and behaves. A window object con-
tains viewing coordinates of the window and clipping bounds.

This section provides information about windows by discussing
these topics:

• Window Events
• Structure of a Window
• Window Functions

Window Events
When a window becomes active, a winEnterEvent takes place.
When the window is deactivated, a winExitEvent occurs. The
winEnterEvent usually follows right after a winExitEvent; an
old window is deactivated just before a new window is deactivated.
Developing Palm OS Applications, Part I 141

Palm OS UI Objects
Window Objects
Structure of a Window

typedef struct WinTypeStruct {
Word displayWidth;
Word displayHeight;
VoidPtr displayAddr;
WindowFlagsType windowFlags;
RectangleType windowBounds;
AbsRectType clippingBounds;
PointType viewOrigin;
FrameBitsType frameType;
GraphicStatePtr gstate;
struct WinTypeStruct* nextWindow;
} WindowType;

typedef WindowType * WinPtr;

typedef WinPtr WinHandle;

Fields of a Window Structure

The displayWidth field contains the width, in pixels, of the dis-
play memory buffer (video RAM) for onscreen windows and the
width of a memory buffer for offscreen windows.

The displayHeight field contains the height, in pixels, of the de-
vice display.

The displayAddr field is a pointer to the window’s display mem-
ory buffer.

The windowFlags field contains the window’s following attributes:
format, offscreen, modal, focusable, enabled, visible,
dialog, and compressed.
142 Developing Palm OS Applications, Part I

Palm OS UI Objects
Window Objects
The flags are defined as follows:

The windowBounds field contains the bounds of the window.

The clippingBounds field contains the bounds for clipping any
drawing within the window.

The viewOrigin field is the window’s origin point on the display.

The frameType field specifies the frame’s corner diameter, width of
shadow, and width of frame.

The gstate field specifies the state of the graphic mode, pattern
mode, font, and underline mode.

The nextWindow field is a pointer to the next window in a linked
list of windows.

Attribute Set to 0 Set to 1

format screen mode generic mode

off screen on screen off screen

modal modeless window modal window

focusable non-focusable focusable

enabled disabled enabled

visible invisible visible

dialog nondialog dialog

compressed uncompressed compressed
Developing Palm OS Applications, Part I 143

Palm OS UI Objects
Window Objects
Window Functions
• WinAddWindow

• WinClipRectangle

• WinCopyRectangle

• WinCreateOffscreenWindow

• WinCreateWindow

• WinDeleteWindow

• WinDisableWindow

• WinDisplayToWindowPt

• WinDrawBitmap

• WinDrawChars

• WinDrawGrayLine

• WinDrawGrayRectangleFrame

• WinDrawInvertedChars

• WinDrawLine

• WinDrawRectangle

• WinDrawRectangleFrame

• WinDrawWindowFrame

• WinDrawWindowFrame

• WinEnableWindow

• WinEraseChars

• WinEraseLine

• WinEraseRectangleFrame

• WinEraseWindow

• WinFillLine

• WinFillRectangle

• WinGetActiveWindow

• WinGetClip

• WinGetDisplayExtent

• WinGetDisplayWindow

• WinGetDrawWindow

• WinGetFirstWindow

• WinGetFramesRectangle
144 Developing Palm OS Applications, Part I

Palm OS UI Objects
Window Objects
• WinGetPattern

• WinGetWindowBounds

• WinGetWindowExtent

• WinGetWindowFrameRect

• WinGetWindowPointer

• WinInitializeWindow

• WinInvertChars

• WinInvertLine

• WinInvertRectangle

• WinInvertRectangleFrame

• WinModal

• WinRemoveWindow

• WinResetClip

• WinRestoreBits

• WinSaveBits

• WinScrollRectangle

• WinSetActiveWindow

• WinSetClip

• WinSetDrawWindow

• WinSetPattern

• WinSetUnderlineMode

• WinWindowToDisplayPt
Developing Palm OS Applications, Part I 145

Palm OS UI Objects
Window Objects
146 Developing Palm OS Applications, Part I

6
Using Palm OS Managers

In contrast to desktop computer operating systems, Palm OS con-
sists of only one library. This library, however, contains several man-
agers, which are groups of functions that work together to
implement certain functionality. As a rule, all functions that belong
to one manager use the same three-letter prefix and work together
to implement a certain aspect of functionality.

In this chapter, you learn about all Palm OS managers that aren’t di-
rectly responsible for memory management:

• The System Manager is responsible for the basic operation of
the system. Discussion of the system manager includes infor-
mation on System Boot and Reset, Power Management, The
Microkernel, and Application Support.

• The Feature Manager provides information about the system
software version, and what optional system features and
third party extensions are installed. An application can also
use the feature manager to keep track of its own data.

• The String Manager is a set of string manipulation functions
available to applications. Use these routines instead of the
standard C routines.

• The Time Manager provides real-time clock functions and
system tick functions.

• The System Event Manager provides an interface to the low-
level pen and key event queues, translates taps on silk-
screened icons into key events, sends pen strokes in the Graf-
fiti area to the Graffiti recognizer, and puts the system into
low-power doze mode when there is no user activity.

• The Pen Manager provides an interface to the digitizer hard-
ware and converts input from the digitizer into pen coordi-
nates. Most applications never need to call the pen manager
directly because any pen activity is automatically returned to
the application in the form of events.

• The Key Manager provides an interface to the hardware but-
tons on the Palm OS device. It converts hardware button
Developing Palm OS Applications, Part I 147

Using Palm OS Managers
The System Manager
presses into key events and implements auto-repeat of the
buttons. Most applications never need to call the key man-
ager directly except to change the key repeat rate or poll the
current state of the keys.

• The Graffiti Manager provides an interface to the Graffiti rec-
ognizer. The recognizer converts pen strokes into key events
which are fed to an application through the event manager.
Most applications never need to call the Graffiti manager di-
rectly because the event manager calls it automatically when-
ever it detects pen strokes in the Graffiti area of the digitizer.

• The Alarm Manager provides support for setting real-time
alarms to perform some periodic activity or display a
reminder.

• The Alert Manager lets applications implement modal dialog
boxes that display an alert dialog or prompt the user for a re-
sponse to a question.

• The Sound Manager lets applications and system modules
control sound manager settings and play custom and pre-
defined system sounds.

• The Error Manager can be used by applications or system
software for displaying unexpected run-time errors, such as
those that typically show up during program development. It
is not anticipated that final production versions of applica-
tions or system software will use the error manager.

The System Manager
The Palm OS system manager is responsible for the general opera-
tion of the system, including boot-up, power-up, launching applica-
tions, library management, monitoring the battery, multitasking,
timing, and semaphore support. Applications need to be concerned
with very few system manager API functions. Most of what the sys-
tem manager does is transparent to applications and is explained
here as background information only.
148 Developing Palm OS Applications, Part I

Using Palm OS Managers
The System Manager
In this section, you learn about the following aspects of the system
manager:

• System Boot and Reset provides information about the differ-
ent reset operations.

• Power Management describes the three different power
modes and provides guidelines for application developers.

• The Microkernel briefly describes the basic task management
provided by the system.

• Application Support discusses event processing and interap-
plication communication from the system’s point of view.

• Using the System Manager provides an overview of the API
available for accessing the functionality described in the
other sections. Links to the actual function descriptions are
included.

• System Manager Functions lists all system manager func-
tions available to applications for easy access.

System Boot and Reset
The system manager provides support for booting the Palm OS de-
vice. Booting occurs only when the user presses the reset switch on
the device (see Palm OS Device Reset Switch.) Palm OS differs
from a traditional desktop system in that it is never really turned off.
Power is constantly supplied to essential subsystems and the on/off
key is merely a way of bringing the device in or out of low-power
mode (see Palm OS Power Modes). The obvious effect of pressing
the on/off key is that the LCD turns on or off. When the user presses
the power key to turn the device off it disables the LCD, which
makes it appear as if power to the entire unit is turned off. In fact,
the memory system, real-time clock, and interrupt generation cir-
cuitry are still running, though they are consuming little current.

In this first version of Palm OS, there is only one user interface ap-
plication running at a time. The User Interface Application Shell
(UIAS) is responsible for managing the current user-interface appli-
cation. The UIAS launches the current user-interface application as a
subroutine and does not get control back until that application
quits. When control returns to the UIAS, it immediately launches
the next application as another subroutine. See The Microkernel for
more information.
Developing Palm OS Applications, Part I 149

Using Palm OS Managers
The System Manager
Power Management
This section looks at Palm OS power management, discussing Palm
OS Power Modes and Guidelines for Application Developers

See Power Management Calls for an overview of the API.

Palm OS Power Modes

At any time, the Palm OS device is in one of three power modes:
sleep, doze, or running. The system manager controls transitions be-
tween different power modes and provides an API for controlling
some aspects of the power management.

• Sleep mode. If the unit appears to be off, it is actually in sleep
mode and is consuming as little current as possible. At this
rate, a unit could sit for almost a year on a single set of batter-
ies without losing the contents of memory. To enter sleep
mode, the system puts as many peripherals as possible into
low-power mode and sets up the hardware so that an inter-
rupt from any hard key or the real-time clock wakes up the
system. When the system gets one of these interrupts while
in sleep mode, it quickly checks that the battery is strong
enough to complete the wake-up and then takes each of the
peripherals, for example the LCD, serial port, and timers, out
of low-power mode.
The system reenters sleep mode when the user presses the
on/off key again, when the system has been idle for the min-
imum auto-off time, or when the battery level reaches a criti-
cally low level.

• Doze mode. In doze mode, the processor is halted, but all pe-
ripherals including the LCD are powered up. The system can
come out of doze mode much faster than it can come out of
sleep mode since none of the peripherals need to be woken
up. In fact, it takes no longer to come out of doze mode than
to process an interrupt. Usually, when the system appears on,
it is actually in doze mode and goes into running mode only
for short periods of time to process an interrupt or respond to
user input like a pen tap or key press.

• Running mode. Running means that the processor is execut-
ing instructions and all peripherals are powered up. A typical
application puts the system into running mode only about
5% of the time.
150 Developing Palm OS Applications, Part I

Using Palm OS Managers
The System Manager
Guidelines for Application Developers

Normally, applications don’t need to be aware of power manage-
ment except for a few simple guidelines. When an application calls
EvtGetEvent to ask the system for the next event to process, the
system automatically puts itself into doze mode until there is an
event to process. As long as an application uses EvtGetEvent,
power management occurs automatically. If there has been no user
input for the amount of time determined by the current setting of
the auto-off preference, the system automatically enters sleep mode
without intervention from the application.

Applications should avoid providing their own delay loops. In-
stead, they should use SysTaskDelay, which puts the system into
doze mode during the delay to conserve as much power as possible.
Or, if an application needs to perform periodic work, it can pass a
time out to EvtGetEvent; this forces the unit to wake up out of
doze mode and to return to the application when the time out ex-
pires, even if there is no event to process. Using these mechanisms
provides the longest possible battery life.

The Microkernel
Palm OS has a preemptive multitasking kernel which provides basic
task management.

Most applications don’t need the microkernel services because they
are handled automatically by the system. This functionality is pro-
vided mainly for internal use by the system software or for certain
special purpose applications.

The User Interface Application Shell (UIAS) is responsible for man-
aging the current user-interface application. Because memory avail-
able to the system is limited, only one user-interface application
runs at any time. The UIAS launches the current user-interface ap-
plication as a subroutine and does not get control back until that ap-
plication quits. When control returns to the UIAS, it immediately
launches the next application as another subroutine.

Usually, the UIAS is the only task running. Occasionally though, an
application launches another task as a part of its normal operation.
One example of this is the Sync application, which launches a sec-
ond task to handle the serial communication with the desktop. By
Developing Palm OS Applications, Part I 151

Using Palm OS Managers
The System Manager
creating a second task dedicated to the serial communication and
giving this task a lower priority than the main user-interface task,
the Sync application can provide optimal performance over the se-
rial port without sacrificing response time to the user-interface con-
trols.

Normally, there is no user interaction during a sync, so that the se-
rial communication task gets all of the processor’s time. But if the
user does tap on the screen, for example, to cancel the sync, the user-
interface task immediately processes the tap, since it has a higher
priority. Alternatively, the Sync application could have been written
to use just one task but then it would have to periodically poll for
user input during the serial communication, which would hamper
performance and user interface response time.

Application Support
The system manager provides application support in several func-
tional areas. The following aspects of application support are dis-
cussed in this section:

• Launching and Clean-Up
• Event Processing
• Inter-Application Communication

Launching and Clean-Up

Usually, applications on the Palm OS device are launched when the
user presses one of the buttons on the case or selects an application
icon from the application launcher screen. Alternatively, an applica-
tion can programmatically launch another application using the sys-
tem manager function SysAppLaunch.

When the current user-interface application quits, the system man-
ager cleans up by deleting any chunks in the dynamic heap(s) that
the application left around and closing any databases left open.
Note, however, that applications should perform this kind of
cleanup themselves.

Event Processing

The system manager provides the infrastructure for event genera-
tion and also contains the support for handling most system-related
152 Developing Palm OS Applications, Part I

Using Palm OS Managers
The System Manager
events. Hardware activity, such as taps on the digitizer and key
presses, is interpreted by interrupt handlers of the system manager
and converted into events that are eventually sent to the application
through the EvtGetEvent call. In addition, many events returned
by EvtGetEvent are system-related events which can be processed
by the system manager call SysHandleEvent.

Events in Palm OS include hardware- and software-generated
events. Hardware-generated events are those caused directly by
user interaction with the device, such as tapping on the screen with
the pen, or pressing a hardware button. Software-generated events
are generated by the system software as a side effect of a user inter-
action. These include events such as the quit event that causes an
application to exit, or keyboard events generated by the Graffiti rec-
ognizer. Software-generated events can even be defined and gener-
ated by an application for its own use.

When an application calls EvtGetEvent, the event manager checks
a number of system-event data structures and returns an event
record to the application with information about the highest-prior-
ity event that needs processing. Events in Palm OS are stored in one
of three event queues: a key queue, a pen queue, or a software event
queue. The event queues are circular buffers containing event
records stored in a first in, first out (FIFO) sequence.

Hardware-related events are typically posted by interrupt routines
and include pen-downs, pen-ups (optionally including stroke data),
and hard button presses. All pen-generated events are stored in the
pen queue and all hard button press events are stored in the key
queue. Software events are typically posted as the result of a system
call and include application-quit events, window enter and exit
events, user-interface control events, etc. These types of events are
stored in the software event queue.

When EvtGetEvent is called by the application, it first checks
whether any events are in the software event queue and returns the
topmost event if so. If the software event queue is empty, it checks
the key and pen queues. The result is that all software events gener-
ated by a particular hardware event are processed before the next
hardware event is processed. For example, a pen-down hardware
event may trigger the system software to generate window exit and
window enter software events. Both events are then pulled from the
Developing Palm OS Applications, Part I 153

Using Palm OS Managers
The System Manager
software event queue and processed before the next hardware event
is processed.

Some event types returned by EvtGetEvent are not actually posted
into the event queue, but are artificially generated by EvtGetEvent
when all event queues are empty. One example is the pen-moved
event, which is returned if no other events are in the queues and the
pen has moved since the last time EvtGetEvent was called. In this
way, the application is notified of low-priority events such as pen
movements without cluttering the event queue with them.

Hardware-generated events include pen-down, pen-up, and hard
button presses. These types of events are posted into their appropri-
ate event queue by interrupt routines. The interrupt routine for han-
dling keyboard presses immediately enqueues the keyboard event
into the key queue and sets up a periodic interrupt routine to watch
for auto-repeat and key debouncing.

Software events include window enter and exit events, application
quit events, and user-interface object events like control enter, con-
trol exit, etc. These events are typically generated as a side effect of a
hardware-generated event like a pen-down. Software can, however,
also generate key events, usually as a result of recognizing a Graffiti
stroke or a tap on a silk-screened icon.

Software-generated events are posted into the appropriate event
queue, but are not typically posted at interrupt time. Many of these
events are inserted into the event queue by the various user-inter-
face managers. Others, like key events, are posted by
SysHandleEvent after recognizing a Graffiti stroke or a tap on a
silk-screened icon.

In a typical application, SysHandleEvent is called immediately
after EvtGetEvent. If EvtGetEvent returns a pen-up event in the
Graffiti writing area, SysHandleEvent calls the Graffiti recognizer
with the pen stroke information obtained from the pen queue and
uses the results of the Graffiti recognizer to post one or more key-
board events into the key queue. A similar process occurs for pen-
up events detected over a silk-screened icon. SysHandleEvent
converts the pen-up to a keyboard event with a virtual key code rep-
resenting the silk-screened icon.
154 Developing Palm OS Applications, Part I

Using Palm OS Managers
The System Manager
Inter-Application Communication

The system manager provides the API for inter-application commu-
nication. This API permits any application or system routine to send
an action code to any other application and get results back. An ap-
plication that wishes to work with the global find, for example,
must support the find action code.

Sending an action code to another application is like calling a spe-
cific subroutine in that application: the application responding to
the action code is responsible for determining what to do given the
action code constant passed on the stack as a parameter. Predefined
action codes are listed in Table 2.1 on page 50 and can be found in
SytemMgr.h. All the parameters for an action code are passed in a
single parameter block and the results are returned in the same pa-
rameter block. How Action Codes Control the Application describes
action codes in more detail.

Using the System Manager
This section provides information about the system manager rou-
tines available for the different services, discussing these topics:
• System Reset Calls
• Power Management Calls
• Application Utilities

System Reset Calls

Applications can call SysReset to reset the device. This call does a
soft reset and has the same effect as pressing the reset switch on the
unit. Normally, applications should not use this call. One example
of where this function is used is the Sync application. When the user
copies an extension onto the Palm OS device, the Sync application
automatically resets the device after the sync is completed to allow
the extension to install itself.

A similar, but even more dangerous call is SysColdBoot which
performs a hard reset that clears all user storage RAM on the device,
destroying all user data.
Developing Palm OS Applications, Part I 155

Using Palm OS Managers
The System Manager
Power Management Calls

The system calls SysSleep to put itself immediately into low-
power sleep mode. Normally, the system puts itself to sleep when
there has been no user activity for the minimum auto-off time or
when the user presses the power key.

The SysSetAutoOffTime routine changes the auto-off time value.
This routine is normally used by the system only during boot, and
by the Preferences application. The Preferences application saves
the user preference for the auto-off time in a preferences database
and the system initializes the auto-off time to the value saved in the
preferences database during boot. While the auto-off feature can be
disabled entirely by calling SysSetAutoOffTime with a time out
of 0, doing this depletes the battery.

The current battery level and other information can be obtained
through the SysBatteryInfo routine. This call returns informa-
tion about the battery, including the current battery voltage in hun-
dredths of a volt, the warning thresholds for the low-battery alerts,
the battery type, and whether or not external power is applied to the
unit. This call can also change the battery warning thresholds and
battery type.

Application Utilities

The SysHandleEvent call allows applications to correctly respond
to system events like key presses, Graffiti strokes, low-battery warn-
ings, and taps on silk-screened icons. This routine should be called
from every application’s event loop, usually before the application
even looks at the event. If an application needs to override any part
of the default system behavior, it could selectively filter out events
before calling SysHandleEvent.

An application can force a switch to another user-interface applica-
tion by calling SysUIAppSwitch. This routine notifies the system
which application to launch next and feeds an application-quit
event into the event queue. If and when the current application re-
sponds to the quit event and returns, the system launches the new
application.

The routine SysCurAppDatabase can be used to get the card num-
ber and database ID of the currently running user-interface applica-
tion. Note that if your application code is being called to process an
156 Developing Palm OS Applications, Part I

Using Palm OS Managers
The System Manager
action code, it essentially is being called as a subroutine from the
current user-interface application and this routine does not return
your application’s database ID but the database ID of the applica-
tion that initiated the action code.

The routine SysAppLaunch is a general-purpose launch facility for
launching any resource database with executable code in it. It has
numerous options, including whether or not to launch the database
as a separate task or not, whether to allocate a globals world, and
whether or not to give the database its own stack. This routine is
also used to send action codes to applications (by telling it to use the
caller’s stack, no globals world, and not a separate task). Usually,
applications use it only for sending action codes to other user-inter-
face applications. An alternative, simpler method of sending action
codes is the SysBroadcastActionCode call. This routine automat-
ically finds all other user-interface applications and calls
SysAppLaunch to send the action code to each of them.

System Manager Functions
The following system manager functions are available for applica-
tion use:

• SysReset

• SysBatteryInfo

• SysSetAutoOffTime

• SysHandleEvent

• SysUIAppSwitch

• SysCurAppDatabase

• SysBroadcastActionCode

• SysAppLaunch
Developing Palm OS Applications, Part I 157

Using Palm OS Managers
The Feature Manager
The Feature Manager
The feature manager can be used by applications to determine what
the system environment is like. It provides information about the
system software version, what optional system features are in-
stalled, and what third party extensions are installed. In addition, it
can be used privately by an application for keeping track of its own
data.

This section introduces the feature manager by discussing these
topics:

• Feature Manager Overview
• Using the Feature Manager
• Feature Manager Functions

Feature Manager Overview
A feature is a 32-bit value that has special meaning to both the fea-
ture publisher and to users of that feature. Features can be pub-
lished by the system or by applications. Each feature is identified by
a feature creator and a feature number. The feature creator is usually
the database creator type of the application that publishes the fea-
ture. The feature number is any 16-bit value used to distinguish be-
tween different features of a particular creator. Once a feature is
published, it remains present until it is explicitly deleted. A feature
published by an application sticks around even after the application
quits.

One example is the feature the system publishes that contains a 32-
bit representation of the system version. This is a feature with a fea-
ture creator of “psys” and a feature number of 1. The first version of
the Palm OS system software has a value of 0x01003001 in this fea-
ture. Any application can find out the system version by looking for
this feature.

When an application adds or removes capabilities from the base sys-
tem, it can create features to test for the presence or absence of those
capabilities. This allows an application to be compatible with multi-
ple versions of the system by refining its behavior depending on
which capabilities are present or not. Future hardware platforms
158 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Feature Manager
may lack some capabilities present in the first platform, so checking
the system version feature is important.

Applications may find the feature manager useful for their own pri-
vate use. For example, an application may want to publish a feature
that contains a pointer to some private data it needs for processing
action codes. Because an application’s global data is not generally
available while it processes action codes, using the feature manager
is usually the easiest way for an application to get to its data.

Using the Feature Manager
To check whether a particular feature is present, call FtrGet and
pass it the feature creator and feature number. If the feature exists,
FtrGet returns the 32-bit value of the feature. If the feature does not
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call
FtrSet and pass the feature creator and number, and the 32-bit
value of the feature. A published feature remains available until it is
explicitly removed by a call to FtrUnregister or until the system
resets; simply quitting an application does not remove a feature
published by that application.

Features are split into two groups: ROM-based and RAM-based.
ROM-based features are stored in a separate table in ROM and can
never be removed; only system-defined features are in this table. All
features installed at run-time are in the RAM table.
FtrGetByIndex accepts a parameter that specifies whether to
search the ROM- or RAM-table.

Call FtrUnregister to remove RAM-based features created at
run-time by calling FtrSet.

You can get a complete list of all published features by calling
FtrGetByIndex repeatedly. Passing an index value starting at 0 to
FtrGetByIndex and incrementing repeatedly by 1 eventually re-
turns all available features.
Developing Palm OS Applications, Part I 159

Using Palm OS Managers
The String Manager
Feature Manager Functions
The following feature manager functions are for application use:

• FtrGet

• FtrSet

• FtrUnregister

• FtrGetByIndex

The String Manager
The string manager provides a set of string manipulation functions.
The string manager API is closely modeled after the standard C
string-manipulation functions like strcpy, strcat, etc.

Applications should use the functions built into the string manager
instead of the standard C functions, because doing so makes the ap-
plication smaller. When your application uses the string manager
functions, the actual code that implements the function is not linked
into your application but is already part of the operating system.
When you use the standard C functions, however, the code for each
function you use is linked into your application and results in a big-
ger executable. In addition, many standard C function don’t work
on the Palm OS device at all because the OS doesn’t provide all basic
system functions (such as malloc) and doesn’t support the subrou-
tine calls used by most standard C functions.

The following functions are available for application use:

• StrCopy

• StrCat

• StrLen

• StrCompare

• StrCaselessCompare

• StrToLower

• StrIToA

• StrIToH

• StrChr

• StrStr

• StrAToI
160 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Time Manager
The Time Manager
This section first provides an overview of the date and time man-
ager (called time manager in this chapter) and then discusses these
topics:

• Using Real-Time Clock Functions
• Using System Ticks Functions
• Time Manager Function Summary

The time manager provides access to both the 1-second and 0.01-
second timing resources on the Palm OS device.

• The -second timer keeps track of the real-time clock (date and
time), even when the unit is in sleep mode.

• The 0.01-second timer, also referred to as the system ticks,
can be used for finer timing tasks. This timer is not updated
when the unit is in sleep mode and is reset to 0 each time the
unit resets.

The basic time-manager API provides support for setting and get-
ting the real-time clock in seconds and for getting the current system
ticks value (but not for setting it). The system manager provides
more advanced functionality for setting up a timer task which exe-
cutes periodically or in a given number of system ticks.

Using Real-Time Clock Functions
The real-time clock functions of the time manager include
TimSetSeconds and TimGetSeconds. Real time on the Palm OS
device is measured in seconds from midnight, Jan 1, 1904. Call
TimSecondsToDateTime and TimDateTimeToSeconds to con-
vert between seconds and a structure specifying year, month, day,
hour, minute, and second.
Developing Palm OS Applications, Part I 161

Using Palm OS Managers
The Time Manager
Using System Ticks Functions
The Palm OS device maintains a tick count that starts at 0 when the
device is reset. This tick increments

• 100 times per second when running on the Palm OS device
• 60 times per second when running on the Macintosh under

the simulator

For tick-based timing purposes, applications should use the macro
sysTicksPerSecond, which is conditionally compiled for differ-
ent platforms.

Use the function TimGetTicks to read the current tick count.

Although the TimGetTicks function could be used in a loop to im-
plement a delay, it is recommended that applications use the
SysTaskDelay function instead. The SysTaskDelay function au-
tomatically puts the unit into low-power mode during the delay.
Using TimGetTicks in a loop consumes much more current.

Time Manager Structures
The time manager uses these structures to store information:

typedef struct{
Sword second;
Sword minute;
Sword hour;
Sword day;
Sword month;
Sword year;
Sword weekDay; //Days since Sunday (0 to 6)
}DateTimeType;

typedef DateTimeType* DateTimePTr;

typedef struct {
Byte hours;
Byte minutes;
}TimeType;
162 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Time Manager
typedef TimeType * TimePtr;

typedef struct{
Word year :7; //years since 1904 (Mac format)
Word month :4;
Word day :5;
}DateType;

typedef DateType * DatePtr;

Time Manager Function Summary
• DateAdjust

• DateDaysToDate

• DateSecondsToDate

• DateToAscii

• DateToDays

• DateToDOWDMFormat

• DayOfMonth

• DayOfWeek

• DaysInMonth

• TimAdjust

• TimDateTimeToSeconds

• TimGetSeconds

• TimGetTicks

• TimSecondsToDateTime

• TimSetSeconds

• TimeToAscii
Developing Palm OS Applications, Part I 163

Using Palm OS Managers
The System Event Manager
The System Event Manager
The system event manager manages the low-level pen and key
event queues, translates taps on silk-screened icons into key events,
sends pen strokes in the Graffiti area to the Graffiti recognizer, and
puts the system into low-power doze mode when there is no user
activity. Most applications have no need to call the system event
manager directly because most of the functionality they need comes
from the higher-level event manager or is automatically handled by
the system.

Applications that do use the system event manager directly might
do so to enqueue key events into the key queue, or to retrieve each
of the pen points that comprise a pen stroke from the pen queue.
This section provides information about the system event manager
by discussing these topics:

• Event Translation: Pen Strokes to Key Events
• Pen Queue Management
• Auto-Off Control
• System Event Manager Function Summary

Event Translation: Pen Strokes to Key Events
One of the higher-level functions provided by the system event
manager is converting pen strokes on the digitizer to key events. For
example, the system event manager sends any stroke in the Graffiti
area of the digitizer automatically to the Graffiti recognizer for con-
version to a key event. Taps on silk-screened icons, such as the ap-
plication launcher, Menu button, and Find button, are also
intercepted by the system event manager and converted into the ap-
propriate key events.

The basic process of converting a pen stroke to key event involves:

• getting all the pen points that comprise the stroke out of the
pen queue

• converting the stroke into the matching key event
• enqueuing that key event into the key queue

Eventually, the key event is returned to the application as a normal
result of calling EvtGetEvent.
164 Developing Palm OS Applications, Part I

Using Palm OS Managers
The System Event Manager
Most applications rely on the default behavior of the system event
manager, which is to take all strokes in the predefined Graffiti area
of the digitizer and convert them into key events, to convert all taps
on the silk-screened icons to the default key events, and to pass all
other strokes on to the application for processing.

Pen Queue Management
The pen queue is a preallocated area of system memory used for
capturing the most recent pen strokes on the digitizer. It is a circular
queue with a first-in, first-out method of storing and retrieving pen
points. Points are usually enqueued by a low-level interrupt routine
and dequeued by the system event manager or application.

When the user first brings the pen down on the digitizer, the system
stores a pen-down sequence in the pen queue and starts the stroke
capture. Periodically, additional points are stored into the pen
queue. When the user lifts the pen, the system stores a pen-up se-
quence in the pen queue and turns off pen capture.

The system event manager provides an API for initializing and
flushing the pen queue and for queuing and dequeueing points.
There is some state information stored in the queue itself: to de-
queue a stroke, the caller must first make a call to dequeue the
stroke information (EvtDequeuePenStrokeInfo) before the
points for the stroke can be dequeued. Once the last point is de-
queued, another EvtDequeuePenStrokeInfo call must be made
to get the next stroke.

Applications usually needn’t call EvtDequePenStrokeInfo be-
cause the event manager calls this function automatically when it
detects a complete pen stroke in the pen queue. After calling
EvtDequePenStrokeInfo, the system event manager stores the
stroke bounds into the event record and returns the pen-up event to
the application. The application is then free to dequeue the stroke
points from the pen queue, or to ignore them altogether. If the
points for that stroke are not dequeued by the time EvtGetEvent is
called again, the system event manager automatically flushes them.
Developing Palm OS Applications, Part I 165

Using Palm OS Managers
The System Event Manager
Key Queue Management
The key queue is an area of system memory preallocated for captur-
ing key events. Key events come from one of two occurrences: as a
direct result of the user pressing one of the buttons on the case or as
a side effect of the user drawing a Graffiti stroke on the digitizer
which is converted in software to a key event.

When a hardware button is pressed, an interrupt routine enqueues
the appropriate key event into the key queue, temporarily disables
further hardware button interrupts, and sets up a timer task to run
every 10ms. This timer task is used to debounce the hardware but-
ton and to support auto-repeat of the key if the user happens to hold
it down for an extended period of time. If this timer task sees that
the key is released for at least a minimum amount of time, it then re-
enables the hardware button interrupts.

When a pen stroke is detected in the Graffiti area of the digitizer, the
system manager calls the Graffiti recognizer, which then removes
the stroke from the pen queue, converts the stroke into one or more
key events, and finally enqueues these key events into the key
queue. Similarly, when a pen stroke is detected on one of the silk-
screened icons, the system event manager converts the stroke into
the appropriate key event and enqueues it into the key queue.

The system event manager provides an API for initializing and
flushing the key queue and for enqueuing and dequeuing key
events. Usually, applications have no need to dequeue key events
since the event manager does this automatically if it detects a key in
the queue and returns a keyDownEvent to the application through
the EvtGetEvent call.

Auto-Off Control
Because the system event manager manages the hardware events
like pen taps and hardware button presses, it is responsible for re-
setting the auto-off timer on the device. Every time a hardware
event is detected, the auto-off timer is automatically reset to 0. If an
application needs to reset the auto-off timer manually, it can do so
through the system event manager call EvtResetAutoOffTimer.
166 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Pen Manager
System Event Manager Function Summary
The following functions are part of the developer API to the system
event manager:

• EvtAddEventToQueue

• EvtCopyEvent

• EvtDequeuePenPoint

• EvtDequeuePenStrokeInfo

• EvtEnableGraffiti

• EvtEnqueueKey

• EvtFlushKeyQueue

• EvtFlushNextPenStroke

• EvtFlushPenQueue

• EvtGetEvent

• EvtGetPen

• EvtKeyQueueEmpty

• EvtKeyQueueSize

• EvtKeyQueueEmpty

• EvtGetPenBtnList

• EvtPenQueueSize

• EvtProcessSoftKeyStroke

• EvtResetAutoOffTimer

• EvtWakeup

The Pen Manager
The pen manager manages the digitizer hardware and converts
input from the digitizer into pen coordinates. Most applications
never need to call the pen manager directly because any pen activity
is automatically returned to the application in the form of events.

Pen coordinates are stored in the pen queue as raw, uncalibrated
coordinates. When the system event manager routine for removing
pen coordinates from the pen queue is called, it converts the pen
coordinate into screen coordinates before returning.
Developing Palm OS Applications, Part I 167

Using Palm OS Managers
The Key Manager
The Preferences application provides a user interface for calibrating
the digitizer. It uses the pen manager API to set up the calibration
which is then saved into the Preferences database. The pen manager
assumes that the digitizer is linear in both the x and y directions; the
calibration is therefore a simple matter of adding an offset and scal-
ing the x and y coordinates appropriately.

Pen Manager Functions
• PenResetCalibration

• PenCalibrate

The Key Manager
The key manager manages the hardware buttons on the Palm OS
device. It converts hardware button presses into key events and im-
plements auto-repeat of the buttons. Most applications never need
to call the key manager directly except to change the key repeat rate
or to poll the current state of the keys. The event manager is the
main interface to the keys since it returns a keyDownEvent to an ap-
plication whenever a button is pressed.

Normally, applications are notified of key presses through the event
manager. Whenever a hardware button is pressed, the application
receives an event through the event manager with the appropriate
key code stored in the event record. The state of the hardware but-
tons can also be queried by applications at any time through the
KeyCurrentState function call.

The key manager also provides functions for changing the auto-re-
peat rate of the hardware buttons. This might be useful to game ap-
plications that want to use the hardware buttons for control. The
current key repeat rates are stored in the key manager globals and
should be restored before the application exits.

Key Manager Functions
• KeyRates

• KeyCurrentState
168 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Graffiti Manager
The Graffiti Manager
The Graffiti manager provides an API to the Graffiti recognizer in
Palm OS. This recognizer converts pen strokes into key events,
which are then fed to an application through the event manager.
Most applications never need to call the Graffiti manager directly
because it is automatically called by the event manager whenever it
detects pen strokes in the Graffiti area of the digitizer.

Special purpose applications, such as a Graffiti tutorial, may want to
call the Graffiti manager directly to recognize strokes in other areas
of the screen or to customize the Graffiti behavior.

The Graffiti manager provides a high-level call used by the event
manager for converting pen strokes into key events. This call,
GrfProcessStroke, removes pen points from the pen queue, rec-
ognizes the stroke, and puts one or more key events into the key
queue. This call automatically handles Graffiti ShortCuts and calls
the user interface as appropriate to display shift indicators in the
current window.

An application can call GrfProcessStroke when it gets a
penUpEvent from the event manager if it wants to recognize
strokes entered into its application area (in addition to the Graffiti
area).

Other high-level calls provided by the Graffiti manager include rou-
tines for getting and setting the current Graffiti shift state (caps lock
on/off, temporary shift state, etc.) and for notifying Graffiti when
the user selects a different field. Graffiti needs to be notified when a
field change occurs so that it can cancel out of any partially entered
shortcut and clear its temporary shift state if it’s showing a poten-
tially accented character.

The remainder of Graffiti manager API routines are for special pur-
pose use. They are basically all the entry points into the Graffiti rec-
ognizer engine and are usually called only by GrfProcessStroke.
This includes calls to add pen points to the Graffiti recognizer’s
stroke buffer, to convert the stroke buffer into a Graffiti glyph ID,
and to map a glyph into a string of one or more key strokes.

Other routines provide access to the Graffiti ShortCuts database.
This is a separate database owned and maintained by the Graffiti
manager that contains all of the shortcuts. This database is opened
Developing Palm OS Applications, Part I 169

Using Palm OS Managers
The Graffiti Manager
by the Graffiti manager when it initializes and stays open even after
applications quit. The only way to modify this database is through
the Graffiti manager API. It provides calls for getting a list of all
shortcuts, and for adding, editing, and removing shortcuts. The
ShortCuts screen of the Preferences application provides a user-in-
terface for modifying this database.

Graffiti Manager Function Summary
• GrfProcessStroke

• GrfGetState

• GrfSetState

• GrfFlushPoints

• GrfAddPoint

• GrfInitState

• GrfCleanState

• GrfMatch

• GrfGetMacro

• GrfGetAndExpandMacro

• GrfFilterPoints

• GrfGetNumPoints

• GrfGetPoint

• GrfFindBranch

• GrfMatchGlyph

• GrfGetGlyphMapping

• GrfGetMacroName

• GrfDeleteMacro

• GrfAddMacro
170 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Alarm Manager
The Alarm Manager
The Palm OS alarm manager provides support for setting real-time
alarms, for performing some periodic activity, or for displaying a re-
minder. This section helps you use the alarm manager by discussing
these topics:

• Alarm Manager Overview
• Using the Alarm Manager

Alarm Manager Overview
The alarm manager works closely with the time manager to handle
real-time alarms such as those set by the DateBook for meeting re-
minders. The alarm manager does not actually provide reminder di-
alog boxes or play the alarm sound. Instead, it sends the
sysAppLaunchCmdAlarmTriggered action code to the applica-
tion to display the dialog and play the sound.

 The alarm manager handles alarms by application; it can queue up
only one active alarm for a given application. When the alarm goes
off, the sysAppLaunchCmdAlarmTriggered action code notifies
the application. At this time, it can set the next alarm, play a short
sound, or perform some maintenance activity. Triggered alarms are
queued up until the action code can be sent to the creator. However,
if the alarm table becomes full, the oldest entry in the table that has
been both triggered and notified is deleted to make room for a new
alarm.

The alarm manager orders all pending alarms, and programs the
time manager (via the TimSetAlarm system function) to generate
an interrupt for the alarm that should go off the soonest. When this
interrupt occurs, the time manager calls the alarm manager’s
AlmAlarmCallback system function, which notes the interrupt by
setting the “triggered” flag in the Alarm globals and calling
EvtWakeup to wake up the event manager in case it was asleep.

The event manager calls the AlmDisplayAlarm system function
between events. AlmDisplayAlarm checks the triggered flag
and returns immediately if no alarm had been triggered. If an alarm
had been triggered, AlmDisplayAlarm notifies all applications to
set an alarm for that alarm time via the alarm triggered action code,
and then calls each in turn to display its alarm. If a new alarm time
Developing Palm OS Applications, Part I 171

Using Palm OS Managers
The Alarm Manager
is triggered while an older alarm is displayed, all applications with
alarms scheduled for that time are notified, but the display cycle is
postponed until all earlier alarms finish displaying.

Using the Alarm Manager
To set an alarm for a given application, call AlmSetAlarm. If an un-
triggered alarm already exists for this application, it is replaced with
the new setting. The caller must pass the following:

• The storage card number and Local ID of the application (this
information is used to dispatch alarm manager notifications
to the application, and as the primary key for the alarm entry
in the alarm table).

• Caller-specific reference value (this can be any 32-bit value
which is passed to the application with all alarm manager
notifications pertaining to this alarm).

• Alarm date and time expressed in seconds since 1/1/1904
(see TimDateTimeToSeconds and other Date/Time func-
tions). If the alarm date and time parameter is zero, the cur-
rent active alarm for the application, if any, is cancelled.

When the active alarm is triggered, the alarm manager calls the ap-
plication with the sysAppLaunchCmdAlarmTriggered action
code. If your application needs to display a reminder or other form
of UI, use the sysAppLaunchCmdDisplayAlarm action code,
which is generated next.

To retrieve the current active alarm setting for an application, call
AlmGetAlarm, passing the storage card number and Local ID of the
application. In addition, pass a pointer to the memory location for
returning the caller-specific reference value which was passed when
setting the alarm with AlmSetAlarm. AlmSetAlarm returns the
alarm date and time expressed in seconds since 1/1/1904. The re-
turn value is zero if no active alarm exists for the application.

Alarm Manager Function Summary
• AlmGetAlarm

• AlmSetAlarm
172 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Alert Manager
The Alert Manager
The alert manager provides a simple way for an application to im-
plement modal dialog boxes that display an alert message or
prompt the user for a response to a question.

Given a resource ID that defines an alert, the alert manager creates
and displays a modal dialog box. When the user taps one of the but-
tons in the dialog, the alert manager disposes of the dialog box and
returns to the caller the item number of the button the user tapped.

There are four types of alerts:

• Question
• Warning
• Notification
• Error

The alert type determines which icon is drawn in the alert window
and the sound that plays when the alert is displayed.

The Alert Resource
When the alert manager is invoked, it is passed an alert resource
(see Alert Resource) that contains the following information:

• The rectangle that specifies the size and position of the alert
window.

• The alert type (question, warning, notification, or error).
• The null-terminated text string; that is, the message the alert

displays.
• The text labels for one or more buttons.

Alert Manager Functions
• FrmAlert

• FrmCustomAlert
Developing Palm OS Applications, Part I 173

Using Palm OS Managers
The Sound Manager
The Sound Manager
The Palm OS sound manager lets applications and system modules
play custom and predefined system sounds and control sound man-
ager settings.

The sound manager provides an extendable API for playing custom
sounds, system sounds, and for controlling default sound settings.
Although the API accommodates multichannel design, only a single
sound channel is currently supported. Current custom sound sup-
port permits the user to specify the frequency, duration, and ampli-
tude of the sound. Currently supported system sounds are
Information, Warning, Error, Start-up, Alarm, Confirmation, and
Click. The user (typically the Preferences application) can control
the alarm, system, and master sound amplitudes.

Using the Sound Manager
To execute a sound manager command, call SndDoCmd and pass the
sound channel pointer (presently, only null is supported and maps
to the shared channel), a pointer to a structure of SndCommandType,
and a flag indicating whether the command should be performed
asynchronously (not yet implemented; all commands execute syn-
chronously).

To play a default system sound, such as a click or an error beep, call
SndPlaySystemSound, passing the system sound id. For the com-
plete list of system sound IDs, see SoundMgr.h.

Sound Manager Function Summary
• SndDoCmd

• SndGetDefaultVolume

• SndPlaySystemSound

• SndSetDefaultVolume
174 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Error Manager
The Error Manager
The error manager can be used by applications or system software
for displaying unexpected run-time errors such as those that typi-
cally show up during program development. Final versions of ap-
plications or system software won’t use the error manager. The error
manager API consists of a set of functions for displaying an alert
with an error message, file name, and the line number where the
error occurred. If a debugger is connected, it is entered when the
error occurs.

The error manager also provides a “try and catch” mechanism that
applications can use for handling such run-time errors as out of
memory conditions, user input errors, etc. This mechanism is
closely modeled after the try/catch functionality of the recent ANSI
C specification.

Displaying Development Errors
The error manager provides some compiler macros which can be
used in source code. These macros display a fatal alert dialog on the
screen and provide buttons to reset the device or enter the debugger
after the error is displayed. There are three macros: ErrDisplay,
ErrFatalDisplayIf, and ErrNonFatalDisplayIf.
ErrDisplay always displays the error message on the screen,
ErrFatalDisplayIf and ErrNonFatalDisplayIf display the
error message only if their first argument is TRUE.

The error manager uses the compiler define
ERROR_CHECK_LEVEL to control the level of error messages dis-
played. You can set the value of the compiler define to control which
level of error checking and display is compiled into the application.
Three levels of error checking are supported: full, partial, and none.

• Setting the value of the compiler define to
ERROR_CHECK_NONE (0) does not compile in any calls.

• Setting the value to ERROR_CHECK_PARTIAL (1) compiles
in only the ErrDisplay and ErrFatalDisplayIf calls.

• Setting the value to ERROR_CHECK_FULL (2) compiles in
all three calls.

During development, it makes sense to set full error checking for
early development, partial error checking during alpha and beta test
Developing Palm OS Applications, Part I 175

Using Palm OS Managers
The Error Manager
periods, and no error checking for the final product. At partial error
checking, only fatal errors are displayed; error conditions which are
only possible are ignored under the assumption that the application
developer is already aware of the condition and designed the soft-
ware to operate that way.

The Try and Catch Mechanism
The “try and catch” mechanism of the error manager is closely mod-
eled after the ANSI C try and catch standard. The error manager is
aware of the machine state of the Palm OS device and is thus written
to correctly save and restore its state. (The built-in try and catch of
the compiler can’t be used because of machine dependence.)

Try and catch is basically a “neater” way of implementing a GoTo if
an error occurs. A typical way of handling errors in the middle of a
routine is to go to the end of the routine as soon as an error occurs
and then have some general purpose clean-up code at the end of
every routine. Errors in nested routines are even trickier because the
result code from every subroutine call must be checked before con-
tinuing.

When you set up a try/catch you are providing the compiler with a
place to jump to when an error occurs. You can go to that error han-
dling routine at any time by calling ErrThrow. When it sees the
ErrThrow call, the compiler performs a goto to your error han-
dling code. The greatest advantage to calling ErrThrow, however, is
for handling errors in nested subroutine calls.

Even if ErrThrow is called from a nested subroutine, execution im-
mediately goes to the same error handling code in the higher-level
call. The compiler and run-time environment automatically strip off
the stack frames that were pushed onto the stack during the nesting
process and go to the error handling section of the higher-level call.
You no longer have to check for result codes after calling every sub-
routine; this greatly simplifies your source code and reduces its size.
176 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Error Manager
Using the Error Manager
Calls to the error manager to display errors are actually compiler
macros that are conditionally compiled into your program. Most of
the calls take a Boolean parameter, which should be set to TRUE to
display the error, and a pointer to a text message to display if the
condition is true. Typically, the Boolean parameter is an in-line ex-
pression that evaluates to true if there is an error condition. As a re-
sult, both the expression that evaluates the error condition and the
message text are left out of the compiled code when error checking
is turned off. You can call ErrFatalDisplayIf or ErrDisplay,
but using ErrFatalDisplayIf makes your source code look
neater.

For example, assume your source code looks like this:

result = DoSomething();
ErrFatalDisplayIf (result < 0, “unexpected

result from DoSomething”);

With error checking turned on, this code displays an error alert dia-
log if the result from DoSomething() is less than 0. Besides the
error message itself, this alert also shows the file name and line
number of the source code that called the error manager. With error
checking turned off, both the expression evaluation err < 0 and
the error message text are left out of the compiled code.

The same net result can be achieved by the following code:

result = DoSomething();
#if ERROR_CHECK_LEVEL != ERROR_CHECK_NONE
if (result < 0)
ErrDisplay (“unexpected result from

DoSomething”);
#endif

But this solution is longer and requires more work than simply call-
ing ErrFatalDisplayIf. It also makes the source code harder to
follow.
Developing Palm OS Applications, Part I 177

Using Palm OS Managers
The Error Manager
Using the Try and Catch Mechanism

The following example illustrates the possible layout for a a typical
routine using the error manager’s try and catch mechanism:

ErrTry {
 p = MemPtrNew(1000);

if (!p) ErrThrow(errNoMemory);
MemSet(p, 1000, 0);
CreateTable(p);
PrintTable(p);

 }

 ErrCatch(err) {
 // Recover or cleanup after a failure in the
 // above Try block."err" is an int
 // identifying the reason for the failure.

 // You may call ErrThrow() if you want to
 // jump out to the next Catch block.

 // The code in this Catch block does not
 // execute if the above Try block completes

// without a Throw.

if (err == errNoMemory)
ErrDisplay("Out of Memory");

else
ErrDisplay("Some other error");

 } ErrEndCatch
// You must structure your code exactly as

 //above. You can’t have an ErrTry without an
//ErrCatch { } ErrEndCatch, or vice versa.

Any call to ErrThrow within the ErrTry block results in control
passing immediately to the ErrCatch block. Even if the subroutine
CreateTable called ErrThrow, control would pass directly to the
178 Developing Palm OS Applications, Part I

Using Palm OS Managers
The Error Manager
ErrCatch block. If the ErrTry block completes without calling
ErrThrow, the ErrCatch block is not executed.

You can nest multiple ErrTry blocks. For example, if you wanted to
do some cleanup at the end of CreateTable in case of error, you
could put ErrTry/ErrCatch blocks in CreateTable, clean up in
the ErrCatch block there first, and then call ErrThrow to jump to
the top-level ErrCatch.

Error Manager Function Summary
• ErrDisplay

• ErrDisplayFileLineMsg

• ErrFatalDisplayIf

• ErrNonFatalDisplayIf

• ErrThrow
Developing Palm OS Applications, Part I 179

Using Palm OS Managers
The Error Manager
180 Developing Palm OS Applications, Part I

7
Control, Field, and Insertion
Point Functions

Control Functions

CtlDrawControl

Purpose Draw a control object (and the text in it) on screen. The control is
drawn only if its usable attribute is TRUE.

Prototype void CtlDrawControl (ControlPtr ControlP)

Parameters ControlP Pointer to the control object to draw.

Result Returns nothing.

Comments Sets the visible attribute to TRUE.

See Also CtlSetUsable, CtlShowControl

CtlEraseControl

Purpose Erase a usable and visible control object and its frame from the
screen.

Prototype void CtlEraseControl (ControlPtr ControlP)

Parameters ControlP Pointer to control object to erase.

Comments Sets the visible attribute to FALSE.
Developing Palm OS Applications, Part I 181

Control, Field, and Insertion Point Functions
Control Functions
CtlGetLabel

Purpose Return a character pointer to a control’s text label.

Prototype CharPtr CtlGetLabel (ControlPtr ControlP)

Parameters ControlP Pointer to control object.

Result Returns a pointer to a null-terminated string.

See Also CtlSetLabel

CtlGetValue

Purpose Return the current value (on or off) of the specified control. This
function is valid only for push buttons and check boxes. The return
value is undefined for other control types.

Prototype short CtlGetValue (ControlPtr ControlP)

Parameters ControlP Pointer to a control object.

Result Returns the current value of the control; 0 = off, 1 = on.

See Also CtlSetValue
182 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Control Functions
CtlHandleEvent

Purpose Handle event in the specified control object.

Prototype Boolean CtlHandleEvent (ControlPtr ControlP,
 EventPtr EventP)

Parameters ControlP Pointer to control object.

EventP Pointer to an EventType structure.

Result Returns TRUE if an event is handled by this function. Events that
are handled are:

• penDownEvent if the pen is within the bounds of the control
• ctlEnterEvent and ctlExitEvent, if the control ID

in the event data matches the control’s ID.

Comments The control object’s usable, enabled, and visible attributes
must be TRUE. This routine handles three type of events:
penDownEvent, ctlEnterEvent, and ctlRepeatEvent.

When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the control object. If it is, a
ctlEnterEvent is added to the event queue and the routine exits.

When this routine receives a ctlEnterEvent, the control object is
inverted.

When this routine receives a ctlEnterEvent or
ctlRepeatEvent, it checks that the control ID in the passed event
record matches the ID of the specified control. If they match, this
routine tracks the pen until it comes up or until it leaves the ob-
ject’s bounds. When that happens, ctlSelectEvent is sent to the
event queue if the pen came up in the bounds of the control. If the
pen exits the bounds, a ctlExitEvent is sent to the event queue.
Developing Palm OS Applications, Part I 183

Control, Field, and Insertion Point Functions
Control Functions
CtlHideControl

Purpose Set a control’s usable attribute to FALSE and erase the control
from the screen. This function calls CtlEraseControl.

Prototype void CtlHideControl (ControlPtr ControlP)

Parameters ControlP Pointer to the control object to hide.

Result Returns nothing.

Comments A control that is not usable doesn’t draw and doesn’t respond to
the pen.

Sets the visible and the usable attributes to FALSE.

See Also CtlShowControl

CtlHitControl

Purpose Simulate tapping a control. This function adds a ctlSelectEvent
to the event queue.

Prototype void CtlHitControl (ControlPtr ControlP)

Parameters ControlP Pointer to a control object.

Result Returns nothing.

Comments Useful for testing.
184 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Control Functions
CtlEnabled

Purpose Return TRUE if the control is enabled. Disabled controls do not re-
spond to the pen.

Prototype Boolean CtlEnabled (ControlPtr ControlP)

Parameters ControlP Pointer to control object.

Result Returns TRUE if enabled, FALSE if not.

See Also CtlSetEnabled

CtlSetEnabled

Purpose Set a control as enabled or disabled. Disabled controls do not re-
spond to the pen.

Prototype void CtlSetEnabled (ControlPtr ControlP,
Boolean enable)

Parameters ControlP Pointer to a control object.

enable TRUE to set enabled, FALSE to set not enabled.

Result Returns nothing.

See Also CtlEnabled
Developing Palm OS Applications, Part I 185

Control, Field, and Insertion Point Functions
Control Functions
CtlSetLabel

Purpose Set the current label for the specified control object. If the control
object currently has its usable and visible attributes set to
TRUE, redraw it with the new label.

Prototype void CtlSetLabel (ControlPtr ControlP,
CharPtr newLabel)

Parameters ControlP Pointer to a control object.

newLabel Pointer to the new text label.
Must be a null-terminated string.

Result Returns nothing.

Comments This function resizes the width of the control to the size of the new
label.

The pointer passed to this function is stored in the control’s data
structure; the control does not make a copy of the string passed.

See Also CtlGetLabel

CtlSetUsable

Purpose Set a control usable or not usable.

Prototype void CtlSetUsable (ControlPtr ControlP,
Boolean usable)

Parameters ControlP Pointer to a control object.

usable TRUE to set usable, FALSE to set not usable.

Result Returns nothing.

Comments Does not usually update the control.

See Also CtlEraseControl, CtlDrawControl
186 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Control Functions
CtlSetValue

Purpose Set the current value (on or off) of the specified control. If the con-
trol is visible, it is visually updated.

Prototype void CtlSetValue (ControlPtr ControlP,
short newValue)

Parameters ControlP Pointer to a control object.

newValue 0 = off, non-zero = on.

Result Returns nothing.

Comments Does not usually update the control.

This function works only with push buttons and check boxes.
Other controls ignore calls to this function.

See Also CtlGetValue

CtlShowControl

Purpose Set a control’s usable attribute to TRUE and draw the control on
the screen. This function calls CtlDrawControl.

Prototype void CtlShowControl (ControlPtr ControlP)

Parameters ControlP Pointer to a control object.

Result Returns nothing.

Comments If the control is already usable, this function is the functional equiv-
alent of CtlDrawControl.

Sets the visible and the usable attributes to TRUE.

See Also CtlHideControl
Developing Palm OS Applications, Part I 187

Control, Field, and Insertion Point Functions
Field UI Functions
Field UI Functions

FldCalcFieldHeight

Purpose Determine the height of a field for a string.

Prototype Word FldCalcFieldHeight (CharPtr chars,
Word maxWidth)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Result Returns total number of lines needed to draw the string passed.

FldCompactText

Purpose Compact the memory block that contains the text of the field to re-
lease any unused space.

Prototype void FldCompactText (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns nothing.

Comments As characters are added to the text of a field, the block that con-
tains the text is grown. The block is expanded in chunks so that it
doesn’t have to expand each time a character is added. This results
in some unused space in the text block.

Needs to be called by applications on field objects which edit data
records in place before the field is unlocked, or at any other time
when a compact field is desirable; for example, when the form is
being closed.
188 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldCopy

Purpose Copy the current selection to the text clipboard.

Prototype void FldCopy (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns nothing.

Comments This function leaves the current selection highlighted.

This functions replaces anything previously in the text clipboard.

If there is no selection, this function does nothing.

See Also FldCut, FldPaste

FldCut

Purpose Copy the current selection to the text clipboard, delete the selection
from the field, and redraw the field.

Prototype void FldCut (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns nothing.

Comments Anything previously in the text clipboard is replaced by this func-
tion.

If there is no selection, this function does nothing.

See Also FldCopy, FldPaste
Developing Palm OS Applications, Part I 189

Control, Field, and Insertion Point Functions
Field UI Functions
FldDelete

Purpose Delete the specified range of characters from the field and redraw
the field.

Prototype void FldDelete (FieldPtr fld, Word start, Word end)

Parameters fld Pointer to the field object to delete from.

start Starting character position.

end Ending character position.

Result Returns nothing.

See Also FldInsert

FldDirty

Purpose Return true if the field has been modified by the user since the text
value was set (FldSetText).

Prototype Boolean FldDirty (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure)

Result Returns TRUE if the field has been modified by the user, FALSE if
the field has not been modified.

See Also FldSetDirty
190 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldDrawField

Purpose Draw the text of the field. The field’s usable attribute must be
TRUE or the field won’t be drawn.

Prototype void FldDrawField (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns nothing.

Comments This function does not erase the area behind the field before
drawing.

If the field has the focus, the blinking insertion point is displayed
in the field.

See Also FldEraseField

FldEraseField

Purpose Erase the text of a field and turn off the insertion point if it’s in the
field.

Prototype void FldEraseField (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns nothing.

Comments The function does not modify the contents of the field.

If the field has the focus, the blinking insertion point is turned off.

See Also FldDrawField
Developing Palm OS Applications, Part I 191

Control, Field, and Insertion Point Functions
Field UI Functions
FldFreeMemory

Purpose Release the memory allocated to the text of a field and the word-
wrapping information.

Prototype void FldFreeFieldMemory (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns nothing.

Comments This function releases the memory allocated to hold the text of a
field (the memory block pointed to by the text member of the
FieldType data structure) and the memory allocated to hold the
display lines information (the memory block pointed to by the
lines member in the FieldType data structure).

This function does not affect the display of the field.

FldGetAttributes

Purpose Return the attributes of a field.

Prototype void FldGetAttributes (FieldPtr fld,
FieldAttrPtr attrP)

Parameters fld Pointer to a FieldType structure.

attrP Pointer to FieldAttrType, see Field.h.

Result Returns nothing.

See Also FldSetAttributes
192 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldGetBounds

Purpose Return the current bounds of a field.

Prototype void FldGetBounds (FieldPtr fld, RectanglePtr rect)

Parameters fld Pointer to a field object (FieldType data structure).

rect Pointer to a RectangleType structure.

Result Returns the field’s bounds in the RectangleType structure refer-
ence by bounds.

Comments Returns the rect field of the FieldType structure.

See Also FldSetBounds

FldGetFont

Purpose Return the ID of the font used to draw the text of a field.

Prototype FontID FldGetFont (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns the ID of the font.

See Also FldSetFont
Developing Palm OS Applications, Part I 193

Control, Field, and Insertion Point Functions
Field UI Functions
FldGetInsPtPosition

Purpose Return the string position of the insertion point.

Prototype Word FldGetInsPtPosition (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns the character position of insertion point.

Comments The insertion point position number is to the left of the string posi-
tion number. In multiline fields, line feeds are counted as part of
the string and the position number after the line feed is the begin-
ning of the next line.

See Also FldSetInsPtPosition

FldGetMaxChars

Purpose Return the maximum number of characters the field accepts.

Prototype Word FldGetMaxChars (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns the maximum number of characters the user is allowed to
enter.

See Also FldSetMaxChars
194 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldGetScrollPosition

Purpose Return the string position of the first character in the first line of a
field.

Prototype Word FldGetScrollPosition (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns the character position of first visible character.

See Also FldSetScrollPosition

FldGetSelection

Purpose Return the current selection of a field.

Prototype void FldGetSelection (FieldPtr fld,
WordPtr startPosition,
WordPtr endPosition)

Parameters fld Pointer to a field object (FieldType data structure).

startPosition Pointer to start-character position of selected range
of characters.

endPosition Pointer to end-character position of selected range
of characters.

Result Returns the start and end position in startPosition and
endPosition.

Comments The first character in a field is at position zero.

If the user has selected the first five characters of a field,
startPosition will contain the value 0 and endPosition the
value 5.

See Also FldSetSelection
Developing Palm OS Applications, Part I 195

Control, Field, and Insertion Point Functions
Field UI Functions
FldGetTextAllocatedSize

Purpose Return the number of characters allocated to hold the field’s text
string. Don’t confuse this number with the length of the text string.

Prototype Word FldGetTextAllocatedSize (FieldPtr fld)

Parameters fld Pointer to a field object.

Result Returns the number of characters allocated for the field’s text.

See Also FldSetTextAllocatedSize

FldGetTextHandle

Purpose Return a handle to the block that contains the text string of a field.

Prototype Handle FldGetTextHandle (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns the handle of the text string of a field; 0 is a possible value.

Comments If 0 is returned, no handle has been allocated for the field pointer.

See Also FldSetTextHandle, FldGetTextPtr
196 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldGetTextHeight

Purpose Return the number of lines of text that the specified field has.

Prototype Word FldGetTextHeight (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns the number of lines with text.

Comments Empty lines are not counted.

See Also FldCalcFieldHeight

FldGetTextLength

Purpose Return the length of the text string of a field object.

Prototype Word FldGetTextLength (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns the length of a field’s text string.

FldGetTextPtr

Purpose Return a pointer to the text string of a field or null.

Prototype CharPtr FldGetTextPtr (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns a pointer to the text string of a field; NULL is a possible
value.

See Also FldSetTextPtr, FldGetTextHandle
Developing Palm OS Applications, Part I 197

Control, Field, and Insertion Point Functions
Field UI Functions
FldGetVisibleLines

Purpose Return the number of lines that can be displayed within the visible
bounds of the field.

Prototype Word FldGetVisibleLines (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns the number of lines.

FldGrabFocus

Purpose Turn the insertion point on (if the specified field is visible) and po-
sition the blinking insertion point in the field.

Prototype void FldGrabFocus (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns nothing.

Comments This function sets the field attribute hasFocus to TRUE.

See Also FldReleaseFocus
198 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldHandleEvent

Purpose Handles the following events: keyDownEvent, penDownEvent,
and fldEnterEvent. The field’s editable and usable attributes
must be set to TRUE.

Prototype Boolean FldHandleEvent (FieldPtr fld,
EventPtr EventP)

Parameters fld Pointer to a field object (FieldType data structure).

EventP Pointer to an event (EventType data structure).

Result Returns TRUE if the event was handled.

Comments When a keyDownEvent occurs, the keystroke appears in the field
if it is a printable character or manipulates the insertion point if it
is a “movement” character. The field is automatically updated.

When a penDownEvent occurs, an “editable” field sends a
fldEnterEvent to the event queue.

 When a fldEnterEvent occurs, the field grabs the focus and the
insertion point is placed in the specified position.

If the event alters the contents of the field, this function visually up-
dates the field.

This function does not handle any events if the field is not editable.
Developing Palm OS Applications, Part I 199

Control, Field, and Insertion Point Functions
Field UI Functions
FldInsert

Purpose Replace the current selection with the string passed.

Prototype Boolean FldInsert (FieldPtr fld,
CharPtr insertChars,
Word insertLen)

Parameters fld Pointer to the field object to insert to.

insertChars Text string to be inserted.

insertLen Length of the text string to be inserted.

Result Returns TRUE if the string was successfully inserted, otherwise
FALSE.

Comments If there is no current selection, the string passed is inserted at the
position of the insertion point.

See Also FldPaste, FldDelete, FldCut, FldCopy

FldMakeFullyVisible

Purpose Cause a dynamically resizable field to expand its height to make its
text fully visible.

Prototype Boolean FldMakeFullyVisible (FieldPtr fld)

Parameters fld Pointer to a field object.

Result Returns TRUE if the field was not fully visible, otherwise FALSE.

Comments If the field’s height changes, this function sends a
fldHeightChangedEvent via the event queue.

Caveats If the field is in a table, the table resizes it; otherwise, it is not re-
sized.
200 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldPaste

Purpose Replace the current selection in the field with the contents of the
text clipboard.

Prototype void FldPaste (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns nothing

Comments This insertion point is positioned after the last character inserted
and the field is scrolled, if necessary, so the insertion point is vis-
ible.

If there is no current selection, the clipboard text is inserted at the
position of the insertion point. If there is no text in the clipboard,
do not delete the current selection.

See Also FldInsert, FldDelete, FldCut, FldCopy

FldRecalculateField

Purpose Update the structure that contains the word-wrapping information
for each visible line.

Prototype void FldRecalculateField (FieldPtr fld,
Boolean redraw)

Parameters fld Pointer to a field object (FieldType data structure).

redraw If TRUE, redraws the field.

Result Returns nothing.

Comments If necessary this function reallocates the memory block that con-
tains the displayed lines information, the block pointed to by the
lines member in the FieldType data structure.

Call this function if the field data structure is modified in a way
that invalidates the visual appearance of the field.
Developing Palm OS Applications, Part I 201

Control, Field, and Insertion Point Functions
Field UI Functions
FldReleaseFocus

Purpose Turn the blinking insertion point off if the field is visible and has
the current focus; reset the Graffiti state; and reset the undo state.

Prototype void FldReleaseFocus (FieldPtr fld)

Parameters fld Pointer to a field object (FieldType data structure).

Result Returns nothing.

Comments This function sets the field attribute hasFocus to FALSE.

See Also FldGrabFocus

FldScrollable

Purpose Return TRUE if the field is scrollable in the direction specified.

Prototype Boolean FldScrollable (FieldPtr fld,
DirectionType direction)

Parameters fld Pointer to a field object (FieldType data structure).

direction “up” or “down.”

Result Returns TRUE if the field is scrollable, FALSE otherwise.

See Also FldScrollField
202 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldScrollField

Purpose Scroll a field up or down by the number of lines specified.

Prototype void FldScrollField (FieldPtr fld,
Word linesToScroll,
DirectionType direction)

Parameters fld Pointer to a field object (FieldType data structure).

linesToScroll Number of lines to scroll.

direction “up” or “down.”

Result Returns nothing.

Comments Can’t scroll right or left.

The field object is redrawn if it’s scrolled.

See Also FldScrollable

FldSendChangeNotification

Purpose Send a fldChangedEvent via the event queue.

Prototype void FldSendChangeNotification (FieldPtr fld)

Parameters fld Pointer to a field object.

Result Returns nothing.
Developing Palm OS Applications, Part I 203

Control, Field, and Insertion Point Functions
Field UI Functions
FldSendHeightChangeNotification

Purpose Send a fldHeightChangedEvent via the event queue.

Prototype void FldSendHeightChangeNotification
(FieldPtr fld,
Word pos,
Short numLines)

Parameters fld Pointer to a field object.

pos Character position of the insertion point.

numLines New number of lines in the field.

Result Returns nothing.

FldSetAttributes

Purpose Set the attributes of a field.

Prototype void FldSetAttributes (FieldPtr fld,
FieldAttrPtr attrP)

Parameters fld Pointer to a FieldType structure.

attrP Pointer to the attributes.

Result Returns nothing.

See Also FldGetAttributes
204 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldSetBounds

Purpose Change the position and or size of a field.

Prototype void FldSetBounds (FieldPtr fld, RectanglePtr rect)

Parameters fld Pointer to a field object (FieldType data structure).

rect Pointer to a RectangleType structure that contains the new
bounds of the display.

Result Returns nothing.

Comments If the field is visible, the field is redrawn within its new bounds.

The memory block that contains the word-wrapping information
will be resized if the number of visible lines is changed.

The insertion point is assumed to be off when this routine is called.

Caveats Don’t change the width of the object while it is visible.

See Also FldGetBounds

FldSetDirty

Purpose Set whether the field has been modified.

Prototype void FldSetDirty (FieldPtr fld, Boolean dirty)

Parameters fld Pointer to a field object.

dirty TRUE if the text is modified.

Result Returns nothing.

See Also FldDirty
Developing Palm OS Applications, Part I 205

Control, Field, and Insertion Point Functions
Field UI Functions
FldSetFont

Purpose Set the font of the field, update the word-wrapping information
and draw the field if the field is visible.

Prototype void FldSetFont (FieldPtr fld, FontID fontID)

Parameters fld Pointer to a field object (FieldType data structure).

fontID ID of new font.

Result Returns nothing.

See Also FldGetFont

FldSetInsPtPosition

Purpose Set the location of the insertion point for a given string position.

Prototype void FldSetInsPtPosition (FieldPtr fld, Word pos)

Parameters fld Pointer to a field object (FieldType data structure).

pos Character position of insertion point.

Result Returns nothing.

Comments If the position is beyond the visible text, the insertion point is dis-
abled.

See Also FldGetInsPtPosition
206 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldSetMaxChars

Purpose Set the maximum number of characters the field accepts.

Prototype void FldSetMaxChars (FieldPtr fld, Word maxChars)

Parameters fld Pointer to a field object (FieldType data structure).

maxChars Maximum number of characters the user may enter.

Result Returns nothing.

Comments Line feed characters are included when the number of characters is
determined.

See Also FldGetMaxChars

FldSetScrollPosition

Purpose Set the string position of the first character in the first line of a
field. Redraw the field if necessary.

Prototype void FldSetScrollPosition (FieldPtr fld, Word pos)

Parameters fld Pointer to a field object (FieldType data structure).

pos Character position of first visible character.

Result Returns nothing.

See Also FldGetScrollPosition
Developing Palm OS Applications, Part I 207

Control, Field, and Insertion Point Functions
Field UI Functions
FldSetSelection

Purpose Set the current selection in a field and highlight the selection if the
field is visible.

Prototype void FldSetSelection (FieldPtr fld,
Word startPosition,
Word endPosition)

Parameters fld Pointer to a field object (FieldType data structure)

startPosition Starting character position of the character range
to highlight.

endPosition End character position of the character range
to highlight.

Result Returns nothing.

Comments This function does not affect the display; the highlight is not re-
drawn until the field is redrawn.

To cancel a selection, set both startPosition and endPosition
to the same value.

If startPosition equals endPosition, the current selection is
unhighlighted.
208 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldSetText

Purpose Set the text value of the field, update the word-wrapping informa-
tion, and place the insertion point after the last visible character.

Prototype void FldSetText (FieldPtr fld,
VoidHand textHandle,
Word offset,
Word size)

Parameters fld Pointer to a field object (FieldType data structure).

textHandle Handle of a block containing a null-terminated text
string.

offset Offset from start of block to start of the text string.

size Allocated size of text string, not the string length.

Result Returns nothing.

Comments The pointer passed is stored in the field’s structure; in other words
this function does not make a copy of the string passed.

If a size of zero is passed, the size is computed as the block size,
less the offset passed. If more text is set than there is room for in
memory, an error occurs.

WARNING: This routine does not free the memory block that
holds the current text value.

See Also FldSetTextPtr, FldSetTextHandle
Developing Palm OS Applications, Part I 209

Control, Field, and Insertion Point Functions
Field UI Functions
FldSetTextAllocatedSize

Purpose Set the number of characters allocated to hold the field’s text
string. Don’t confuse this with the length of the text string.

Prototype void FldSetTextAllocatedSize (FieldPtr fld,
Word allocatedSize)

Parameters fld Pointer to a field object.

allocatedSize Number of characters to allocate for the text.

Result Returns nothing.

See Also FldGetTextAllocatedSize

FldSetTextHandle

Purpose Set the handle of the block that contains the text string of a field.

Prototype void FldSetTextHandle (FieldPtr fld,
Handle textHandle)

Parameters fld Pointer to a field object (FieldType data structure).

textHandle Handle of a field’s text string; 0 is a possible value.

Result Returns nothing.

See Also FldSetTextPtr, FldSetText
210 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Field UI Functions
FldSetTextPtr

Purpose Set the field’s text to point to a text string.

Prototype void FldSetTextPtr (FieldPtr fld, CharPtr textP)

Parameters fld Pointer to a field object (FieldType data structure).

textP Pointer to a null-terminated string.

Result Returns nothing.

Comments Since the field cannot resize a pointer (only handles can be re-
sized), the field must be not editable; if the field is editable, an
error occurs.

This function does not visually update the field.

See Also FldSetTextPtr, FldSetTextHandle

FldSetUsable

Purpose Set a field usable or nonusable.

Prototype void FldSetUsable (FieldPtr fld, Boolean usable)

Parameters fld Pointer to a FieldType structure.

usable TRUE to set usable, FALSE to set nonusable.

Result Returns nothing.

Comments A nonusable field does not display or accept input.

See Also FldEraseField, FldDrawField
Developing Palm OS Applications, Part I 211

Control, Field, and Insertion Point Functions
Field UI Functions
FldUndo

 Purpose Undo the last change made to the field object. Changes include
typing, backspaces, delete, paste, and cut.

Prototype void FldUndo (FieldPtr fld)

Parameters fld Pointer to the field that has the focus.

Result Returns nothing.

See Also FldPaste, FldCut, FldCopy

FldWordWrap

Purpose Given a string and a width, return the number of characters that
can be displayed using the current font.

Prototype Word FldWordWrap (CharPtr chars, Word maxWidth)

Parameters chars Pointer to a null-terminated string.

maxWidth Maximum line width in pixels.

Result Returns the number of characters.
212 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Insertion Point Functions
Insertion Point Functions

InsPtEnable

Purpose Enable or disable the insertion point. When the insertion point is
disabled it is invisible, when it is enabled it blinks.

Prototype void InsPtEnable (Boolean enableIt)

Parameters enable TRUE = enable, FALSE = disable

Result Returns nothing.

Comments This function is called by the Form functions when a text field loses
or gains the focus, and by the Windows function when a region of
the display is copied (WinCopyRectangle).

See Also InsPtEnabled

InsPtEnabled

Purpose Return TRUE if the insertion point is enabled or FALSE if it is dis-
abled.

Prototype Boolean InsPtEnabled (void)

Parameters None.

Result Returns TRUE if the insertion point is enabled (blinking), returns
FALSE if the insertion point is disabled (invisible).

See Also InsPtEnable
Developing Palm OS Applications, Part I 213

Control, Field, and Insertion Point Functions
Insertion Point Functions
InsPtGetHeight

Purpose Return the height of the insertion point.

Prototype short InsPtGetHeight (void)

Parameters None.

Result Returns the height of the insertion point, in pixels.

InsPtGetLocation

Purpose Return the screen-relative position of the insertion point.

Prototype void InsPtGetLocation (short *x, short *y)

Parameters x Pointer to top-left position of insertion point’s x coordinate.

y Pointer to top-left position of insertion point’s y coordinate.

Result Returns nothing. Stores the location in x and y.

Comments This function is called by the Field functions. An application
would not normally call this function.
214 Developing Palm OS Applications, Part I

Control, Field, and Insertion Point Functions
Insertion Point Functions
InsPtSetHeight

Purpose Set the height of the insertion point.

Prototype void InsPtSetHeight (short height)

Parameters height Height of the insertion point in pixels.

Result Returns nothing.

Comments Set the height of the insertion point to match the character height
of the font used in the field that the insertion point is in. When the
current font is changed, the insertion point height should be set to
the line height of the new font.

If the insertion point is visible when its height is changed, it is
erased and redrawn with its new height.

See Also InsPtGetHeight

InsPtSetLocation

Purpose Set the screen-relative position of the insertion point.

Prototype void InsPtSetLocation (short x, short y)

Parameters x Number of pixels from the left side of the display.

y Number of pixels from the top of the display.

Result Returns nothing.

Comments The position passed to this function is the location of the top-left
corner of the insertion point.

This function should be called only by the Field functions.

See Also InsPtGetLocation
Developing Palm OS Applications, Part I 215

Control, Field, and Insertion Point Functions
Insertion Point Functions
Functions for System Use Only

InsPtCheckBlink

Prototype void InsPtCheckBlink (void)

WARNING: For System Use Only.

InsPtInitialize

Prototype void InsPtInitialize (void)

WARNING: For System Use Only.
216 Developing Palm OS Applications, Part I

8
Form, List, and Menu
Functions

Form Functions

FrmAlert

Purpose Create a modal dialog from an alert resource and display it until
the user selects a button in the dialog.

Prototype Word FrmAlert (Word alertId)

Parameters alertId ID of the alert resource.

Result Returns the item number of the button the user selected. A
button’s item number is determined by its order in the alert dialog;
the first button has the item number 0 (zero).

See Also FrmDoDialog, FrmCustomAlert

FrmCloseAllForms

Purpose Sends a frmCloseEvent to all open forms.

Prototype void FrmCloseAllForms (void)

Parameters None.

Comments Can be called by applications to ensure that all forms are closed
cleanly before exiting PilotMain(); that is, before termination.

See Also FrmSaveAllForms
 Developing Palm OS Applications, Part I 217

Form, List, and Menu Functions
Form Functions
FrmCopyLabel

Purpose Copy the passed string into the data structure of the specified label
object in the active form.

Prototype void FrmCopyLabel (FormPtr frm,
Word labelID,
CharPtr newLabel)

Parameters frm Pointer to memory block that contains the form.

labelID ID of form label object.

newLabel Pointer to a null-terminated string.

Result Returns nothing.

Comments The size of the new label must not exceed the size of the label de-
fined in the resource. When defining the label in the resource,
specify an initial size at least as big as any of the strings that will be
assigned dynamically. Redraw the label if the form’s usable at-
tribute and the label’s visible attribute are set.

See Also FrmGetLabel
218 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmCopyTitle

Purpose Copy the title passed over the form’s current title. If the form is vis-
ible, the new title is drawn.

Prototype void FrmCopyTitle (FormPtr frm, CharPtr newTitle)

Parameters frm Memory block that contains the form.

newTitle Pointer to the new title string.

Result Returns nothing.

Comments The size of the new title must not exceed the title size defined in
the resource. When defining the title in the resource, specify an ini-
tial size at least as big as any of string to be assigned dynamically.

See Also FrmGetTitle

FrmCustomAlert

Purpose Create a modal dialog from an alert resource and display the
dialog until the user taps a button in the alert dialog.

Prototype Word FrmCustomAlert (Word alertId, CharPtr s1,
CharPtr s2, CharPtr s3)

Parameters alertId Resource ID of the alert.

s1, s2, s3 Strings to replace ^1, ^2, and ^3.

Result Returns the button number the user tapped (first button is zero).

Comments A button’s item number is determined by its order in the alert tem-
plate; the first button has the item number zero.

Up to three strings can be passed to this routine. They are used to
replace the “text replacement variables” ^1, ^2 and ^3 that are con-
tained in the message string of the alert resource.

See Also FrmAlert, FrmDoDialog
Developing Palm OS Applications, Part I 219

Form, List, and Menu Functions
Form Functions
FrmDeleteForm

Purpose Release the memory occupied by a form.

Any memory allocated to objects in the form is also released.

Prototype void FrmDeleteForm (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns nothing.

Comments This function does not modify the display.

See Also FrmInitForm, FrmReturnToForm

FrmDispatchEvent

Purpose Dispatch an event to the application’s handler for the form.

Prototype Boolean FrmDispatchEvent (EventPtr eventP)

Parameters eventP Pointer to an event.

Result Returns nothing.

Comments The event is dispatched to the current form unless the form ID is
specified in the event data, as, for example, with frmOpenEvent.

See Also FrmSetEventHandler, FrmHandleEvent
220 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmDoDialog

Purpose Display a modal dialog until the user taps a button in the dialog.

Prototype Word FrmDoDialog (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns the number of the button the user tapped (first button is
zero).

Comments A button’s item number is determined by its order in the alert tem-
plate; the first button has an item number of 0 (zero).

See Also FrmInitForm, FrmCustomAlert

FrmDrawForm

Purpose Draw all objects in a form and the frame around the form.

Prototype void FrmDrawForm (FormPtr frm)

Parameters frm Pointer to the memory block that contains the form.

Result Returns nothing.

Comments Saves the bits behind the form using the bitsBehindForm field.

See Also FrmEraseForm, FrmInitForm
Developing Palm OS Applications, Part I 221

Form, List, and Menu Functions
Form Functions
FrmEraseForm

Purpose Erase a form from the display.

 Prototype void FrmEraseForm (FormPtr frm)

Parameters frm Pointer to the memory block that contains the form.

Result Returns nothing.

Comments If the region obscured by the form was saved by FrmDrawForm,
this function restores that region.

See Also FrmDrawForm

FrmGetActiveForm

Purpose Return the currently active form.

Prototype FormPtr FrmGetActiveForm (void)

Parameters None.

Result Returns the pointer to the memory block that contains the form.

See Also FrmGetActiveFormID, FrmSetActiveForm

FrmGetActiveFormID

Purpose Return the ID of the currently active form.

Prototype Word FrmGetActiveFormID (void)

Parameters None.

Result Returns the currently active form’s ID number.

See Also FrmGetActiveForm
222 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmGetControlGroupSelection

Purpose Return the item number of the control selected in a group of con-
trols.

Prototype Byte FrmGetControlGroupSelection (FormPtr frm,
Byte groupNum)

Parameters frm Pointer to memory block that contains the form.

groupNum Control group number.

Result Returns the item number of the selected control, -1 if none is se-
lected.

Comments The item number is the index into the form’s objects data struc-
ture.

See Also FrmGetObjectId, FrmGetObjectPtr,
FrmSetControlGroupSelection

FrmGetControlValue

Purpose Return the on/off state of a control.

Prototype short FrmGetControlValue (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns the state of the control: 1 = on; 0 = off.

Comments The caller must specify a valid index. This function is used only for
push button and check box control objects.

See Also FrmGetObjectIndex, FrmSetControlValue
Developing Palm OS Applications, Part I 223

Form, List, and Menu Functions
Form Functions
FrmGetFirstForm

Purpose Return the first form in the window list.

Prototype FormPtr FrmGetFirstForm (void)

Parameters None.

Result Returns a pointer to a form, or NULL if there are no forms.

Comments The window list is a LIFO stack. The last window created is the
first window in the window list.

FrmGetFocus

Purpose Return the item (index) number of the object (UI element) that has
the focus.

Prototype Word FrmGetFocus (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns the index of the object (UI element) that has the focus, or -1
if none does.

See Also FrmGetObjectId, FrmGetObjectPtr, FrmSetFocus

FrmGetFormBounds

Purpose Return the visual bounds of the form; the region returned includes
the form’s frame.

Prototype void FrmGetFormBounds (FormPtr frm, RectanglePtr r)

Parameters frm Pointer to memory block that contains the form.

r Pointer to a RectangleType structure that will contain the
bounds.

Result Returns bounds of the form in r.
224 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmGetFormId

Purpose Return the resource ID of a form.

Prototype Word FrmGetFormId (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns form resource ID.

See Also FrmGetFormPtr

FrmGetFormPtr

Purpose Return a pointer to the form that has the specified ID.

Prototype FormPtr FrmGetFormPtr (Word formId)

Parameters formId Form ID number.

Result Returns a pointer to the memory block that contains the form, or
NULL if the form is not in memory.

See Also FrmGetFormId
Developing Palm OS Applications, Part I 225

Form, List, and Menu Functions
Form Functions
FrmGetGadgetData

Purpose Return the value stored in the data field of the gadget object.

Prototype VoidPtr FrmGetGadgetData (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the gadget object.

Result Returns a pointer to the custom gadget’s data.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the data field of a gadget object
contains a pointer to the custom object’s data structure.

See Also FrmSetGadgetData

FrmGetLabel

Purpose Return pointer to the text of the specified label object in the speci-
fied form.

Prototype CharPtr FrmGetLabel (FormPtr frm, Word labelID)

Parameters frm Pointer to memory block that contains the form.

labelID ID of the label object.

Result Returns pointer to the label string.

Comments Does not make a copy of the string; returns a pointer to the string.
The object must be a label.

See Also FrmCopyLabel
226 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmGetNumberOfObjects

Purpose Return the number of objects in a form.

Prototype Word FrmGetNumberOfObjects (FormPtr frm)

Parameters frmPtr Pointer to memory block that contains the form.

Result Returns the number of objects in the specified form.

See Also FrmGetObjectPtr, FrmGetObjectId

FrmGetObjectBounds

Purpose Retrieve the bounds of an object given its form and index.

Prototype void FrmGetObjectBounds (FormPtr frm,
Word ObjIndex,
RectanglePtr r)

Parameters frm Pointer to memory block that contains the form.

ObjIndex Index of an object in the form.

r Pointer to the rectangle containing the object bounds.

Result Returns nothing. The object’s bounds are returned in r.

See Also FrmGetObjectPositon, FrmGetObjectIndex,
FrmSetObjectPositon
Developing Palm OS Applications, Part I 227

Form, List, and Menu Functions
Form Functions
FrmGetObjectId

Purpose Return the ID of the specified object.

Prototype Word FrmGetObjectId (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Index of an object in the form.

Result Returns the ID number of a object.

Comments The application developer specifies a unique object ID.

See Also FrmGetObjectPtr, FrmGetObjectIndex

FrmGetObjectIndex

Purpose Return the item number of an object. The item number is the posi-
tion of the object in the form’s objects list.

Prototype Word FrmGetObjectIndex (FormPtr frm, Word objID)

Parameters frmPtr Pointer to memory block that contains the form.

objID ID of an object in the form.

Result Returns the item number of an object (the first item number is 0).

See Also FrmGetObjectPtr, FrmGetObjectId
228 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmGetObjectPositon

Purpose Return the coordinate of the specified object relative to the form.

Prototype void FrmGetObjectPositon (FormPtr frm,
Word objIndex,
SWordPtr x, SWordPtr y)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

x Pointer to window-relative x position.

y Pointer to window-relative y position.

Result Returns nothing.

Comment The function name is misspelled (the second “i” is missing).

See Also FrmGetObjectBounds, FrmSetObjectPositon

FrmGetObjectPtr

Purpose Return a pointer to the data structure of an object in a form.

Prototype void * FrmGetObjectPtr (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns pointer to an object in the form.

See Also FrmGetObjectIndex, FrmGetObjectId
Developing Palm OS Applications, Part I 229

Form, List, and Menu Functions
Form Functions
FrmGetObjectType

Purpose Return the type of an object.

Prototype FormObjectKind FrmGetObjectType (FormPtr frm,
Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns FormObjectKind of the item specified.

FrmGetTitle

Purpose Return a pointer to the title string of a form.

Prototype CharPtr FrmGetTitle (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns a pointer to title string.

Comments This is a pointer to the internal structure, not a copy.

See Also FrmCopyTitle, FrmSetTitle
230 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmGetUserModifiedState

Purpose Return TRUE if an object in the form has been modified by the user
since it was initialized or since last call to
FrmSetNotUserModified.

Prototype Boolean FrmGetUserModifiedState (FormPtr frm)

Parameters frm Pointer to the memory block that contains the form.

Result Returns TRUE if an object was modified, FALSE otherwise.

Comments Returns TRUE if the dirty attribute of the form has been set.

See Also FrmSetNotUserModified

FrmGetWindowHandle

Purpose Return the window handle of a form.

Prototype WinHandle FrmGetWindowHandle (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns the handle of the memory block that the form is in. Since
the form structure begins with the WindowType structure, this is
also a WinHandle.
Developing Palm OS Applications, Part I 231

Form, List, and Menu Functions
Form Functions
FrmGotoForm

Purpose Send a frmCloseEvent to the current form; send a
frmLoadEvent and a frmOpenEvent to the specified form.

Prototype void FrmGotoForm (Word formId)

Parameters formId ID of the form to display.

Result Returns nothing.

Comments The form event handler (FrmHandleEvent) erases and disposes of
a form when it receives a frmCloseEvent.

See Also FrmPopupForm

FrmHandleEvent

Purpose Handle the event that has occurred in the form.

Prototype Boolean FrmHandleEvent (FormPtr frm,
EventPtr event)

Parameters frm Pointer to the memory block that contains the form.

event Pointer to the event data structure.

Result Returns TRUE if the event was handled.

See Also FrmDispatchEvent
232 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmHelp

Purpose Display the specified help message until the user taps the done
button in the help dialog.

Prototype void FrmHelp (Word helpMsgId)

Parameters helpMsgId Resource ID of help message string.

Result Returns nothing.

Comments The ID passed is the resource ID of a string resource that contains
the help message. The help message is displayed in a modal dialog
with vertical scrolls if necessary.

FrmHideObject

Purpose Erase the specified object and set its attribute data so that it does
not redraw or respond to the pen.

Prototype void FrmHideObject (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns nothing.

See Also FrmGetObjectIndex, FrmShowObject
Developing Palm OS Applications, Part I 233

Form, List, and Menu Functions
Form Functions
FrmInitForm

Purpose Load and initialize a form resource.

Prototype FormPtr FrmInitForm (Word rscID)

Parameters rscID Resource ID of the form.

Result Returns a pointer to the form memory block.

Displays an error message if the form has already been initialized.

Comments This function does not affect the display nor make the form active.

See Also FrmDoDialog, FrmDeleteForm

FrmPopupForm

Purpose Send a frmOpenEvent to the specified form. This routine differs
from FrmGotoForm in that the current form is not closed.

Prototype void FrmPopupForm (Word formId)

Parameters formID Resource ID of form to open.

Result Returns nothing.

See Also FrmGotoForm
234 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmReturnToForm

Purpose Erase and delete the currently active form and make the specified
form the active form.

Prototype void FrmReturnToForm (Word formId)

Parameters formID Resource ID of the form to return to.

Result Returns nothing.

Comments It is assumed that the form being returned to is already loaded into
memory and initialized. Passing a form ID of 0 returns to the first
form in the window list, which is the last form to be loaded.

See Also FrmGotoForm, FrmPopupForm

FrmSaveAllForms

Purpose Send a frmSaveEvent to all open forms.

Prototype void FrmSaveAllForms (void)

Parameters None.

Result Returns nothing.

See Also FrmCloseAllForms
Developing Palm OS Applications, Part I 235

Form, List, and Menu Functions
Form Functions
FrmSetActiveForm

Purpose Set the active form. All input (key and pen) is directed to the active
form.

Prototype void FrmSetActiveForm (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns nothing.

Comments A penDownEvent outside the form but within the display area is
ignored.

See Also FrmGetActiveForm

FrmSetCategoryLabel

Purpose Set the category label displayed on the title line of a form. If the
form’s visible attribute is set, redraw the label.

Prototype void FrmSetCategoryLabel (FormPtr frm,
Word objIndex,
CharPtr newLabel)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

newLabel Pointer to the name of the new category.

Result Returns nothing.

Comments The pointer to the new label is saved in the object.
236 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmSetControlGroupSelection

Purpose Set the selected control in a group of controls.

Prototype void FrmSetControlGroupSelection (FormPtr frm,
 Byte groupNum,
 Word controlID)

Parameters frm Pointer to memory block that contains the form.

groupNum Control group number.

controlID ID of control to set.

Result Returns nothing.

Comments This function unsets all the other controls in the group. The display
is updated.

See Also FrmGetControlGroupSelection

FrmSetControlValue

Purpose Turn a control on or off.

Prototype void FrmSetControlValue (FormPtr frm,
Word objIndex,
short newValue)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

newValue New control value (non-zero equals on).

Result Returns nothing.

Comments The display is not changed.

See Also FrmGetControlValue
Developing Palm OS Applications, Part I 237

Form, List, and Menu Functions
Form Functions
FrmSetEventHandler

Purpose Set the event handler callback routine for the specified form.

Prototype void FrmSetEventHandler (FormPtr frm,
FormEventHandlerPtr handler)

Parameters frm Pointer to memory block that contains the form.

handler Address of a function.

Result Returns nothing.

Comments FrmHandleEvent calls this handler whenever it receives an event.

This routine should be called right after a form resource is loaded.
The callback routine is the mechanism for dispatching events to an
application. The tutorial explains how to use callback routines.

See Also FrmDispatchEvent

FrmSetFocus

Purpose Set the focus of a form to the specified object.

Prototype void FrmSetFocus (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object (UI element) that gets the
focus.

Result Returns nothing.

See Also FrmGetFocus, FrmGetObjectIndex
238 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmSetGadgetData

Purpose Store the value passed in the data field of the gadget object.

Prototype void FrmSetGadgetData (FormPtr frm,
Word objIndex,
VoidPtr data)

Parameters frmPtr Pointer to memory block that contains the form.

objIndex Item number of the object.

data Application-defined value.

Result Returns nothing.

Comments Gadget objects provide a way for an application to attach custom
gadgetry to a form. In general, the data field of a gadget object con-
tains a pointer to the custom object’s data structure.

See Also FrmGetGadgetData, FrmGetObjectIndex

FrmSetNotUserModified

Purpose Clear the flag that keeps track of whether or not the form has been
modified by the user.

Prototype void FrmSetNotUserModified (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns nothing.

See Also FrmGetUserModifiedState
Developing Palm OS Applications, Part I 239

Form, List, and Menu Functions
Form Functions
FrmSetObjectPositon

Purpose Set the window-relative coordinate of the specified object.

Prototype void FrmSetObjectPositon (FormPtr frm,
Word objIndex,
SWord x, SWord y)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

x Window-relative coordinate.

y Window-relative coordinate.

Result Returns nothing.

Comments Does not update the display. Presently only label objects are af-
fected.

See Also FrmGetObjectPositon, FrmGetObjectIndex,
FrmGetObjectBounds

FrmSetTitle

Purpose Set the title of a form. If the form is visible, draw the new title.

Prototype void FrmSetTitle (FormPtr frm, CharPtr newTitle)

Parameters frm Pointer to memory block that contains the form.

newTitle Pointer to the new title string.

Result Returns nothing.

Comments Draws the title if the form is visible.

Saves the pointer to the passed title string. Does not make a copy.

See Also FrmGetTitle, FrmCopyTitle, FrmCopyLabel
240 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Form Functions
FrmShowObject

Purpose Set an object (UI element) as usable. If the form is visible, draw the
object.

Prototype void FrmShowObject (FormPtr frm, Word objIndex)

Parameters frm Pointer to memory block that contains the form.

objIndex Item number of the object.

Result Returns nothing.

See Also FrmHideObject, FrmGetObjectIndex

FrmUpdateScrollers

Purpose Visually update the field scroll arrow buttons.

Prototype void FrmUpdateScrollers (FormPtr frm,
Word upIndex,
Word downIndex,
Boolean scrollableUp,
Boolean scrollableDown)

Parameters frm Pointer to a form.

upIndex Index of the up-scroller button.

downIndex Index of the down-scroller button.

scrollableUp TRUE if the up-scroll should be active.

scrollableDown TRUE if the down-scroll should be active.

Result Returns nothing.

See Also FrmGetObjectIndex
Developing Palm OS Applications, Part I 241

Form, List, and Menu Functions
Form Functions
FrmUpdateForm

Purpose Send a frmUpdateEvent to the specified form.

Prototype void FrmUpdateForm (Word formId, Word updateCode)

Parameters formID Resource ID of form to open.

updateCode If the update code is frmRedrawUpdateCode, the
form reinitializes its global variables and redraws
itself. Otherwise, the form reinitializes its global
variables but does not redraw itself.

Result Returns nothing.

FrmVisible

Purpose Return TRUE if the form is visible (is drawn).

Prototype Boolean FrmVisible (FormPtr frm)

Parameters frm Pointer to memory block that contains the form.

Result Returns TRUE if visible, FALSE if not visible.

See Also FrmDrawForm, FrmEraseForm
242 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
List UI Functions
List UI Functions

LstDrawList

Purpose Draw the list object if it is usable.

Prototype void LstDrawList (ListPtr list)

Parameters list Pointer to list object (ListType data structure).

Result Returns nothing.

Comments If there are more choices than can be displayed, this function en-
sures that the current selection is visible. If possible, the current se-
lection is displayed at the top. The current selection is highlighted.

If the list is disabled, it’s drawn grayed-out (strongly discouraged).
If it’s empty, nothing is drawn. If it’s not usable, nothing is drawn.

This function sets the visible attribute to TRUE.

See Also FrmGetObjectPtr, LstPopupList, LstEraseList

LstEraseList

Purpose Erase a list object.

Prototype void LstEraseList (ListPtr ListP)

Parameters ListP Pointer to a list object (ListType data structure).

Result Returns nothing.

Comments The visible attribute is set to FALSE by this function.

See Also FrmGetObjectPtr, LstDrawList
Developing Palm OS Applications, Part I 243

Form, List, and Menu Functions
List UI Functions
LstGetNumberOfItems

Purpose Return the number of items in a list.

Prototype Word LstGetNumberOfItems (ListPtr ListP)

Parameters ListP Pointer to a list object (ListType data structure).

Result Returns the number of items in a list.

See Also FrmGetObjectPtr, LstSetListChoices

LstGetSelection

Purpose Return the currently selected choice in the list. If there is no selec-
tion, return NoListSelection (-1).

Prototype Word LstGetSelection (ListPtr ListP)

Parameters ListP Pointer to list object.

Result Returns the item number of the current list choice. The list choices
are numbered sequentially, starting with 0; -1 = none.

See Also FrmGetObjectPtr, LstSetListChoices, LstSetSelection,
LstGetSelectionText
244 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
List UI Functions
LstGetSelectionText

Purpose Return a pointer to the text of the specified item in the list or NULL
if no such item exists.

Prototype CharPtr LstGetSelectionText (ListPtr ListP,
Word itemNum)

Parameters ListP Pointer to list object.

itemNum Item to select (0 = first item in list).

Result Returns pointer to the text of the current selection, or NULL if out
of bounds.

Comments This is a pointer within ListType structure, not a copy.

See Also FrmGetObjectPtr, LstSetListChoices
Developing Palm OS Applications, Part I 245

Form, List, and Menu Functions
List UI Functions
LstHandleEvent

Purpose Handle event in the specified list; the list object must have its
usable and visible attribute set to TRUE. (This routine handles
two type of events, penDownEvent and lstEnterEvent; see
Comments).

Prototype Boolean pascal LstHandleEvent (ListPtr listP,
EventPtr pEvent)

Parameters listP Pointer to a list object (ListType data structure).

pEvent Pointer to an EventType structure.

Result Return TRUE if the event was handled. The following cases will
result in a return value of TRUE:

• A penDownEvent within the bounds of the list.

• A lstEnterEvent with a list ID value that matches the list
ID in the list data structure.

Comments When this routine receives a penDownEvent, it checks if the pen
position is within the bounds of the list object. If it is, this routine
tracks the pen until the pen comes up. If the pen comes up within
the bounds of the list, a lstEnterEvent is added to the event
queue, and the routine is exited.

When this routine receives a lstEnterEvent, it checks that the
list ID in the event record matches the ID of the specified list. If
there is a match, this routine creates and displays a popup window
containing the list’s choices, and the routine is exited.

If a penDownEvent is received while the list’s popup window is
displayed, and the pen position is outside the bounds of the popup
window, the window is dismissed. If the pen position is within the
bounds of the window, this routine tracks the pen until it comes
up. If the pen comes up outside the list object, a lstEnterEvent
is added to the event queue.
246 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
List UI Functions
LstMakeItemVisible

Purpose Make an item visible, preferably at the top. If the item is already
visible, no changes are made.

Prototype LstMakeItemVisible (ListPtr ListP,
Word itemNum)

Parameters ListP Pointer to a list object (ListType data structure).

itemNum Item to select (0 = first item in list).

Result Returns nothing.

Comments Does not visually update the list. You must call LstDrawList to
update it.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList

LstPopupList

Purpose Display a modal window that contains the items in the list.

Prototype short LstPopupList (ListPtr ListP)

Parameters ListP Pointer to list object.

Result Returns the list item selected, or -1 if no item was selected.

Comments Saves the previously active window. Creates and deletes the new
popup window.

See Also FrmGetObjectPtr
Developing Palm OS Applications, Part I 247

Form, List, and Menu Functions
List UI Functions
LstSetDrawFunction

Purpose Set a callback function to draw each item instead of drawing the
item’s text string.

Prototype void LstSetDrawFunction (ListPtr list,
ListDrawDataFuncPtr func)

Parameters list Pointer to list object.

func Pointer to function which draws items.

Result Returns nothing.

Comments This function also adjusts topItem to prevent a shrunken list from
being scrolled down too far. Use this function for custom draw
functionality.

See Also FrmGetObjectPtr, LstSetListChoices

LstSetHeight

Purpose Set the number of items visible in a list.

Prototype void LstSetHeight (ListPtr ListP,
Word visibleItems)

Parameters ListP Pointer to list object.

visibleItems Number of choices visible at once.

Result Returns nothing.

Comments This function does not redraw the list if it is already visible.

See Also FrmGetObjectPtr
248 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
List UI Functions
LstSetListChoices

Purpose Set the items of a list to the array of text strings passed to this func-
tion. This function does not affect the display of the list.

Prototype void LstSetListChoices (ListPtr ListP,
char ** itemsText,
UInt numItems)

Parameters ListP Pointer to a list object.

itemsText Pointer to an array of text strings.

numItems Number of choices in the list.

Result Returns nothing.

Comments If the list is visible, erases the old list items.

See Also FrmGetObjectPtr, LstSetSelection, LstSetTopItem,
LstDrawList, LstSetHeight, LstSetDrawFunction

LstSetPosition

Purpose Set the position of a list.

Prototype void LstSetPosition (ListPtr ListP,
short x,
short y)

Parameters ListP Pointer to a list object

x Left bound.

y Top bound.

Result Returns nothing.

Comments The list is not redrawn. Don’t call this function when the list is vis-
ible.

See Also FrmGetObjectPtr
Developing Palm OS Applications, Part I 249

Form, List, and Menu Functions
List UI Functions
LstSetSelection

Purpose Set the selection for a list.

Prototype void LstSetSelection (ListPtr ListP,
Word itemNum)

Parameters ListP Pointer to a list object.

itemNum Item to select (0 = first item in list, -1 = none).

Result Returns nothing.

Comments The old selection, if any, is unselected. If the list is visible, the se-
lected item is visually updated. The list is scrolled to the selection,
if necessary.

See Also FrmGetObjectPtr, LstSetSelection

LstSetTopItem

Purpose Set the item visible. The item cannot become the top item if it’s on
the last page.

Prototype void LstSetTopItem (ListPtr ListP, UInt itemNum)

Parameters ListP Pointer to list object.

itemNum Item to select (0 = first item in list).

Result Returns nothing.

Comments Does not update the display.

See Also FrmGetObjectPtr, LstSetSelection, LstMakeItemVisible,
LstDrawList, LstEraseList
250 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Menu Functions
Menu Functions

MenuDispose

Purpose Release any memory allocated to support the menu management.

Prototype void MenuDispose (MenuBarPtr MenuP)

Parameters MenuP Pointer returned by MenuInit; this is a pointer to a
MenuBarType data structure.

Result Returns nothing.

Comments This function is useful for applications that have multiple menu
bars. It frees all memory allocated by a menu, resets the command
status, and restores the saved bits to the screen.

See Also MenuInit, MenuDrawMenu

MenuDrawMenu

Purpose Draw the current menu bar and the last pull-down that was visible.

Prototype void MenuDrawMenu (MenuBarPtr MenuP)

Parameters MenuP Pointer to a MenuBarType data structure.

Result Returns nothing.

Comments If a pull-down menu was visible the last time the menu bar was vis-
ible, the pull-down menu is also drawn. The first time a menu bar
is drawn no pull-down menu is displayed.

The menu bar and the pull-down menu are drawn in front of all
the applications windows.

Screen regions obscured by the menus are saved by this function
and restored by MenuEraseStatus.

See Also MenuInit, MenuEraseStatus, MenuDispose
Developing Palm OS Applications, Part I 251

Form, List, and Menu Functions
Menu Functions
MenuEraseStatus

Purpose Erase the menu command status.

Prototype void MenuEraseStatus (MenuBarPtr MenuP)

Parameters MenuP Pointer to a MenuBarType data structure, or NULL
for the current menu.

Result Returns nothing.

See Also MenuInit

MenuGetActiveMenu

Purpose Returns a pointer to the current menu.

Prototype MenuBarPtr MenuGetActiveMenu (void)

Parameters None.

Result Returns a pointer to the current menu, NULL if there is none.

See Also MenuSetActiveMenu
252 Developing Palm OS Applications, Part I

Form, List, and Menu Functions
Menu Functions
MenuHandleEvent

Purpose Handle events in the current menu. This routine handles two types
of events, penDownEvent and winEnterEvent.

Prototype Boolean MenuHandleEvent (MenuBarPtr MenuP,
EventPtr event,
WordPtr error)

Parameters MenuP Pointer to a MenuBarType data structure.

event Pointer to an EventType structure.

error Error (or 0 if no error).

Result Returns TRUE if the event is handled. (If the event is a
penDownEvent within the menu bar or the menu, or the event is a
keyDownEvent that the menu supports.)

Comments When MenuHandleEvent receives a penDownEvent, it checks if
the pen position is within the bounds of the menu object. If it is,
MenuHandleEvent tracks the pen until it comes up. If the pen
comes up within the bounds of the menu, a winEnterEvent is
added to the event queue, and the routine is exited.

When MenuHandleEvent receives a winEnterEvent, it checks
that the menu ID in the event record matches the ID of the speci-
fied menu. If there is a match, MenuHandleEvent creates and dis-
plays a popup window containing the menu’s choices, and the
routine is exited.

If a penDownEvent is received while the menu’s popup window is
displayed, and the pen position is outside the bounds of the popup
window, the menu is dismissed. If the pen position is within the
bounds of the window MenuHandleEvent tracks the pen until it
comes up. If the pen comes up in the menu, a winExitEvent is
added to the event queue.
Developing Palm OS Applications, Part I 253

Form, List, and Menu Functions
Menu Functions
MenuInit

Purpose Load a menu resource from a resource file.

Prototype MenuBarPtr MenuInit (Word resourceId)

Parameters resourceId ID that identifies the menu resource.

Result Returns the pointer to a memory block allocated to hold the menu
resource (a pointer to a MenuBarType data structure).

Comments The menu is not usable until MenuSetActiveMenu is called.

See Also MenuSetActiveMenu, MenuDispose

MenuSetActiveMenu

Purpose Set the current menu.

Prototype MenuBarPtr MenuSetActiveMenu (MenuBarPtr MenuP)

Parameters MenuP Pointer to the memory block that contains the new
 menu, or NULL for none.

Result Returns a pointer to the menu that was active before the new menu
was set, or NULL if no menu was active.

See Also MenuGetActiveMenu
254 Developing Palm OS Applications, Part I

9
Table Functions

TblDrawTable

Purpose Draw a table.

Prototype void TblDrawTable (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

See Also TblEraseTable, TblRedrawTable,
TblSetCustomDrawProcedure

TblEditing

Purpose Check whether a table is in edit mode.

Prototype Boolean TblEditing (TablePtr table)

Parameters table Pointer to a table object.

Result Returns TRUE if the table is in edit mode, FALSE otherwise.

Comments The table is in edit mode while the user edits a text item.
Developing Palm OS Applications, Part I 255

Table Functions
TblEraseTable

Purpose Erase a table object.

Prototype void TblEraseTable (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

See Also TblDrawTable, TblSetCustomDrawProcedure,
TblRedrawTable

TblFindRowData

Purpose Return the row number that contains the specified data value.

Prototype Boolean TblFindRowData (TablePtr table,
ULong data,
WordPtr rowP)

Parameters table Pointer to a table object.

data Row data to find.

rowP Pointer to the row number (return value).

Result Returns TRUE if a match was found, FALSE otherwise.

See Also TblGetRowData, TblFindRowID
256 Developing Palm OS Applications, Part I

Table Functions
TblFindRowID

Purpose Return the number of the row that matches the specified ID.

Prototype Boolean TblFindRowID (TablePtr table,
Word id,
WordPtr rowP)

Parameters table Pointer to a table object.

id Row ID to find.

rowP Pointer to the row number (return value).

Result Returns TRUE if a match was found, FALSE otherwise.

See Also TblFindRowData

TblGetBounds

Purpose Return the bounds of a table.

Prototype void TblGetBounds (TablePtr table, RectanglePtr r)

Parameters table Pointer to a table object.

r Pointer to a RectangleType structure.

Result Returns nothing. Stores the bounds in r.

See Also TblGetItemBounds
Developing Palm OS Applications, Part I 257

Table Functions
TblGetColumnSpacing

Purpose Return the spacing after the specified column.

Prototype Word TblGetColumnSpacing (TablePtr table,
Word column)

Parameters table Pointer to a table object.

column Column number (zero-based).

Result Returns the spacing after column (in pixels).

See Also TblGetColumnWidth, TblSetColumnSpacing,
TblSetColumnUsable

TblGetColumnWidth

Purpose Return the width of the specified column.

Prototype Word TblGetColumnWidth (TablePtr table,
Word column)

Parameters table Pointer to a table object.

column Column number (zero-based).

Result Returns the width of a column (in pixels).

See Also TblGetColumnSpacing, TblSetColumnWidth,
TblSetColumnUsable
258 Developing Palm OS Applications, Part I

Table Functions
TblGetCurrentField

Purpose Return a pointer to the field structure in which the user is cur-
rently editing a text item.

Prototype FieldPtr TblGetCurrentField (TablePtr table)

Parameters table Pointer to a table object.

Result Returns FieldPtr, or NULL if the table is not in edit mode.

See Also TblGetSelection

TblGetItemBounds

Purpose Return the bounds of an item in a table.

Prototype void TblGetItemBounds (TablePtr table,
Word row, Word column,
RectanglePtr r)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

r Pointer to a structure that holds the bounds of the
item.

Result Returns nothing. Stores the bounds in r.
Developing Palm OS Applications, Part I 259

Table Functions
TblGetItemInt

Purpose Return the integer value stored in a table item.

Prototype Word TblGetItemInt (TablePtr table,
Word row, Word column)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

column Column of the item to select (zero-based).

Result Returns the integer value.

See Also TblSetItemInt

TblGetLastUsableRow

Purpose Return the last row in a table that is usable (visible).

Prototype Word TblGetLastUsableRow (TablePtr table)

Parameters table Pointer to a table object.

Result Returns the row index (zero-based) or -1 if there are no usable
rows.

See Also TblGetRowData, TblGetRowID

TblGetNumberOfRows

Purpose Return the number of rows in a table.

Prototype Word TblGetNumberOfRows (TablePtr table)

Parameters table Pointer to a table object.

Result Returns the number of rows in the specified table.
260 Developing Palm OS Applications, Part I

Table Functions
TblGetRowData

Purpose Return the data value of the specified row.

Prototype ULong TblGetRowData (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

Comments The data value is a placeholder for application-specific values.

See Also TblGetRowID, TblSetRowData

TblGetRowHeight

Purpose Return the height of the specified row.

Prototype Word TblGetRowHeight (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row to get (zero-based).

Result Returns the height in pixels.

See Also TblGetItemBounds, TblSetRowHeight

TblGetRowID

Purpose Return the ID value of the specified row.

Prototype Word TblGetRowID (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row for which the ID will be returned (zero-based).

Result Returns the ID value of the row in the table.

See Also TblGetRowData, TblSetRowHeight
Developing Palm OS Applications, Part I 261

Table Functions
TblGetSelection

Purpose Return the row and column of the currently selected table item.

Prototype Boolean TblGetSelection (TablePtr table,
WordPtr rowP,
WordPtr columnP)

Parameters table Pointer to a table object.

rowP Pointer to a Word variable in which to store the row
(zero-based).

columnP Pointer to a Word variable in which to store the
column (zero-based).

Result Returns TRUE if the item is highlighted, FALSE if not.

See Also TblSetRowSelectable

TblGrabFocus

Purpose Put a table into edit mode.

Prototype void TblGrabFocus (TablePtr table,
Word row, Word column)

Parameters table Pointer to a table object.

row Current row to be edited (zero-based).

column Current column to be edited (zero-based).

Result Returns nothing.

Comments Displays an error if the row or column passed is out of bounds. An
editable field must exist in the coordinates passed to this function.

See Also TblReleaseFocus
262 Developing Palm OS Applications, Part I

Table Functions
TblHandleEvent

Purpose Handle an event for the table.

Prototype Boolean TblHandleEvent (TablePtr table,
EventPtr event)

Parameters table Pointer to a table object.

event The event to be handled.

Result Returns TRUE if the event was handled, FALSE if it was not.

TblInsertRow

Purpose Insert a row into the table before the specified row.

The number of rows in the table is not increased; the last row in the
table is removed.

Prototype void TblInsertRow (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row to insert (zero-based).

Result Returns nothing.

Comments If the row parameter is greater than or equal to the number of rows
in the table, an error is displayed.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkRowInvalid
Developing Palm OS Applications, Part I 263

Table Functions
TblMarkRowInvalid

Purpose Mark the image of the specified row invalid.

Prototype void TblMarkRowInvalid (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

Comments After calling this function, call TblRedrawTable to redraw all
rows marked invalid. Rows not marked invalid are not redrawn.

Result Returns nothing.

See Also TblRemoveRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkTableInvalid, TblRowInvalid

TblMarkTableInvalid

Purpose Mark the image of all the rows in a table invalid.

Prototype void TblMarkTableInvalid (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

Comments After calling this function, you must call TblRedrawTable to
redraw all rows. Rows not marked invalid do not draw.

See Also TblEraseTable, TblRedrawTable, TblMarkTableInvalid
264 Developing Palm OS Applications, Part I

Table Functions
TblRedrawTable

Purpose Redraw the rows of the table that are marked invalid.

Prototype void TblRedrawTable (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

See Also TblMarkTableInvalid

TblReleaseFocus

Purpose Release the focus.

Prototype void TblReleaseFocus (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.

Comments If the current item is a text item, the memory allocated for editing
is released and the insertion point is turned off.

See Also TblGrabFocus
Developing Palm OS Applications, Part I 265

Table Functions
TblRemoveRow

Purpose Remove the specified row from the table.

Prototype void TblRemoveRow (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row to remove (zero-based).

Result Returns nothing.

Comments The number of rows in the table is not decreased; an unusable row
is added to the end of the table. If an invalid row is specified, an
error is displayed.

This function does not visually update the display.

See Also TblInsertRow, TblSetRowUsable, TblSetRowSelectable,
TblMarkRowInvalid

TblRowInvalid

Purpose Determine whether a row is invalid. Invalid rows need to be re-
drawn.

Prototype Boolean TblRowInvalid (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row number (zero-based).

Result Returns TRUE if the row is invalid, FALSE if it’s valid.

See Also TblMarkRowInvalid
266 Developing Palm OS Applications, Part I

Table Functions
TblRowSelectable

Purpose Determine whether the specified row is selectable. Rows that are
not selectable don’t highlight when touched.

Prototype Boolean TblRowSelectable (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

Result Returns TRUE if the row is selectable, FALSE if it’s not.

TblRowUsable

Purpose Determine whether the specified row is usable.

Prototype Boolean TblRowUsable (TablePtr table, Word row)

Parameters table Pointer to a table object.

row Row number (zero-based).

Result Returns TRUE if the row is usable, FALSE if it’s not.

Comments Rows that are not usable do not display.

See Also TblRowSelectable, TblGetLastUsableRow
Developing Palm OS Applications, Part I 267

Table Functions
TblSelectItem

Purpose Select (highlight) the specified item. If there is already a selected
item, it is unhighlighted.

Prototype void TblSelectItem (TablePtr table,
Word row,
Word column)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

column Column of the item to select (zero-based).

Result Returns nothing.

See Also TblRowSelectable, TblGetItemBounds, TblGetItemInt

TblSetColumnSpacing

Purpose Set the spacing after the specified column.

Prototype void TblSetColumnSpacing (TablePtr table,
Word column,
Word spacing)

Parameters table Pointer to a table object.

column Column number (zero-based).

spacing Spacing after the column.

Result Returns nothing.

See Also TblSetColumnUsable
268 Developing Palm OS Applications, Part I

Table Functions
TblSetColumnUsable

Purpose Set a column in a table usable or unusable.

Prototype void TblSetColumnUsable (TablePtr table,
Word row,
Boolean usable)

Parameters table Pointer to a table object.

column Column of the item to select (zero-based).

usable True for usable or false for not usable.

Result Returns nothing.

Comments Columns that are not usable do not display.

See Also TblMarkRowInvalid

TblSetColumnWidth

Purpose Set the width of the specified column.

Prototype void TblSetColumnWidth (TablePtr table,
Word column,
Word width)

Parameters table Pointer to a table object.

column Column number (zero-based).

width Width of the column (in pixels).

Result Returns nothing.

See Also TblGetColumnWidth
Developing Palm OS Applications, Part I 269

Table Functions
TblSetCustomDrawProcedure

Purpose Set the custom draw callback procedure for the column specified.

Prototype void TblSetCustomDrawProcedure(TablePtr table,
 Word column,

VoidPtr drawCallback)

Parameters table Pointer to a table object.

column Column of table.

drawCallback Callback function.

Note: The callback procedure should have this prototype:

void drawCallback (
VoidPtr table,
Word row,
Word column,
RectanglePtr bounds);

Result Returns nothing.

Comments The custom draw callback function is used to draw table items
with a TableItemStyleType of customTableItem (see table.h).

See Also TblDrawTable
270 Developing Palm OS Applications, Part I

Table Functions
TblSetItemInt

Purpose Set the integer value of the specified item.

Prototype void TblSetItemInt (TablePtr table,
Word row, Word column,
Word value)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

value Any byte value (an integer).

Result Returns nothing.

Comments An application can store what it wants in an item’s integer value.

See Also TblGetItemInt, TblSetItemPtr

TblSetItemPtr

Purpose Set the item to the specified pointer value.

Prototype void TblSetItemPtr (TablePtr table,
Word row, Word column,
VoidPtr value)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

value Pointer to data to display in the table item.

Result Returns nothing.

Comments An application can store whatever it wants in the table item.

See Also TblSetItemInt
Developing Palm OS Applications, Part I 271

Table Functions
TblSetItemStyle

Purpose Set the item to display its data in a style; for example, text, num-
bers, dates, and so on.

Prototype void TblSetItemStyle (TablePtr table,
Word row,
Word column,
TableItemStyleType type)

Parameters table Pointer to a table object.

row Row of the item (zero-based).

column Column of the item (zero-based).

type See Table.h.

Result Returns nothing.

See Also TblSetCustomDrawProcedure
272 Developing Palm OS Applications, Part I

Table Functions
TblSetLoadDataProcedure

Purpose Set the load-data callback procedure for the specified column.

Prototype void TblSetLoadDataProcedure(TablePtr table,
Word column,
TableLoadDataFuncPtr loadDataCallback)

Parameters table Pointer to a table object.

column Column of table.

loadDataCallback Callback procedure.

Note: The callback procedure should have this prototype:

VoidHand LoadDataCallback
(VoidPtr table,
 Word row,
 Word column,
 Boolean editable,
 WordPtr dataOffset,
 WordPtr dataSize);

For a text style item, the callback procedure should return the
handle of a block that contains a null-terminated text string, the
offset from the start of the block to the start of the string, and the
amount of space allocated for the string.

Result Returns nothing.

Comments The callback function is used to obtain the data values of a table
item.

See Also TblSetCustomDrawProcedure
Developing Palm OS Applications, Part I 273

Table Functions
TblSetRowData

Purpose Set the data value of the specified row.

The data value is a placeholder for application-specific values.

Prototype void TblSetRowData (TablePtr table,
Word row,
ULong data)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

data Application-specific data.

Result Returns nothing.

See Also TblGetRowData

TblSetRowHeight

Purpose Set the height of the specified row.

Prototype void TblSetRowHeight (TablePtr table,
Word row, Word height)

Parameters table Pointer to a table object.

row Row to set (zero-based).

height New height in pixels.

Result Returns nothing.

See Also TblGetRowHeight
274 Developing Palm OS Applications, Part I

Table Functions
TblSetRowID

Purpose Set the ID value of the specified row.

Prototype void TblSetRowID (TablePtr table,
Word row, Word id)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

id ID to identify a row.

Result Returns nothing.

See Also TblGetRowID

TblSetRowSelectable

Purpose Set a row in a table to selectable or nonselectable.

Prototype void TblSetRowSelectable (TablePtr table,
Word row,
Boolean selectable)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

selectable TRUE or FALSE.

Result Returns nothing.

Comments Rows that are not selectable don’t highlight when touched.

See Also TblRowSelectable, TblSetRowUsable
Developing Palm OS Applications, Part I 275

Table Functions
TblSetRowUsable

Purpose Set a row in a table to usable or unusable. (Rows that are not
usable do not display.)

Prototype void TblSetRowUsable (TablePtr table,
Word row,
Boolean usable)

Parameters table Pointer to a table object.

row Row of the item to select (zero-based).

usable TRUE or FALSE.

Result Returns nothing.

See Also TblRowUsable, TblSetRowSelectable
276 Developing Palm OS Applications, Part I

Table Functions
TblSetSaveDataProcedure

Purpose Set the save-data callback procedure for the specified column.

Prototype void TblSetSaveDataProcedure(TablePtr table,
Word column,
VoidPtr saveDataCallback)

Parameters table Pointer to a table object.

column Column of table.

saveDataCallback Callback function.

Note: The callback procedure should have this prototype:

VoidPtr SaveDataCallback
(VoidPtr table,
 Word row,
 Word column);

Comments The callback procedure is called when the table object determines
the data of a text object needs to be saved.

Result Returns nothing.

See Also TblSetCustomDrawProcedure

TblUnhighlightSelection

Purpose Unhighlight the currently selected item in a table.

Prototype void TblUnhighlightSelection (TablePtr table)

Parameters table Pointer to a table object.

Result Returns nothing.
Developing Palm OS Applications, Part I 277

Table Functions
278 Developing Palm OS Applications, Part I

10
Window Functions

WinAddWindow

Purpose Add the specified window to the active windows list.

Prototype void WinAddWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

Comment The active windows list contains all windows in the current appli-
cation’s user interface.

See Also WinCreateWindow, WinRemoveWindow

WinClipRectangle

Purpose Clip a rectangle to the clipping rectangle of the draw window.

Prototype void WinClipRectangle (RectanglePtr r)

Parameters r Pointer to a structure holding the rectangle to clip.

Comment The draw window is the window to which all drawing functions
send their output.

The rectangle returned in r is the intersection of the rectangle
passed and the draw window’s clipping bounds.

Result Returns nothing.

See Also WinCopyRectangle, WinDrawRectangle,
WinEraseRectangle, WinGetClip
Developing Palm OS Applications, Part I 279

Window Functions
WinCopyRectangle

Purpose Copy a rectangular region from one place to another (either be-
tween windows or within a single window).

Prototype void WinCopyRectangle (WinHandle srcWin,
WinHandle dstWin,
RectanglePtr srcRect,
SWord destX,
SWord destY,
ScrOperation mode)

Parameters srcWin Window from which the rectangle is copied.

dstWin Window to which the rectangle is copied.

srcRect Bounds of the region to copy.

destX Top bound of the rectangle in destination window.

destY Left bound of the rectangle in destination window.

mode The method of transfer from the source to the
destination window (see window.h).

Result Returns nothing.

Comments Copies the bits of the window inside the rectangle region.
280 Developing Palm OS Applications, Part I

Window Functions
WinCreateWindow

Purpose Create a new window and add it to the window list.

Prototype WinHandle WinCreateWindow (RectanglePtr bounds,
 FrameType frame,

Boolean modal,
 Boolean focusable,
 WordPtr error)

Parameters bounds Display relative bounds of the window.

frame Type of frame around the window (see window.h).

modal TRUE if the window is modal.

focusable TRUE if the window can be the active window.

error Pointer to any error encountered by this function.

Result Returns handle for the new window.

Comments Windows created by this routine draw to the display, see
WinCreateOffscreenWindow.

New windows are created disabled, and must be enabled before
they accept input.

See Also WinCreateOffscreenWindow, WinDeleteWindow,
WinInitializeWindow
Developing Palm OS Applications, Part I 281

Window Functions
WinCreateOffscreenWindow

Purpose Create a new off-screen window and add it to the window list.

Prototype WinHandle WinCreateOffscreenWindow (
SWord width,
SWord height,
WindowFormatType format,
WordPtr error)

Parameters width Width of the window in pixels.

height Height of the window in pixels.

format Either screenFormat or genericFormat.

error Pointer to any error encountered by this function.

Result Returns the handle of the new window.

Comments Windows created with this routine draw to a memory buffer in-
stead of the display.

The memory buffer has two formats: screen format and generic
format. Screen format is the native format of the video system, win-
dows in this format can be copied to the display faster. The generic
format is device-independent.

See Also WinCreateWindow, WinAddWindow
282 Developing Palm OS Applications, Part I

Window Functions
WinDeleteWindow

Purpose Remove a window from the window list and free the memory
used by the window.

Prototype void WinDeleteWindow (WinHandle winHandle,
Boolean eraseIt)

Parameters winHandle Handle of window to delete.

eraseIt If TRUE, the window is erased before it is deleted.

Result Returns nothing.

See Also WinCreateWindow

WinDisableWindow

Purpose Disable a window but leave it on the active windows list (list of all
windows in the system).

Prototype void WinDisableWindow (WinHandle winHandle)

Parameters winHandle Handle of window to disable.

Result Returns nothing.

Comments Disabled windows ignore all pen input and cannot be made the
current window or the draw window. Windows are usually dis-
abled when they are removed from the screen.

This function does not affect the visual appearance of the window.

See Also WinEnableWindow, WinDeleteWindow
Developing Palm OS Applications, Part I 283

Window Functions
WinDisplayToWindowPt

Purpose Convert a display-relative coordinate to a window-relative coordi-
nate. The coordinate returned is relative to the display window.

Prototype void WinDisplayToWindowPt (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX Pointer to x coordinate to convert.

extentY Pointer to y coordinate to convert.

Result Returns nothing.

Comments WinWindowToDisplayPt

WinDrawBitmap

Purpose Draw a bitmap at the given x and y coordinates.

Prototype void WinDrawBitmap (BitmapPtr bitmapP,
SWord x,
Sword y)

Parameters bitmapP Pointer to a bitmap.

x The x coordinate of the top-left corner.

y The y coordinate of the top-left corner.

Result Returns nothing.

See Also WinEraseRectangle
284 Developing Palm OS Applications, Part I

Window Functions
WinDrawChars

Purpose Draw the specified characters in the draw window.

Prototype void WinDrawChars (CharPtr chars,
Word len,
SWord x,
SWord y)

Parameters chars Pointer to the characters to draw.

len Number of characters to draw.

x Left bound of first character to draw.

y Top bound of first character to draw.

Result Returns nothing.

Comment Before calling this function, you may call WinSetUnderlineMode
and FntSetFont.

See Also WinDrawInvertedChars, WinEraseChars,
WinSetUnderlineMode

WinDrawGrayLine

Purpose Draw a line in the draw window.

Prototype void WinDrawGrayLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1 x coordinate of the start of the line.

y1 y coordinate of the start of the line.

x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.

Result Returns nothing.

See Also WinDrawLine
Developing Palm OS Applications, Part I 285

Window Functions
WinDrawGrayRectangleFrame

Purpose Draw a gray rectangular frame in the draw window.

Prototype void WinDrawGrayRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to draw.

r Pointer to the rectangle to frame.

Result Returns nothing.

Comments The standard gray pattern is not used by this routine; rather, the
frame is drawn so that the top-left pixel of the frame is always on.

See Also WinDrawRectangleFrame

WinDrawInvertedChars

Purpose Draw the specified characters inverted (background color) in the
draw window.

Prototype void WinDrawInvertedChars(CharPtr chars, Word len,
SWord x, SWord y)

Parameters chars Pointer to the characters to draw.

len Number of characters to draw.

x, y Left and top bound of first character to draw.

Result Returns nothing.

Comments The characters are drawn in the background color and the off
pixels are drawn in the foreground color.

Before calling this function, you may call WinSetUnderlineMode
and FntSetFont.

See Also WinDrawChars
286 Developing Palm OS Applications, Part I

Window Functions
WinDrawLine

Purpose Draw a line in the draw window.

Prototype void WinDrawLine (short x1, short y1,
short x2, short y2)

Parameters x1 x coordinate of the start of the line.

y1 y coordinate of the start of the line.

x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.

Result Returns nothing.

See Also WinDrawGrayLine, WinEraseLine, WinFillLine

WinDrawRectangle

Purpose Draw a black rectangle in the draw window; the rectangle can
have square or round corners.

Prototype void WinDrawRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to draw.

cornerDiam Diameter of rounded corners. Zero for square corners.

Result Returns nothing.

Comments The cornerDiam parameter specifies the diameter of four imagi-
nary circles used to form the rounded corners. An imaginary circle
is placed within each corner tangent to the rectangle on two sides.

See Also WinFillRectangle, WinEraseRectangle
Developing Palm OS Applications, Part I 287

Window Functions
WinDrawRectangleFrame

Purpose Draw a rectangular frame around the specified region in the draw
window.

Prototype void WinDrawRectangleFrame (FrameType frame,
 RectanglePtr r)

Parameters frame Type of frame to draw.

r Pointer to the rectangle to frame.

Result Returns nothing.

Comments The frame is drawn outside the specified region.

See Also WinEraseRectangleFrame, WinGetFramesRectangle,
WinDrawGrayRectangleFrame, WinDrawWindowFrame

WinDrawWindowFrame

Purpose Draw the frame of the current drawing window.

Prototype void WinDrawWindowFrame (void)

Parameters None.

Result Returns nothing.

See Also WinDrawRectangleFrame, WinGetDrawWindow
288 Developing Palm OS Applications, Part I

Window Functions
WinEnableWindow

Purpose Enable a window.

Prototype void WinEnableWindow (WinHandle winHandle)

Parameters winHandle Handle of the window to enable.

Result Returns nothing.

Comments Enabled windows accept pen input and can be made the active
window.

This routine does not affect the visual appearance of the window.

See Also WinDisableWindow, WinSetActiveWindow

WinEraseChars

Purpose Erase specified characters in the draw window.

Prototype void WinEraseChars (CharPtr chars, Word len,
SWord x, SWord y)

Parameters chars Pointer to the characters to erase.

len Number of characters to erase.

x Left bound of first character to erase.

y Top bound of first character to erase.

Result Returns nothing.

See Also WinDrawChars
Developing Palm OS Applications, Part I 289

Window Functions
WinEraseLine

Purpose Erase a line in the draw window.

Prototype void WinEraseLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1 x coordinate of the start of the line.

y1 y coordinate of the start of the line.

x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.

Result Returns nothing.

See Also WinDrawLine

WinEraseRectangle

Purpose Erase a rectangle in the draw window. (The rectangle can have
round or square corners; see WinDrawRectangle.)

Prototype void WinEraseRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to erase.

cornerDiam Diameter of rounded corners; zero for square corners.

Result Returns nothing.

See Also WinDrawRectangle
290 Developing Palm OS Applications, Part I

Window Functions
WinEraseRectangleFrame

Purpose Erase a rectangular frame in the draw window.

Prototype void WinEraseRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to erase.

r Pointer to the rectangular frame.

Result Returns nothing.

See Also WinDrawRectangleFrame

WinEraseWindow

Purpose Erase the contents of the draw window.

The frame around the draw window is not erased by this routine.

Prototype void WinEraseWindow (void)

Parameters None.

Result Returns nothing.

See Also WinEnableWindow
Developing Palm OS Applications, Part I 291

Window Functions
WinFillLine

Purpose Fill a line in the draw window with the current pattern. You can
set the current pattern with WinSetPattern.

Prototype void WinFillLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1 x coordinate of the start of the line.

y1 y coordinate of the start of the line.

x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.

Result Returns nothing.

See Also WinSetPattern, WinDrawLine

WinFillRectangle

Purpose Draw a rectangle with current pattern. (The rectangle can have
square or round corners.)

Prototype void WinFillRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to draw.

cornerDiam Diameter of rounded corners. Zero for square corners.

Result Returns nothing.

Comments You can set the current pattern with WinSetPattern.

See Also WinSetPattern. WinDrawRectangle
292 Developing Palm OS Applications, Part I

Window Functions
WinGetActiveWindow

Purpose Return the window handle of the active window.

Prototype WinHandle WinGetActiveWindow (void)

Parameters None.

Result Returns the handle of the active window.

See Also WinSetActiveWindow, WinGetDisplayWindow,
WinGetFirstWindow, WinGetDrawWindow, WinRemoveWindow

WinGetClip

Purpose Return the clipping rectangle of the draw window.

Prototype void WinGetClip (RectanglePtr r)

Parameters r Pointer to a structure to hold the clipping bounds.

Result Returns nothing.

See Also WinSetClip

WinGetDisplayExtent

Purpose Return the width and height of the display (the screen).

Prototype void WinGetDisplayExtent (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX Pointer to the width of the display.

extentY Pointer to the height of the display.

Result Returns nothing.
Developing Palm OS Applications, Part I 293

Window Functions
WinGetDisplayWindow

Purpose Return the window handle of the display window.

Prototype WinHandle WinGetDisplayWindow (void)

Parameters None.

Result Returns handle of display window.

Comments The display window is created by the system at start-up; its size is
the same as the physical display (screen).

See Also WinGetDisplayExtent, WinGetActiveWindow,
WinGetDrawWindow

WinGetDrawWindow

Purpose Return the window handle of the current draw window.

Prototype WinHandle WinGetDrawWindow (void)

Parameters None.

Result Returns handle of draw window

See Also WinGetDisplayWindow, WinGetActiveWindow,
WinSetDrawWindow
294 Developing Palm OS Applications, Part I

Window Functions
WinGetFirstWindow

Purpose Return a pointer to the first window in the linked list of windows.

Prototype WinHandle WinGetFirstWindow (void)

Parameters None.

Result Returns handle of first window.

Comments This function is usually used by the system only.

See also WinAddWindow, WinGetActiveWindow

WinGetFramesRectangle

Purpose Return the region needed to draw a rectangle with the specified
frame around it.

Prototype void WinGetFramesRectangle (FrameType frame,
 RectanglePtr r,

RectanglePtr obscuredRect)

Parameters frame Type of frame drawn around the rectangle.

r Pointer to the rectangle to frame.

obscuredRect Pointer to the rectangle obscured by the frame.

Result Returns nothing.

Comments Frames are always drawn around (outside) a rectangle.

See Also WinGetWindowBounds
Developing Palm OS Applications, Part I 295

Window Functions
WinGetPattern

Purpose Return the current fill pattern.

Prototype void WinGetPattern (CustomPatternType pattern)

Parameters pattern Pattern buffer to hold pattern.

Result Returns nothing.

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

A pattern defines an 8-x-8 bit pattern. The pattern is tiled to fill the
specified region. The pattern structure is eight bytes long, the first
byte is the first row of the pattern.

See Also WinSetPattern

WinGetWindowBounds

Purpose Return the bounds of the current draw window in display-relative
coordinates.

Prototype void WinGetWindowBounds (RectanglePtr r)

Parameters r Pointer to a rectangle.

Result Returns nothing.

See Also WinGetWindowExtent
296 Developing Palm OS Applications, Part I

Window Functions
WinGetWindowExtent

Purpose Return the width and height of the current draw window.

Prototype void WinGetWindowExtent (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX Pointer to the width of the draw window.

extentY Pointer to the height of the draw window.

Result Returns nothing.

See Also WinGetWindowBounds, WinGetWindowFrameRect,

WinGetWindowFrameRect

Purpose Return a rectangle, in display-relative coordinates, that defines the
size and location of a window and its frame.

Prototype void WinGetWindowFrameRect (WinHandle winHandle,
RectanglePtr r)

Parameters winHandle Handle of window whose coordinates are desired.

r Pointer to the coordinates of the window.

Result Returns nothing.

See Also WinGetWindowBounds
Developing Palm OS Applications, Part I 297

Window Functions
WinGetWindowPointer

Purpose Return a pointer to the specified window’s WindowType structure.

Prototype WinPtr WinGetWindowPointer (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

See Also WinGetActiveWindow

WinInitializeWindow

Purpose Initialize the screen-dependent members of a WindowType struc-
ture and set the window’s clipping bounds to the window’s
bounds.

Prototype void WinInitializeWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

See Also WinCreateWindow
298 Developing Palm OS Applications, Part I

Window Functions
WinInvertChars

Purpose Invert the specified characters in the draw window.

Prototype void WinInvertChars (CharPtr chars, Word len,
SWord x, SWord y)

Parameters chars Pointer to the characters to invert.

len Number of characters to invert.

x, y Left and top bound of first character to invert.

Result Returns nothing.

See Also WinDrawInvertedChars, WinDrawChars

WinInvertLine

Purpose Invert a line in the draw window.

Prototype void WinInvertLine (SWord x1, SWord y1,
SWord x2, SWord y2)

Parameters x1 x coordinate of the start of the line.

y1 y coordinate of the start of the line.

x2 x coordinate of the end of the line.

y2 y coordinate of the end of the line.

Result Returns nothing.

See Also WinInvertRectangle, WinInvertRectangleFrame,
WinDrawLine, WinEraseLine
Developing Palm OS Applications, Part I 299

Window Functions
WinInvertRectangle

Purpose Invert a rectangle in the draw window. (The rectangle can have
square or round corners.)

Prototype void WinInvertRectangle (RectanglePtr r,
Word cornerDiam)

Parameters r Pointer to the rectangle to invert.

cornerDiam Diameter of rounded corners; zero for square corners.

Result Returns nothing.

See Also WinInvertLine, WinInvertRectangleFrame,
WinDrawRectangle

WinInvertRectangleFrame

Purpose Invert a rectangular frame in the draw window.

Prototype void WinInvertRectangleFrame (FrameType frame,
RectanglePtr r)

Parameters frame Type of frame to invert.

r Pointer to the rectangular frame to invert.

Result Returns nothing.

See Also WinInvertRectangle, WinInvertLine,
WinDrawRectangleFrame, WinEraseRectangleFrame
300 Developing Palm OS Applications, Part I

Window Functions
WinModal

Purpose Return TRUE if the specified window is modal.

Prototype Boolean WinModal (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns TRUE if modal, otherwise FALSE.

Comments A window is modal if it cannot lose the focus.

WinRemoveWindow

Purpose Remove the specified window from the window list.

Prototype void WinRemoveWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns nothing.

Comments Does not free the memory used by the window.

See Also WinAddWindow, WinDeleteWindow, WinGetFirstWindow

WinResetClip

Purpose Reset the clipping rectangle of the draw window to the portion of
the draw window that is within the bounds of the display.

Prototype void WinResetClip (void)

Parameters None.

Result Returns nothing.

See Also WinSetClip
Developing Palm OS Applications, Part I 301

Window Functions
WinRestoreBits

Purpose Copy the contents of the specified window to the draw window
and delete the passed window.

Prototype void WinRestoreBits (WinHandle winHandle,
SWord destX, SWord destY)

Parameters winHandle Handle of window to copy and delete.

destX x coordinate in the draw window to copy to.

destY y coordinate in the draw window to copy to.

Result Returns nothing.

Comments This routine is generally used to restore a region of the display that
was saved with WinSaveBits.

See Also WinSaveBits

WinSaveBits

Purpose Create an offscreen window and copy the specified region from the
draw window to the offscreen window.

Prototype WinHandle WinSaveBits (RectanglePtr sourceP,
 WordPtr error)

Parameters sourceP Pointer to the bounds of the region to save, relative to
the display.

error Pointer to any error encountered by this function.

Result Returns the handle of the window containing the saved image, or
zero if an error occurred.

Comments The offscreen window is the same size as the region to copy.

See Also WinRestoreBits
302 Developing Palm OS Applications, Part I

Window Functions
WinScrollRectangle

Purpose Scroll a rectangle in the draw window.

Prototype void WinScrollRectangle (RectanglePtr r,
DirectionType direction,
SWord distance,

 RectanglePtr vacated)

Parameters r Pointer to the rectangle to scroll.

direction Direction to scroll (up, down, left, or right).

distance Distance to scroll in pixels.

vacated Pointer to the rectangle that needs to be redrawn
because it has been vacated as a result of the scroll.

Result Returns nothing.

Comments The rectangle scrolls within its own bounds. Any portion of the
rectangle that is scrolled outside its bounds is clipped.
Developing Palm OS Applications, Part I 303

Window Functions
WinSetActiveWindow

Purpose Make a window the active window.

Prototype void WinSetActiveWindow (WinHandle winHandle)

Parameters winHandle Handle of a window

Result Returns nothing.

Comments The active window is not actually set in this routine; flags are set to
indicate that a window is being exited and another window is
being entered. The routine EvtGetEvent sends a winExitEvent
and a winEnterEvent when it detects these flags. The active
window is set by EvtGetEvent when it sends the
winEnterEvent. The draw window is also set to the new active
window, when the active window is changed.

All user input is directed to the active window.

See Also WinAddWindow, WinGetActiveWindow

WinSetClip

Purpose Set the clipping rectangle of the draw window.

Prototype void WinSetClip (RectanglePtr r)

Parameters r Pointer to a structure holding the clipping bounds.

Result Returns nothing.

See Also WinClipRectangle, WinSetClip, WinGetClip
304 Developing Palm OS Applications, Part I

Window Functions
WinSetDrawWindow

Purpose Set the draw window. (All drawing operations are relative to the
draw window.)

Prototype WinHandle WinSetDrawWindow (WinHandle winHandle)

Parameters winHandle Handle of a window.

Result Returns the draw window.

See Also WinGetDrawWindow, WinSetActiveWindow

WinSetPattern

Purpose Set the current fill pattern.

Prototype void WinSetPattern (CustomPatternType pattern)

Parameters pattern Pattern to use.

Result Returns nothing.

Comments The fill pattern is used by WinFillLine and WinFillRectangle.

See Also WinGetPattern
Developing Palm OS Applications, Part I 305

Window Functions
WinSetUnderlineMode

Purpose Set the graphic state to enable or disable the underlining of charac-
ters.

Prototype UnderlineModeType
WinSetUnderlineMode (UnderlineModeType mode)

Parameters mode New underline mode type, one of noUnderline,
grayUnderline, solidUnderline.

Result Returns the previous underline mode type.

See Also WinDrawChars

WinWindowToDisplayPt

Purpose Convert a window-relative coordinate to a display-relative coordi-
nate.

Prototype void WinWindowToDisplayPt (SWordPtr extentX,
SWordPtr extentY)

Parameters extentX Pointer to x coordinate to convert.

extentY Pointer to y coordinate to convert.

Result Returns nothing.

Comments The coordinate passed is assumed to be relative to the draw
window.

See Also WinDisplayToWindowPt
306 Developing Palm OS Applications, Part I

11
Miscellaneous User
Interface Functions

Category Functions

CategoryCreateList

Purpose Read a database’s categories and set categories.

Prototype void CategoryCreateList (DmOpenRef db,
ListPtr lst,
Word currentCategory,
Boolean showAll)

Parameters db Database containing categories to extract.

lst List object to load categories into.

currentCategory Will be set as the current selection in the
resulting list.

showAll TRUE if an “All” category should be included
 in the list.

Result Returns nothing.
Developing Palm OS Applications, Part I 307

Miscellaneous User Interface Functions
Category Functions
CategoryEdit

Purpose Event handler for the Edit Categories dialog.

Prototype Boolean CategoryEdit (DmOpenRef db,
WordPtr category)

Parameters db Database containing the categories to be edited.

category Current category.

Result Returns TRUE if any of the following conditions are true:

the current category is renamed

the current category is deleted

the current category is merged with another category

CategoryFind

Purpose Return the index of the category that matches the name passed.

Prototype Word CategoryFind (DmOpenRef db, CharPtr name)

Parameters db Database to search for the passed category.

name Category name.

Result Returns the category index.
308 Developing Palm OS Applications, Part I

Miscellaneous User Interface Functions
Category Functions
CategoryFreeList

Purpose Unlock or free memory locked or allocated by
CategoryCreateList which was attached to the passed List ob-
ject.

Prototype void CategoryFreeList (DmOpenRef db, ListPtr lst)

Parameters db Database containing the categories.

1st Pointer to the category list containing the memory
to be freed.

Result Returns nothing.

Comment Calling this function does not remove the categories from the
passed database.

CategoryGetName

Purpose Return the name of the specified category.

Prototype void CategoryGetName (DmOpenRef db,
Word index,
CharPtr name)

Parameters db Database that contains the categories.

index Category index.

name Buffer to hold category name. Buffer should be
dmCategoryLength in size.

Result Stores the category name in the name buffer passed.
Developing Palm OS Applications, Part I 309

Miscellaneous User Interface Functions
Category Functions
CategoryGetNext

Purpose Given a category index this routine return the index of the next cat-
egory. Categories are not stored sequentially.

Prototype Word CategoryGetNext (DmOpenRef db, Word index)

Parameters db Database that contains the categories.

index Category index.

Result Category index of next category.

CategoryTruncateName

Purpose Truncate a category name so that it’s short enough to display.

Prototype void CategoryTruncateName (CharPtr name,
Word maxWidth)

Parameters name Category name to truncate.

maxWidth Maximum size, in pixels, of truncated category
(including ellipsis).

Result Returns nothing

CategorySetTriggerLabel

Purpose Set the label displayed by the category trigger. The category name
is truncated if it's to long.

Prototype void CategorySetTriggerLabel (ControlPtr ctl,
CharPtr name)

Parameters ctl Pointer to control object to relabel.

label Pointer to the name of the new category.

Result Returns nothing.
310 Developing Palm OS Applications, Part I

Miscellaneous User Interface Functions
Category Functions
CategorySelect

Purpose Process the selection and editing of categories.

Prototype Boolean CategorySelect (DmOpenRef db,
FormPtr frm,
Word ctlID,
Word lstID,
Boolean title,
WordPtr categoryP,

 CharPtr categoryName)

Parameters db Database that contains the categories.

frm Form that contains the category popup list.

ctlID ID of the popup trigger.

lstID ID of the popup list.

title True if the popup trigger is on the title line.

categoryP Current category (index into db structure).

categoryName Name of the current category.

Result Returns TRUE if any of the following conditions are true:

the current category is renamed

the current category is deleted

the current category is merged with another category
Developing Palm OS Applications, Part I 311

Miscellaneous User Interface Functions
Character Attribute Functions
Character Attribute Functions

GetCharAttr

Purpose Return a pointer to the characters attributes array which is used by
the character classification and character conversion macros (such
as isalpha and toascii).

Prototype WordPtr GetCharAttr (void)

Parameters None

Result A pointer to the attributes array. See CharAttr.h for an explanation
of the attributes.

GetCharCaselessValue

Purpose Return a pointer to an array that maps all characters to an assigned
caseless and accentless value. This should be used for finding text.

Prototype BytePtr GetCharCaselessValue (void)

Parameters None.

Result A pointer to the sort array.

The compiler pads each byte out to a word so each index position
contains two characters.

Note: array[x].high = sort value for character 2x+1.
312 Developing Palm OS Applications, Part I

Miscellaneous User Interface Functions
ClipBoard Functions
GetCharSortValue

Purpose Return a pointer to an array that maps all characters to an assigned
sorting value. This should be used for ordering (sorting) text.

Prototype BytePtr GetCharSortValue (void)

Parameters None.

Result Returns a pointer to the attributes array.

The compiler pads each byte out to a word so each index position
contains two characters.

Note: array[x].low = sort value for character 2x.

ClipBoard Functions

ClipboardAddItem

Purpose Add the item passed to the specified clipboard. The format param-
eter determines which clipboard (text, ink, etc.) the item is added
to.

Prototype void ClipboardAddItem (ClipboardFormatType format,
 VoidPtr ptr,
 Word length)

Parameters format Text, ink, bitmap, etc.

ptr Pointer to the item to place on the clipboard.

length Size of the item to place on the clipboard.

Result Returns nothing.

See Also FldCut, FldCopy
Developing Palm OS Applications, Part I 313

Miscellaneous User Interface Functions
Font Functions
 ClipboardGetItem

Purpose Return the handle of the contents of the clipboard of a specified
type and the length of a clipboard item.

Prototype VoidHand ClipboardGetItem
(ClipboardFormatType format, WordPtr length)

Parameters format Text, ink, bitmap, etc.

length Pointer to the length of the clipboard item.

Result Handle of the clipboard item.

 Font Functions

FntAccentHeight

Purpose Return the height of an accent of the characters in the current font.
The height of an accent is the distance between the top of the char-
acter cell and the top a non-accent capital letter.

Prototype short FntAccentHeight (void)

Parameters None.

Result Height of an accent (in pixels).

FntAscent

Purpose Return the ascent of the characters in the current font. The ascent
of a character is the distance from the top of a non-accent capital
letter to the base line.

Prototype short FntAscent (void)

Parameters None.

Result Returns character ascent (in pixels).
314 Developing Palm OS Applications, Part I

Miscellaneous User Interface Functions
Font Functions
FntAverageCharWidth

Purpose Return the average character width in the current font.

Prototype short FntAverageCharWidth (void)

Parameters None.

Result Returns the average character width (in pixels).

FntBaseLine

Purpose Return the distance from the top of character cell to the baseline for
the current font.

Prototype short FntBaseLine (void)

Parameters None.

Result Returns the baseline of the font (in pixels).

FntCharHeight

Purpose Return the character height, in the current font including accents
and descenders.

Prototype short FntCharHeight (void)

Parameters None

Result Height of the characters in the current font, expressed in pixels.
Developing Palm OS Applications, Part I 315

Miscellaneous User Interface Functions
Font Functions
FntCharsInWidth

Purpose Find the number of characters in a string that fit within a passed
width. Spaces at the end of a string are ignored and removed. Any
characters after a carriage return are ignored and the string is con-
sidered truncated.

Prototype void FntCharsInWidth (CharPtr string,
Int *stringWidthP,
Int *stringLengthP,
Boolean *fitWithinWidth)

Parameters string Pointer to the char string.

stringWidthP Maximum width to allow.

stringLengthP Maximum characters to allow (assumes
current Font).

fitWithinWidth Set to TRUE if the string is considered
truncated.

Result When the call is completed, the information is updated as follows:

stringWidthP Set to the width of the chars allowed.

stringLengthP Set to the number of chars within the width.

fitWithinWidth TRUE if the string is considered truncated,
FALSE if it isn’t.
316 Developing Palm OS Applications, Part I

Miscellaneous User Interface Functions
Font Functions
FntCharsWidth

Purpose Return the width of the specified character string. The Missing
Character Symbol is substituted for any character which does not
exist in the current font.

Prototype short FntCharsWidth (CharPtr pChars, Word length)

Parameters pChars Pointer to a string of characters.

length Number of character in the string.

Result Returns the width of the string, in pixels.

FntCharWidth

Purpose Return the width of the specified character. If the specified char-
acter does not exist within the current font, the Missing Character
Symbol is substituted.

Prototype short FntCharWidth (char ch)

Parameters ch Character whose width is needed.

Result Returns the width of the specified character (in pixels).

FntDescenderHeight

Purpose Return the height of a character’s descender in the current font.
The height of a descender is the distance between the base line an
the bottom of the character cell.

Prototype short FntDescenderHeight (void)

Parameters None.

Result Returns the height of a descender, expressed in pixels.
Developing Palm OS Applications, Part I 317

Miscellaneous User Interface Functions
Font Functions
FntGetFont

Purpose Return the Font ID of the current font.

Prototype FontID FntGetFont (void)

Parameters None.

Result Returns FontID of the current font.

FntGetFontPtr

Purpose Return a pointer to the current font.

Prototype FontPtr FntGetFontPtr (void)

Parameters None.

Result Returns the FontPtr of the current font.

FntLineHeight

Purpose Return the height of a line in the current font. The height of a line
is the height of the character cell plus the space between lines (the
external leading).

Prototype short FntLineHeight (void)

Parameters None.

Result Returns the height of a line in the current font.
318 Developing Palm OS Applications, Part I

Miscellaneous User Interface Functions
Font Functions
FntLineWidth

Purpose Return the width of the specified line of text, taking tab characters
in to account. The function assumes that the characters passed are
left-aligned and that the first character in the string is the first char-
acter drawn on a line. In other words, this routine doesn’t work for
characters that don’t start at the beginning of a line.

Prototype short FntLineWidth (CharPtr pChars, Word length)

Parameters pChars Pointer to a string of characters.

length Number of character in the string.

Result Returns the line width (in pixels).

FntProportionalFont

Purpose Indicate whether the current font is proportionally spaced or fixed
width.

Prototype Boolean FntProportionalFont (void)

Parameters None.

Result Returns TRUE if the current font is proportionally spaced, FALSE
if it’s fixed width.

FntSetFont

Purpose Set the current font.

Prototype FontID FntSetFont (FontID fontID)

Parameters fontID ID of the font to make the active font.

Result Returns ID of the current font before the change.
Developing Palm OS Applications, Part I 319

Miscellaneous User Interface Functions
Other User Interface Functions
Other User Interface Functions

AbtShowAbout

Purpose Displays the info dialog box. The application name is picked up
from either the tAIN resource of the application, or the name of the
application database (which is assigned in the makefile).

Prototype void AbtShowAbout (ULong creator)

Parameters creator Creator ID of this application.

Result Returns nothing.

DayHandleEvent

Purpose Handle event in the specified control. This routine handles two
type of events, penDownEvent and ctlEnterEvent.

Prototype Boolean DayHandleEvent (DaySelectorPtr pSelector,
EventPtr pEvent)

Parameters pSelector Pointer to control object (ControlType)

pEvent Pointer to an EventType structure.

pError Pointer to returned error code

Result True if the event was handle or false if it was not.

Posts a daySelectEvent with info on whether to use the date.

A date is used if the user selects a day in the visible month.

Functions for System Use Only

Find

Prototype void Find (GoToParamsPtr goToP)
320 Developing Palm OS Applications, Part I

Miscellaneous User Interface Functions
Functions for System Use Only
WARNING: System Use Only!

FindDrawHeader

Prototype Boolean FindDrawHeader (FindParamsPtr params,
CharPtr title)

WARNING: System Use Only!

FindGetLineBounds

Prototype void FindGetLineBounds (FindParamsPtr params,
RectanglePtr r)

WARNING: System Use Only!

FindSaveMatch

Prototype Boolean FindSaveMatch (FindParamsPtr params,
UInt recordNum,
Word pos,
UInt fieldNum,
DWord appCustom,
UInt dbCardNo,
LocalID dbID)

WARNING: System Use Only!

FindStrInStr

Prototype Boolean FindStrInStr (CharPtr strToSearch,
CharPtr strToFind,
Developing Palm OS Applications, Part I 321

Miscellaneous User Interface Functions
Functions for System Use Only
WordPtr posP)

WARNING: System Use Only!

UIInitialize

Prototype void UIInitialize (void)

WARNING: System Use Only!

UIReset

Prototype void UIReset (void)

WARNING: System Use Only!
322 Developing Palm OS Applications, Part I

12
System, Error, Preferences,
and Find Functions

System Functions

SysAppLaunch

Purpose Launch the specified application with the given command line ar-
guments, given a card number and database ID of an application
resource database.

Prototype Err SysAppLaunch(UInt cardNo, LocalID dbID,
UInt launchFlags, Word cmd,
Ptr cmdPBP, DWord* resultP)

Parameters cardNo, dbID cardNo and dbID identify the application.

launchFlags Set to 0.

cmd Action code.

cmdPBP Action code parameter block.

resultP Pointer to what’s returned by the application’s
PilotMain routine.

Result Returns 0 if no error, or one of sysErrParamErr,
memErrNotEnoughSpace, sysErrOutOfOwnerIDs.

Comments Launching an application with all launch bits cleared makes the ap-
plication a subroutine call from the point of view of the caller.

See Also SysBroadcastActionCode, SysUIAppSwitch,
SysCurAppDatabase
Developing Palm OS Applications, Part I 323

System, Error, Preferences, and Find Functions
System Functions
SysBatteryInfo

Purpose Retrieve settings for the batteries. Set set to FALSE to retrieve bat-
tery settings. (Applications should not change any of the settings).

WARNING: Use this function only to retrieve settings!

Prototype UInt SysBatteryInfo(Boolean set,
UIntPtr warnThresholdP,
UIntPtr criticalThresholdP,
UIntPtr maxTicksP,
SysBatteryKind* kindP,
Boolean* pluggedIn)

Parameters set If false, parameters with non-nil pointers are
retrieved. Never set this parameter to TRUE.

warnThresholdP Pointer to battery voltage warning threshold
in volts*100, or nil.

criticalThresholdP Pointer to the battery voltage critical threshold
in volts*100, or nil.

maxTicksP Pointer to the battery timeout, or nil.

kindP Pointer to the battery kind, or nil.

pluggedInP Pointer to pluggedIn return value, or nil.

Result Returns the current battery voltage in volts*100.

Comments Call this function to make sure an upcoming activity won’t be inter-
rupted by a low battery warning.

warnThresholdP and maxTicksP are the battery-warning
voltage threshold and time out. If the battery voltage falls below
the threshold, or the timeout expires, a lowBatteryChr key event
is put on the queue. Normally, applications call SysHandleEvent
which calls SysBatteryWarningDialog in response to this event.

criticalThresholdP is the battery voltage threshold. If battery
voltage falls below this level, the system turns itself off without
warning and doesn’t turn on until battery voltage is above it again.
324 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
System Functions
SysBroadcastActionCode

Purpose Send the specified action code and parameter block to the latest
version of every UI application.

Prototype Err SysBroadcastActionCode (Word cmd, Ptr cmdPBP)

Parameters cmd Action code to send.

cmdPBP Action code parameter block to send.

Result Returns 0 if no error, or one of the following errors:
sysErrParamErr, memErrNotEnoughSpace,
sysErrOutOfOwnerIDs.

See Also SysAppLaunch

SysCopyStringResource

Purpose Copy a resource string to a passed string.

Prototype void SysCopyStringResource (CharPtr string,
UInt theID)

Parameters string String to copy the resource string to

theID Resource string ID

Result Stores a copy of the resource string in string.
Developing Palm OS Applications, Part I 325

System, Error, Preferences, and Find Functions
System Functions
SysCurAppDatabase

Purpose Return the card number and database ID of the current applica-
tion’s resource database.

Prototype Err SysCurAppDatabase (UIntPtr cardNoP,
LocalID* dbIDP)

Parameters cardNoP Pointer to the card number; 0 or 1.

dbIDB Pointer to the database ID.

Result Returns 0 if no error, or SysErrParamErr if an error occurs.

See Also SysAppLaunch, SysUIAppSwitch

SysFormPointerArrayToStrings

Purpose Form an array of pointers to strings in a block. Useful for setting
the items of a list.

 Prototype VoidHand SysFormPointerArrayToStrings
(CharPtr c,
Int stringCount)

Parameters c Pointer to packed block of strings, each
terminated by NULL.

stringCount Count of strings in block.

Result Unlocked handle to allocated array of pointers to the strings in the
passed block. The returned array points to the strings in the passed
packed block.
326 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
System Functions
SysHandleEvent

Purpose Handle defaults for system events such as hard and soft key
presses.

Prototype Boolean SysHandleEvent (EventPtr eventP)

Parameters eventP Pointer to an event.

Result Returns TRUE if the system handled the event.

Comments Applications should call this routine immediately after calling
EvtGetEvent unless they want to override the default system be-
havior. However, overriding the default system behavior is almost
never appropriate for an application.

See Also EvtProcessSoftKeyStroke, KeyRates
Developing Palm OS Applications, Part I 327

System, Error, Preferences, and Find Functions
System Functions
SysInsertionSort

Purpose Sort elements in an array according to the passed comparison func-
tion. Only elements which are out of order move. Moved elements
are moved to the end of the range of equal elements. If a large
amount of elements are being sorted, try to use the quick sort (see
SysQSort).

This the insertion sort algorithm: Starting with the second element,
each element is compared to the preceding element. Each element
not greater than the last is inserted into sorted position within
those already sorted. A binary search for the insertion point is per-
formed. A moved element is inserted after any other equal ele-
ments.

Prototype void SysInsertionSort (Byte baseP,
Int numOfElements,
Int width,
CmpFuncPtr comparF,
Long other)

Parameters baseP Base pointer to an array of elements.

numOfElements Number of elements to sort (must be at least
2).

width Width of an element.

comparF Comparison function (see Comments).

other Other data passed to the comparison function.

Result Returns nothing.

Comments The comparison function (comparF) has this prototype:
int comparF (BytePtr A, BytePtr B, Long other);

The function returns:

• > 0 if A > B

• < 0 if A< B

• 0 if A = B
328 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
System Functions
See Also SysQSort

SysKeyboardDialog

Purpose Pop up the system keyboard if there is a field object with the focus.
The field object’s text chunk is edited directly.

Prototype void SysKeyboardDialog ()

Parameters None.

Result Returns nothing. The field’s text chunk is changed.

See Also FrmSetFocus

SysQSort

Purpose Sort elements in an array according to the passed comparison func-
tion. Equal records can be in any position relative to each other be-
cause a quick sort tends to scramble the ordering of records. As a
result, calling SysQSort multiple times can result in a different
order if the records are not completely unique. If you don’t want
this behavior, use the insertion sort instead (see SysInsertionSort).

To pick the pivot point, the quick sort algorithm picks the middle
of three records picked from around the middle of all records. That
way, the algorithm can take advantage of partially sorted data.

These optimizations are built in:

• The routine contains its own stack to limit uncontrolled
recursion. When the stack is full, an insertion sort is used
because it doesn't require more stack space.

• An insertion sort is also used when the number of records is
low. This avoids the overhead of a quick sort which is
noticeable for small numbers of records.

• If the records seem mostly sorted, an insertion sort is
performed to move only those few records needing moving.
Developing Palm OS Applications, Part I 329

System, Error, Preferences, and Find Functions
System Functions
 Prototype void SysQSort (Byte baseP,
Int numOfElements,
Int width,
CmpFuncPtr comparF,
Long other)

Parameters baseP Base pointer to an array of elements.

numOfElements Number of elements to sort
(must be at least 2),

width Width of an element.

comparF Comparison function. See Comments for
SysInsertionSort.

other Other data passed to the comparison function.

Result Returns nothing.

See Also SysInsertionSort

SysRandom

Purpose Return a random number anywhere from 0 to sysRandomMax.

Prototype Int SysRandom (ULong newSeed)

Parameters newSeed New seed value, or 0 to use existing seed.

Result Returns a random number.
330 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
System Functions
SysReset

Purpose Perform a soft reset and reinitialize the globals and the dynamic
memory heap.

Prototype void SysReset (void)

Parameters None.

Result No return value.

Comments This routine resets the system, reinitializes the globals area and all
system managers, and reinitializes the dynamic heap. All database
information is preserved. This routine is called when the user
presses the hidden reset button on the device.

When running an application using the simulator, this routine
looks for two data files that represent the memory of card 0 and
card 1. If these are found, the Palm OS memory image is created
using them. If they are not found, they are created.

When running an application on the device, this routine simply
looks for the memory cards at fixed locations.

SysSetAutoOffTime

Purpose Set the time out value in seconds for auto-power-off. Zero means
never power-off.

Prototype UInt SysSetAutoOffTime (UInt seconds)

Parameters seconds Time out in seconds, or 0 for no time out

Result Returns previous value of time out in seconds.
Developing Palm OS Applications, Part I 331

System, Error, Preferences, and Find Functions
System Functions
SysTaskDelay

Purpose Put the processor into doze mode for the specified number of ticks.

Prototype Err SysTaskDelay (Long delay)

Parameters delay Number of ticks to wait (see sysTicksPerSecond)

Result Returns 0 if no error.

See Also EvtGetEvent

SysUIAppSwitch

Purpose Try to make the current UI application quit and then launch the UI
application specified by card number and database ID.

Prototype Err SysUIAppSwitch(UInt cardNo,
LocalID dbID,
Word cmd,
Ptr cmdPBP)

Parameters cardNo Card number for the new application; currently only
card 0 is valid.

dbID ID of the new application.

cmd Action code.

cmdPBP Action code parameter block.

Result Returns 0 if no error.

See Also SysAppLaunch
332 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
System Functions
Functions for System Use Only

SysAppExit

Prototype Err SysAppExit (SysAppInfoPtr appInfoP,
Ptr prevGlobalsP, Ptr globalsP)

WARNING: System Use Only!

SysAppInfoPtr

Prototype SysAppInfoPtr SysCurAppInfoP (void)

WARNING: System Use Only!

SysAppStartup

Prototype Err SysAppStartup (SysAppInfoPtr appInfoPP,
Ptr prevGlobalsP, Ptr globalsP)

WARNING: System Use Only!

SysBatteryDialog

Prototype void SysBatteryDialog (void)

WARNING: System Use Only!

SysCardImageDeleted

Prototype void SysCardImageDeleted (UInt cardNo)

WARNING: System Use Only!
Developing Palm OS Applications, Part I 333

System, Error, Preferences, and Find Functions
System Functions
SysCardImageInfo

Prototype Ptr SysCardImageInfo (UInt cardNo, ULongPtr sizeP)

WARNING: System Use Only!

SysColdBoot

Purpose Perform a cold boot and reformat all RAM areas of both memory
cards.

WARNING: System Use Only!

SysCurAppInfoP

Prototype SysCurAppInfoPtr SysCurrAppInfoP (void)

WARNING: System Use Only!

SysDisableInts

Prototype Word SysDisableInts (void)

WARNING: System Use Only!

SysDoze

Prototype void SysDoze (Boolean onlyNMI)

WARNING: System Use Only!
334 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
System Functions
SysGetTrapAddress

Prototype VoidPtr SysGetTrapAddress (UInt trapNum)

WARNING: System Use Only!

SysInit

Prototype void SysInit (void)

WARNING: System Use Only!

SysKernelInfo

Prototype Err SysKernelInfo (VoidPtr paramP)

WARNING: System Use Only!

SysLaunchConsole

Prototype Err SysLaunchConsole (void)

WARNING: System Use Only!

SysLibFind

Prototype Err SysLibFind (CharPtr nameP, UIntPtr refNumP)

WARNING: System Use Only!
Developing Palm OS Applications, Part I 335

System, Error, Preferences, and Find Functions
System Functions
SysLibInstall

Prototype Err SysLibInstall (SysLibEntryProcPtr libraryP,
 UIntPtr refNumP)

WARNING: System Use Only!

SysLibRemove

Prototype Err SysLibRemove (UInt refNum)

WARNING: System Use Only!

SysLibTblEntry

Prototype SysLibTblEntryPtr SysLibTblEntry (UInt refNum)

WARNING: System Use Only!

SysNewOwnerID

Prototype UInt SysNewOwnerID (void)

WARNING: System Use Only!

SysPowerOn

Prototype void SysPowerOn (Ptr card0P, ULong card0Size,
Ptr card1P, ULong card1Size,
DWord sysCardHeaderOffset,
Boolean reFormat)

WARNING: System Use Only!
336 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
System Functions
SysRestoreStatus

Prototype void SysRestoreStatus (Word status)

WARNING: System Use Only!

SysSetA5

Prototype DWord SysSetA5 (DWord newValue)

WARNING: System Use Only!

SysSetTrapAddress

Prototype Err SysSetTrapAddress (UInt trapNum,
VoidPtr procP)

WARNING: System Use Only!

SysSleep

Prototype void SysSleep (Boolean untilReset,
Boolean emergency)

WARNING: System Use Only!

SysUILaunch

Prototype void SysUILaunch (void)

WARNING: System Use Only!
Developing Palm OS Applications, Part I 337

System, Error, Preferences, and Find Functions
Error Manager Functions
Error Manager Functions

ErrDisplay

Purpose Display an error alert if error checking is set to partial or full.

Prototype void ErrDisplay (char* message)

Parameters -> message Error message text.

Result No return value.

Comments Call this routine to display an error message, source code filename,
and line number. This routine is actually a macro that is compiled
into the code only if the compiler define ERROR_CHECK_LEVEL
is set to 1 or 2 (ERROR_CHECK_PARTIAL or
ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, “Using the
Error Manager”

ErrDisplayFileLineMsg

Purpose Display a nonexitable dialog with an error message. Do not allow
the user to continue.

Prototype void ErrDisplayFileLineMsg(CharPtr filename,
UInt lineno,
CharPtr msg)

Parameters filename Source code filename.

lineno Line number in the source code file.

msg Message to display.

Result Never returns.
338 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
Error Manager Functions
Comment Called by ErrFatalDisplayIf and ErrNonFatalDisplayIf.
This function is useful when the application is already on the
device and being tested by users.

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay

ErrFatalDisplayIf

Purpose Display an error alert dialog if condition is TRUE and error
checking is set to partial or full.

Prototype void ErrFatalDisplayIf (Boolean condition,
char* message)

Parameters -> condition If TRUE, display the error.

-> message Error message text.

Result No return value.

Comments Call this routine to display a fatal error message, source code file-
name, and line number. The alert is displayed only if condition
is true. The dialog is cleared only when the user resets the system
by responding to the dialog.

This routine is actually a macro that is compiled into the code if the
compiler define ERROR_CHECK_LEVEL is set to 1 or 2
(ERROR_CHECK_PARTIAL or ERROR_CHECK_FULL).

See Also ErrNonFatalDisplayIf, ErrDisplay, “Using the Error
Manager”
Developing Palm OS Applications, Part I 339

System, Error, Preferences, and Find Functions
Error Manager Functions
ErrNonFatalDisplayIf

Purpose Display an error alert dialog if condition is TRUE and error
checking is set to full.

Prototype void ErrNonFatalDisplayIf (Boolean condition,
char* message)

Parameters -> condition If TRUE, display the error.

-> message Error message text.

Result No return value.

Comments Call this routine to display a nonfatal error message, source code
filename, and line number. The alert is displayed only if condi-
tion is true. The alert dialog is cleared when the user selects to
continue (or resets the system).

This routine is actually a macro that is compiled into the code only
if the compiler define ERROR_CHECK_LEVEL is set to 2
(ERROR_CHECK_FULL).

See Also ErrFatalDisplayIf, ErrDisplay, “Using the Error Man-
ager”

ErrThrow

Purpose Cause a jump to the nearest Catch block.

Prototype void ErrThrow (Long err)

Parameters err Error code.

Result Never returns.

Comments Use the macros ErrTry, ErrCatch, and ErrEndCatch in conjunc-
tion with this function.

See Also ErrFatalDisplayIf, ErrNonFatalDisplayIf, ErrDisplay,
“Using the Error Manager”
340 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
System Preferences Functions
System Preferences Functions

PrefGetAppPreferences

Purpose Return a copy of an application’s preferences.

Prototype Boolean PrefGetAppPreferences (ULong type,
Int version,
VoidPtr prefs,
Word prefsSize)

Parameters type Application creator type.

version Version number of the application.

prefs Pointer to a buffer to hold preferences.

prefsSize Size of the buffer passed.

Result Returns FALSE if the preference resource was not found or the
preference resource contains the wrong version number.

Comments The content and format of an application preference is application-
dependent.

See Also PrefSetPreferences
Developing Palm OS Applications, Part I 341

System, Error, Preferences, and Find Functions
System Preferences Functions
PrefGetPreferences

Purpose Return a copy of the system preferences.

Prototype void PrefGetPreferences (SystemPreferencesPtr p)

Parameters p Pointer to system preferences.

Result Returns nothing. Stores the system preferences in p.

Comments The p parameter points to a memory block allocated by the caller
that is filled in by this function.

This function is often called in StartApplication to get local-
ized settings.

See Also PrefSetPreferences

PrefOpenPreferenceDB

Purpose Return a handle to the system preference database.

Prototype DmOpenRef PrefOpenPreferenceDB (void)

Parameters Nothing.

Result Returns the handle, or 0 if an error results.

See Also PrefGetPreferences, PrefSetPreferences
342 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
System Preferences Functions
PrefSetAppPreferences

Purpose Save an application’s preferences in the preferences database.

Prototype void PrefSetAppPreferences (ULong type,
Int version,
VoidPtr prefs,
Word prefsSize)

Parameters type Application creator type.

version Version number of the application.

prefs Pointer to a buffer holding preferences.

prefsSize Size of the buffer passed.

Result Nothing.

Comments The content and format of an application preference is application-
dependent.

See Also PrefGetPreferences

PrefSetPreferences

Purpose Set the system preferences.

Prototype void PrefSetPreferences (SystemPreferencesPtr p)

Parameters p Pointer to system preferences.

Result Returns nothing.

See Also PrefGetPreferences
Developing Palm OS Applications, Part I 343

System, Error, Preferences, and Find Functions
Find Functions
Find Functions

FindDrawHeader

Purpose Draw the header line that separates, by database, the list of found
items.

Prototype Boolean FindDrawHeader (FindParamsPtr params,
CharPtr title)

Parameters params Handle of FindParamsPtr.

title Description of the database (for example Memos)

Result Returns TRUE if Find screen is filled up. Applications should exit
from the search if this occurs.

FindGetLineBounds

Purpose Returns the bounds of the next available line for displaying a
match in the Find Results dialog.

Prototype void FindGetLineBounds (FindParamsPtr params,
RectanglePtr r)

Parameters params Handle of FindParamsPtr.

r Pointer to a structure to hold the bounds of the next
results line.

Result Returns nothing.
344 Developing Palm OS Applications, Part I

System, Error, Preferences, and Find Functions
Find Functions
FindSaveMatch

Purpose Saves the record and position within the record of a text search
match. This information is saved so that it’s possible to later navi-
gate to the match.

Prototype void FindSaveMatch (FindParamsPtr params,
UInt recordNum,
Word pos,
UInt fieldNum,
DWord appCustom,
UInt dbCardNo,
LocalID rdbID)

Parameters params Handle of FindParamsPtr.

recordNum Record index.

pos Offset of the match string from start of record.

appCustom Extra data the application can save with a match.

dbCardNo Car number of the database that contains the match.

dbID Local ID of the database that contains the match.

Result Returns TRUE if the maximum number of displayable items has
been exceeded

Comments Called by application code when it gets a match.
Developing Palm OS Applications, Part I 345

System, Error, Preferences, and Find Functions
Find Functions
FindStrInStr

Purpose Perform a case-blind partial word search for a string in another
string. This function assumes that the string to find is in lower-case
characters.

Prototype void FindStrInStr (CharPtr strToSearch,
CharPtr strToFind,
WordPtr posP)

Parameters strToSearch String to search.

strToFind String to find.

posP Pointer to the offset in the search string of the match.

Result Returns TRUE if the string was found.
346 Developing Palm OS Applications, Part I

13
System Event
Manager Functions
EvtAddEventToQueue

Purpose Add an event to the event queue.

Prototype void EvtAddEventToQueue (EventPtr event)

Parameters event Pointer to the structure that contains the event.

error Pointer to any error encountered by this function.

Result Returns nothing.

EvtCopyEvent

Purpose Copy an event.

Prototype void EvtCopyEvent (EventPtr source, EventPtr dest)

Parameters source Pointer to the structure containing the event to copy.

dest Pointer to the structure to copy the event to.

Result Returns nothing.
Developing Palm OS Applications, Part I 347

System Event Manager Functions
EvtDequeuePenPoint

Purpose Get the next pen point out of the pen queue (called by the recog-
nizers).

Prototype Err EvtDequeuePenPoint(PointType* retP)

Parameters retP Return point.

Result Always returns 0.

Comments Called by a recognizer that wishes to extract the points of a stroke.
Returns the point (-1, -1) at the end of a stroke.

Before calling this routine, you must call
EvtDequeuePenStrokeInfo.

See Also EvtDequeuePenStrokeInfo

EvtDequeuePenStrokeInfo

Purpose Initiate the extraction of a stroke from the pen queue.

Prototype Err EvtDequeuePenStrokeInfo(PointType* startPtP,
 PointType* endPtP)

Parameters startPtP Start point returned here.

startPtP End point returned here.

Result Always returns 0.

Comments Called by the system function EvtGetSysEvent. This routine
must be called before EvtDequeuePenPoint is called.

Subsequent calls to EvtDequeuePenPoint return points at the
starting point in the stroke and including the end point. After the
end point is returned, the next call to EvtDequeuePenPoint re-
turns the point -1, -1.

See Also EvtDequeuePenPoint
348 Developing Palm OS Applications, Part I

System Event Manager Functions
EvtEnableGraffiti

Purpose Set Graffiti enabled or disabled.

Prototype void EvtEnableGraffiti (Boolean enable)

Parameters enable TRUE to enable Graffiti, FALSE to disable Graffiti.

Result Returns nothing.

EvtEnqueueKey

Purpose Place keys into the key queue.

Prototype Err EvtEnqueueKey (UInt ascii,
UInt keycode,
UInt modifiers)

Parameters ascii ascii code of key.

keycode Virtual key code of key.

modifiers Modifiers for key event.

Result Returns 0 if successful, or evtErrParamErr if an error occurs.

Comments Called by the keyboard interrupt routine and the Graffiti and Soft-
Keys recognizers. Note that because both interrupt- and noninter-
rupt-level code can post keys into the queue, this routine disables
interrupts while the queue header is being modified.

Most keys in the queue take only 1 byte if they have no modifiers
and no virtual key code, and are 8-bit ASCII. If a key event in the
queue has modifiers or is a non-standard ascii code, it takes up to 7
bytes of storage and has the following format:

evtKeyStringEscape 1 byte

ASCII code 2 bytes

virtual key code 2 bytes

modifiers 2 bytes
Developing Palm OS Applications, Part I 349

System Event Manager Functions
EvtFlushKeyQueue

Purpose Flush all keys out of the key queue.

Prototype Err EvtFlushKeyQueue (void)

Parameters None.

Result Always returns 0.

Comments Called by the system function EvtSetPenQueuePtr.

EvtFlushNextPenStroke

Purpose Flush the next stroke out of the pen queue.

Prototype Err EvtFlushNextPenStroke (void)

Parameters None

Result Always returns 0.

Comments Called by recognizers that need only the start and end points of a
stroke. If a stroke has already been partially dequeued (by
EvtDequeuePenStrokeInfo) this routine finishes the stroke de-
queueing. Otherwise, this routine flushes the next stroke in the
queue.

See Also EvtDequeuePenPoint
350 Developing Palm OS Applications, Part I

System Event Manager Functions
EvtFlushPenQueue

Purpose Flush all points out of the pen queue.

Prototype Err EvtFlushPenQueue (void)

Parameters None

Result Always returns 0.

Comment Called by the system function EvtSetKeyQueuePtr.

See Also EvtPenQueueSize

EvtGetEvent

Purpose Return the next available event.

Prototype void EvtGetEvent (EventPtr event, Long timeout)

Parameters event Pointer to the structure to hold the event returned.

timeout Max amount of ticks to wait before an event is
returned (-1 means wait indefinitely).

Comments Pass timeout= -1 in most instances. When running on the device,
this makes the CPU go into doze mode until the user provides
input. For applications that do animation, pass timeout >= 0.

Result Returns nothing.
Developing Palm OS Applications, Part I 351

System Event Manager Functions
EvtGetPen

Purpose Return the current status of the pen.

Prototype void EvtGetPen(Sword *pScreenX,
Sword *pScreenY,
Boolean *pPenDown)

Parameters pScreenX x location relative to display.

pScreenY y location relative to display.

pPenDown TRUE or FALSE.

Result Returns nothing.

Comments Called by various UI routines.

See Also KeyCurrentState

EvtGetPenBtnList

Purpose Return a pointer to the silk-screen button array.

Prototype PenBtnInfoPtr asm
EvtGetPenBtnList(UIntPtr numButtons)

Parameters numButtons Pointer to the variable to contain the
number of buttons in the array.

Result Returns a pointer to the array.

Comments The array returned contains the bounds of each silk-screened
button and the ASCII code and modifiers byte to generate for each
button.

See Also EvtProcessSoftKeyStroke
352 Developing Palm OS Applications, Part I

System Event Manager Functions
EvtKeyQueueEmpty

Purpose Return TRUE if the key queue is currently empty.

Prototype Boolean EvtKeyQueueEmpty (void)

Parameters None.

Result Returns TRUE if the key queue is currently empty, otherwise re-
turns FALSE.

Comments Called by key manager to determine if it should enqueue auto-
repeat keys.

EvtKeyQueueSize

Purpose Return the size of the current key queue in bytes.

Prototype ULong EvtKeyQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Called by applications that wish to see how large the current key
queue is.

EvtPenQueueSize

Purpose Return the size of the current pen queue in bytes.

Prototype ULong EvtPenQueueSize (void)

Parameters None.

Result Returns size of queue in bytes.

Comments Call this function to see how large the current pen queue is.
Developing Palm OS Applications, Part I 353

System Event Manager Functions
EvtProcessSoftKeyStroke

Purpose Translate a stroke in the system area of the digitizer and enqueue
the appropriate key events in to the key queue.

Prototype Err EvtProcessSoftKeyStroke(PointType* startPtP,
PointType* endPtP)

Parameters startPtP Start point of stroke.

endPtP End point of stroke.

Result Returns 0 if recognized, -1 if not recognized.

See Also EvtGetPenBtnList, GrfProcessStroke

EvtResetAutoOffTimer

Purpose Reset the auto-off timer to assure that the device doesn’t automati-
cally power off during a long operation without user input (for ex-
ample, serial port activity).

Prototype Err EvtResetAutoOffTimer (void)

Parameters None.

Result Always returns 0.

Comments Called by SerialLinkMgr, Can be called periodically by other
managers.

See Also SysSetAutoOffTime
354 Developing Palm OS Applications, Part I

System Event Manager Functions
Functions for System Use Only
EvtWakeup

Purpose Force the event manager to wake up and send a nilEvent to the
current application.

Prototype Err EvtWakeup (void)

Parameters None.

Result Always returns 0.

Comments Called by interrupt routines, like the sound manager and alarm
manager.

Functions for System Use Only
EvtDequeueKeyEvent

Prototype Err EvtDequeueKeyEvent (EventPtr eventP)

WARNING: System Use Only!

EvtEnqueuePenPoint

Prototype Err EvtEnqueuePenPoint (PointType* ptP)

WARNING: System Use Only!

EvtGetSysEvent

Prototype void EvtGetSysEvent (EventPtr eventP,
Long timeout)

WARNING: System Use Only!
Developing Palm OS Applications, Part I 355

System Event Manager Functions
Functions for System Use Only
EvtInitialize

Prototype void EvtInitialize (void)

WARNING: System Use Only!

EvtSetKeyQueuePtr

Prototype Err EvtSetKeyQueuePtr (Ptr keyQueueP, ULong size)

WARNING: System Use Only!

EvtSetPenQueuePtr

Prototype Err EvtSetPenQueuePtr (Ptr penQueueP, ULong size)

WARNING: System Use Only!

EvtSysInit

Prototype Err EvtSysInit (void)

WARNING: System Use Only!
356 Developing Palm OS Applications, Part I

14
Feature, Time, Float,
and String Functions
FtrGet

Purpose Get a feature.

Prototype Err FtrGet (DWord creator,
UInt featureNum,
DWordPtr valueP)

Parameters creator Creator type, should be same as the application
that owns this feature.

featureNum Feature number of the feature.

valueP Value of the feature is returned here.

Result Returns 0 if no error, or ftrErrNoSuchFtr or
ftrErrInternalError if an error occurs.

Comments The value of the feature is application-dependent.

See Also FtrSet
Developing Palm OS Applications, Part I 357

Feature, Time, Float, and String Functions
FtrGetByIndex

Purpose Get a feature by index.

Until the caller gets back ftrErrNoSuchFeature, it should pass
indices for each table (ROM, RAM) starting at 0 and incrementing .

Prototype Err FtrGetByIndex (UInt index,
Boolean romTable,
DWordPtr creatorP,
UIntPtr numP,
DWordPtr valueP)

Parameters index Index of feature.

romTable If TRUE, index into ROM table; otherwise,
index into RAM table.

creatorP Feature creator is returned here.

numP Feature number is returned here.

valueP Feature value is returned here.

Result Returns 0 if no error, or ftrErrInternalError or
ftrErrNoSuchFeature if an error occurs.

Comments This routine is normally only used by shell commands. Most appli-
cations do not need it.
358 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
FtrSet

Purpose Set a feature.

Prototype Err FtrSet (DWord creator,
UInt featureNum,
DWord newValue)

Parameters creator Creator type, should be same as the application
that owns this feature.

featureNum Feature number of the feature.

newValue New value.

Result Returns 0 if no error, or ftrErrNoSuchFeature,
memErrChunkLocked, memErrInvalidParam, or
memErrNotEnoughSpace if an error occurs.

Comments The value of the feature is application-dependent.

See Also FtrGet

FtrUnregister

Purpose Unregister a feature.

Prototype Err FtrUnregister (DWord creator,
UInt featureNum)

Parameters creator Creator type, should be same as the application
that owns the creator.

featureNum Feature number of the feature.

Result Returns 0 if no error, or ftrInternalError,
ftrErrNoSuchFeature, memErrChunkLocked,
memErrInvalidParam, or memErrNotEnoughSpace if an error
occurs.
Developing Palm OS Applications, Part I 359

Feature, Time, Float, and String Functions
For System Use Only
For System Use Only

FtrInit

Prototype Err FtrInit (void)

WARNING: This function for System use only

String Manager Functions

StrAToI

Purpose Converts a string to an integer.

Prototype Int StrAToI (CharPtr str)

Parameters str String to convert.

Result Returns the integer.

Comments Use this function instead of the standard atoi routine.

StrCat

Purpose Concatenate one string to another.

Prototype CharPtr StrCat (CharPtr dst, CharPtr src)

Parameters Two string pointers.

Result Returns a pointer to the destination string.

Comments Use this function instead of the standard strcat routine.
360 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
String Manager Functions
StrCaselessCompare

Purpose Compare two strings with case and accent insensitivity.

Prototype Int StrCaselessCompare (CharPtr s1, CharPtr s2)

Parameters Two string pointers.

Result Returns 0 if the two strings match, or non-zero if they don’t.

Comments Use this function instead of the standard stricmp routine. Use it
to find strings but not sort them because it ignores case and accents.

See Also StrCompare

StrChr

Purpose Look for a character within a string.

Prototype CharPtr StrChr (CharPtr str, Int chr)

Parameters str String to search.

chr Character to search for.

Result Returns a pointer to the first occurrence of character in str, or
NULL if not found.

Comments Use this function instead of the standard strchr routine.

This routine does not correctly find a ‘\0’ character.

See Also StrStr
Developing Palm OS Applications, Part I 361

Feature, Time, Float, and String Functions
String Manager Functions
StrCompare

Purpose Compare two strings.

Prototype Int StrCompare (CharPtr s1, CharPtr s2)

Parameters Two string pointers.

Result Returns 0 if the strings match.

Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

Comments This function is case sensitive. Use it to sort strings but not to find
them.

Use this function instead of the standard strcmp routine.

See Also StrCaselessCompare

StrCopy

Purpose Copy one string to another.

Prototype CharPtr StrCopy (CharPtr dst, CharPtr src)

Parameters Two string pointers.

Result Returns a pointer to the destination string.

Comments Use this function instead of the standard strcpy routine.

This function does not return overlapping strings.
362 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
String Manager Functions
StrIToA

Purpose Convert an integer to ASCII.

Prototype CharPtr StrIToA (CharPtr s, Long i)

Parameters s String pointer to store results.

i Integer to convert.

Result Returns a pointer to the result string.

See Also StrAToI, StrIToH

StrIToH

Purpose Convert an integer to hexadecimal ASCII.

Prototype CharPtr StrIToH (CharPtr s, ULong i)

Parameters s String pointer to store results.

i Integer to convert.

Result Returns the string pointer s.

See Also StrIToA

StrLen

Purpose Compute the length of a string.

Prototype UInt StrLen (CharPtr src)

Parameters src String pointer

Result Returns the length of the string.

Comments Use this function instead of the standard strlen routine.
Developing Palm OS Applications, Part I 363

Feature, Time, Float, and String Functions
String Manager Functions
StrStr

Purpose Look for a substring within a string.

Prototype CharPtr StrStr (CharPtr str, CharPtr token)

Parameters str String to search.

token String to search for.

Result Returns a pointer to the first occurrence of token in str, or NULL
if not found.

Comments Use this function instead of the standard strstr routine.

See Also StrChr

StrToLower

Purpose Convert all the characters in a string to lowercase.

Prototype CharPtr StrToLower (CharPtr dst, CharPtr src)

Parameters Two string pointers.

Result Returns a pointer to the destination string.

Comments This function doesn’t convert accented characters.
364 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Time Manager Functions
Time Manager Functions

DateAdjust

Purpose Return a new date +/- the days adjustment.

Prototype void DateAdjust (DatePtr dateP, Long adjustment)

Parameters dateP A DateType structure with the date to be adjusted
(see DateTime.h).

adjustment The adjustment in seconds.

Result Changes dateP to contain the new date.

Comments This function is useful for advancing a day or week and not wor-
rying about month and year wrapping.

If the time is advanced out of bounds, it is cut at the bounds sur-
passed.

 DateDaysToDate

Purpose Return the date, given days.

Prototype void DateDaysToDate (ULong days, DatePtr dateP)

Parameters days Days since 1/1/1904.

dateP Pointer to DateType structure (returned).

Result Returns nothing, stores the date in dateP.

See Also TimAdjust, DateToDays
Developing Palm OS Applications, Part I 365

Feature, Time, Float, and String Functions
Time Manager Functions
DateSecondsToDate

Purpose Return the date given seconds.

Prototype void DateSecondsToDate (ULong seconds,
DatePtr dateP)

Parameters seconds Seconds since 1/1/1904.

dateP Pointer to DateType structure (returned).

Result Returns nothing; stores the date in dateP.

DateToAscii

Purpose Convert the time passed to an ASCII string in the passed
DateFormatType.

Prototype void DateToAscii(Byte months,
Byte days,
Word years,
DateFormatType dateFormat,
CharPtr pString)

NOTE: Handles the long and short forms of the date formats.

 Parameters months Months (1-12).

days Days (1-31).

years Years (for example 1995).

dateFormat Long or short DateFormatType.

pString Pointer to string which gets the result. Must be of
length dateStringLength for standard formats or
longDateStrLength for long date formats.

 Result Returns nothing; stores the result in pString.

See Also TimeToAscii, DateToDOWDMFormat
366 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Time Manager Functions
DateToDays

Purpose Return the date in days since 1/1/1904.

Prototype ULong DateToDays (DateType date)

Parameters date DateType structure.

 Result Returns the days since 1/1/1904.

See Also TimAdjust, DateDaysToDate

DateToDOWDMFormat

Purpose Convert the date passed to an ASCII string.

Prototype void DateToDOWDMFormat(Byte months,
Byte days,
Word years,
DateFormatType dateFormat,
CharPtr pString)

Parameters months Month (1-12).

days Day (1-31).

years Years (for example 1995).

dateFormat False to use AM and PM.

pString Pointer to string which gets the result. The
string must be of length timeStringLength.

Result Returns nothing; stores ASCII string in pString.

See Also DateToAscii
Developing Palm OS Applications, Part I 367

Feature, Time, Float, and String Functions
Time Manager Functions
DayOfMonth

Purpose Return the day of a month on which the specified date occurs (for
example, dom2ndTue).

Prototype UInt DayOfMonth (UInt month, UInt day, UInt year)

Parameters month Month (1-12).

day Day (1-31).

year Year (ex: 1995).

Result Returns the day of the month as a DayOfWeekType, see
DateTime.h.

DayOfWeek

 Purpose Return the day of the week.

Prototype UInt DayOfWeek (UInt month, UInt day, UInt year)

Parameters month Month (1-12).

day Day (1-31).

year Year (ex: 1995).

Result Returns the day of the week (Sunday = 0, Monday = 1, etc.).

DaysInMonth

Purpose Return the number of days in the month.

Prototype UInt DaysInMonth (UInt month, UInt year)

Parameters month Month (1-12).

year Year (for example, 1995).

Result Returns the number of days in the month for that year.
368 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Time Manager Functions
SelectDay

Purpose Display a form showing a date and allow the user to select a dif-
ferent date.

Prototype Boolean SelectDay (int *month,
int *day,
int *year,
CharPtr title)

Parameters month Month selected.

day Day selected.

year Year selected.

title String title for the dialog.

Result Returns true if the OK button was pressed. In that case, the parame-
ters passed are changed.

TimAdjust

Purpose Return a new date, +/- the time adjustment.

Prototype void TimAdjust(DateTimePtr dateTimeP,
Long adjustment)

Parameters dateTimeP A DateType structure (see DateTime.h).

adjustment The adjustment in seconds.

Result Returns nothing. Changes dateTimeP to the new date and time.

Comments This function is useful for advancing a day or week and not wor-
rying about month and year wrapping.

If the time is advanced out of bounds it is cut at the bounds sur-
passed.

See Also DateAdjust
Developing Palm OS Applications, Part I 369

Feature, Time, Float, and String Functions
Time Manager Functions
TimDateTimeToSeconds

 Purpose Return the date and time in seconds since 1/1/1904.

Prototype ULong TimDateTimeToSeconds (DateTimePtr dateTimeP)

Parameters dateTimeP A DateType structure (see DateTime.h).

Result The time in seconds since 1/1/1904.

See Also TimSecondsToDateTime

TimGetSeconds

Purpose Return seconds since 1/1/1904.

Prototype ULong TimGetSeconds (void)

Parameters None.

Result Returns the number of seconds.

See Also TimSetSeconds

TimGetTicks

Purpose Return the tick count since the last reset.

Prototype ULong TimGetTicks (void)

Parameters None.

Result Returns the tick count.

Comments The tick count does not advance while the device is in sleep mode.
370 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Time Manager Functions
TimSecondsToDateTime

 Purpose Return the date and time, given seconds.

Prototype void TimSecondsToDateTime(ULong seconds,
 DateTimePtr dateTimeP)

Parameters seconds Seconds to advance from 1/1/1904.

dateTimeP A DateTimeType structure that’s filled by the
function.

Result Returns nothing. Stores the date and time given seconds since 1/1/
1904 in dateTimeP.

See Also TimDateTimeToSeconds

TimSetSeconds

Purpose Return seconds since 1/1/1904.

Prototype void TimSetSeconds (ULong seconds)

Parameters seconds Place to return the seconds since 1/1/1904.

Result Returns nothing; modifies seconds.

See Also TimGetSeconds
Developing Palm OS Applications, Part I 371

Feature, Time, Float, and String Functions
Time Manager Functions
TimeToAscii

Purpose Convert the time passed to an ASCII string.

Prototype void TimeToAscii(Byte hours,
Byte minutes,
TimeFormatType timeFormat,
CharPtr pString)

Parameters hours Hours (0-23).

minutes Minutes (0-59).

timeFormat False to use AM and PM.

pString Pointer to string which gets the result. Must be
of length timeStringLength.

Result Returns nothing. Stores pointer to the text of the current selection
in pString.

See Also DateToAscii

Functions for System Use Only

TimGetAlarm

Prototype ULong TimGetAlarm (void)

WARNING: System use only!

TimHandleInterrupt

Prototype void TimHandleInterrupt (Boolean periodicUpdate)

Warning: System use only!
372 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Float Manager Functions
TimInit

Prototype Err TimInit (void)

Warning: System use only!

TimSetAlarm

Prototype ULong TimSetAlarm (ULong alarmSeconds)

Warning: System use only!

Float Manager Functions

FplAdd

Purpose Add two floating-point numbers (returns a + b).

Prototype FloatType FplAdd (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

 Result Returns the normalized floating-point result of the addition.
Developing Palm OS Applications, Part I 373

Feature, Time, Float, and String Functions
Float Manager Functions
FplAToF

Purpose Convert a zero-terminated ASCII string to a floating-point number.
The string must be in the format : [-]x[.]yyyyyyyy[e[-]zz]

Prototype FloatType FplAToF (char* s)

Parameters s Pointer to the ASCII string.

 Result Returns the floating-point number.

See Also FplFToA

FplBase10Info

Purpose Extract detailed information on the base 10 form of a floating-point
number: the base 10 mantissa, exponent, and sign.

Prototype Err FplBase10Info (FloatType a,
ULong* mantissaP,
Int* exponentP,
Int* signP)

Parameters a The floating-point number.

mantissaP The base 10 mantissa (return value).

exponentP The base 10 exponent (return value).

signP The sign, 1 or -1 (return value).

Result Returns an error code, or 0 if no error.

Comments The mantissa is normalized so it contains at least
kMaxSignificantDigits significant digits when printed as an
integer value.
374 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Float Manager Functions
FplDiv

Purpose Divide two floating-point numbers (result = dividend/divisor).

Prototype FloatType FplDiv (FloatType dividend,
FloatType divisor)

Parameters dividend Floating-point dividend.

divisor Floating-point divisor.

 Result Returns the normalized floating-point result of the division.

FplFloatToLong

Purpose Convert a floating-point number to a long integer.

Prototype Long FplFloatToLong (FloatType f)

Parameters f Floating-point number to be converted.

 Result Returns the long integer.

See Also FplLongToFloat, FplFloatToULong

FplFloatToULong

Purpose Convert a floating-point number to an unsigned long integer.

Prototype ULong FplFloatToULong (FloatType f)

Parameters f Floating-point number to be converted.

 Result Returns an unsigned long integer.

See Also FplLongToFloat, FplFloatToLong
Developing Palm OS Applications, Part I 375

Feature, Time, Float, and String Functions
Float Manager Functions
FplFree

Purpose Release all memory allocated by the floating-point initialization.

 Prototype void FplFree()

Parameters None.

Result Returns nothing.

Comments Applications must call this routine after they’ve called other func-
tions that are part of the float manager.

See Also FplInit

FplFToA

Purpose Convert a floating-point number to a zero-terminated ASCII string
in exponential format : [-]x.yyyyyyyye[-]zz

Prototype Err FplFToA (FloatType a, char* s)

Parameters a The floating-point number.

s Pointer to buffer to contain the ASCII string.

Result Returns an error code, or 0 if no error.

See Also FplAToF
376 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Float Manager Functions
FplInit

Purpose Initialize the floating-point conversion routines.

Allocate space in the system heap for fpl globals.

Initialize the tenPowers array in the globals area to the powers of
10 from -99 to +99 in floating-point format.

Prototype Err FplInit()

Parameters None.

Result Returns an error code, or 0 if no error.

Comments Applications must call this routine before calling any other fpl
function.

See Also FplFree

FplLongToFloat

Purpose Convert a long integer to a floating-point number.

Prototype FloatType FplLongToFloat (Long x)

Parameters x A long integer.

 Result Returns the floating-point number.

FplMul

Purpose Multiply two floating-point numbers.

Prototype FloatType FplMul(FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

 Result Returns the normalized floating-point result of the multiplication.
Developing Palm OS Applications, Part I 377

Feature, Time, Float, and String Functions
Alarm Manager API
FplSub

Purpose Subtract two floating-point numbers (returns a - b).

Prototype FloatType FplSub (FloatType a, FloatType b)

Parameters a, b The floating-point numbers.

 Result Returns the normalized floating-point result of the subtraction.

Alarm Manager API

AlmGetAlarm

Purpose Return the alarm date/time in seconds since 1/1/1904 and the
caller-defined alarm reference value for the given application.

Prototype ULong AlmGetAlarm (UInt cardNo,
LocalID dbID,
DWordPtr refP)

Parameters -> cardNo Storage card number of the application.

-> dbID Local ID of the application.

<-> refP Pointer to location for the alarm’s reference value.

Result Alarm seconds since 1/1/1904; if no alarm is active for the applica-
tion, 0 is returned for the alarm seconds and the reference value is
undefined.
378 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Alarm Manager API
AlmSetAlarm

Purpose Set or cancel an alarm for the given application.

Prototype Err AlmSetAlarm (UInt cardNo,
LocalID dbID,
DWord ref,
ULong alarmSeconds,
Boolean quiet)

Parameters -> cardNo Storage card number of the application.

-> dbID Local ID of the application.

-> ref Caller-defined value to be passed with
notifications.

-> alarmSeconds Alarm date/time in seconds since 1/1/1904,
 or 0 to cancel the current alarm (if any).

-> quiet Reserved for future upgrade (set to zero).

Result 0 No error.

almErrMemory Insufficient memory.

almErrFull Alarm table is full.

Comments If an alarm for this application has already been set, it is replaced
with the new alarm. Action code notifications are sent after the
alarm is triggered and can be used by the application to set the next
alarm.
Developing Palm OS Applications, Part I 379

Feature, Time, Float, and String Functions
Alarm Manager API
Functions for System Use Only

AlmAlarmCallback

Prototype void AlmAlarmCallback (void)

WARNING: This function for use by system software only.

AlmCancelAll

Prototype void AlmCancelAll (Boolean enable)

WARNING: This function for use by system software only.

AlmDisplayAlarm

Prototype void AlmDisplayAlarm (Boolean displayOnly)

WARNING: This function for use by system software only.

AlmEnableNotification

Prototype void AlmEnableNotificatio(Boolean enable)

WARNING: This function for use by system software only.

AlmInit

Prototype Err AlmInit (void)

WARNING: This function for use by system software only.
380 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Sound Manager Functions
Sound Manager Functions

SndDoCmd

Purpose Send a sound manager command to a specified sound channel.

NOTE: Passing NIL for the channel pointer causes the command
to be sent to the shared sound channel.

Prototype Err SndDoCmd (VoidPtr chanP,
 SndCommandPtr cmdP,
 Boolean noWait)

Parameters -> chanP Pointer to sound channel. Present implementation
doesn’t support multiple channels. Must be zero.

-> cmdP Pointer to a SndCommandType structure which
contains command parameters.

-> noWait 0 = await completion
!0 = immediate return (asynchronous)
asynchronous mode is not presently supported

Result 0 No error.

sndErrBadParam Invalid parameter.

sndErrBadChannel Invalid channel pointer.

sndErrQFull Sound queue is full.
Developing Palm OS Applications, Part I 381

Feature, Time, Float, and String Functions
Sound Manager Functions
SndGetDefaultVolume

Purpose Return default sound volume levels.

Prototype void SndGetDefaultVolume (UIntPtr alarmAmpP,
 UIntPtr sysAmpP,
 UIntPtr defAmpP)

Parameters <-> alarmAmpP Pointer to storage for alarm amplitude.

<-> sysAmpP Pointer to storage for system sound amplitude.

<-> defAmpP Pointer to storage for master amplitude.

Result Returns nothing.

Comments Any pointer arguments may be passed as NULL. In that case, the
corresponding setting is not returned.

SndPlaySystemSound

Purpose Play a standard system sound.

Prototype void SndPlaySystemSound (SndSysBeepType beepID)

Parameters -> beepID ID of system sound to play.

Result Returns nothing.
382 Developing Palm OS Applications, Part I

Feature, Time, Float, and String Functions
Sound Manager Functions
SndSetDefaultVolume

Purpose Set the default sound volume levels.

Prototype void SndSetDefaultVolume (UIntPtr alarmAmpP,
UIntPtr sysAmpP,
UIntPtr defAmpP)

Parameters -> alarmAmpP Pointer to alarm amplitude (0-sndMaxAmp).

-> sysAmpP Pointer to system sound amplitude
(0-sndMaxAmp).

-> defAmpP Pointer to master amplitude (0-sndMaxAmp).

Result Returns nothing.

Comments Any pointer arguments may be passed as NULL. In that case, the
corresponding setting are not affected.

Functions for System Use Only

SndInit

Prototype Err SndInit(void)

WARNING: This function for use by system software only.
Developing Palm OS Applications, Part I 383

Feature, Time, Float, and String Functions
Sound Manager Functions
384 Developing Palm OS Applications, Part I

15
Pen, Key, and
Graffiti Functions

Pen Manager Functions

PenCalibrate

Purpose Set the calibration of the pen.

Prototype Err PenCalibrate (PointType* digTopLeftP,
 PointType* digBotRightP,

PointType* scrTopLeftP,
PointType* scrBotRightP)

Parameters digTopLeftP Digitizer output from top-left coordinate.

digBotRightP Digitizer output from bottom-right coordinate.

scrTopLeftP Screen coordinate near top-left corner.

scrBotRightP Screen coordinate near bottom-right corner.

Result Returns 0 if no error.

Comments Called by Preferences application when calibrating pen.

See Also PenResetCalibration
Developing Palm OS Applications, Part I 385

Pen, Key, and Graff i t i Functions
Pen Manager Functions
PenResetCalibration

Purpose Reset the calibration in preparation for calibrating the pen again.

Prototype Err PenResetCalibration (void)

Parameters None.

Result Always returns 0.

Comments Called by Preferences application before capturing points when cal-
ibrating the digitizer.

See Also PenCalibrate

WARNING: The digitizer is off after calling this routine and must
be calibrated again!!!

Functions for System Use Only

PenClose

Prototype Err PenClose (void)

WARNING: This function for use by system software only.

PenGetRawPen

Prototype Err PenGetRawPen (PointType* penP)

See Instead EvtDequeuePenPoint

WARNING: This function for use by system software only.
386 Developing Palm OS Applications, Part I

Pen, Key, and Graff i t i Functions
Pen Manager Functions
PenOpen

Prototype Err PenOpen (void)

WARNING: This function for use by system software only.

PenSleep

Prototype Err PenSleep (void)

WARNING: This function for use by system software only.

PenRawToScreen

Prototype Err PenRawToScreen (PointType* penP)

WARNING: This function for use by system software only.

PenScreenToRaw

Prototype Err PenScreenToRaw (PointType* penP)

WARNING: This function for use by system software only.

PenWake

Prototype Err PenWake (void)

WARNING: This function for use by system software only.
Developing Palm OS Applications, Part I 387

Pen, Key, and Graff i t i Functions
Key Manager Functions
Key Manager Functions

KeyCurrentState

Purpose Return bit field with bits set for each key that is currently de-
pressed.

Prototype DWord KeyCurrentState (void)

Parameters void

Result DWord with bits set for keys that are depressed. See
keyBitPower, keyBitPageUp, keyBitPageDown, etc., in
KeyMgr.h.

Comments Called by applications that need to poll the keys.

See Also KeyRates
388 Developing Palm OS Applications, Part I

Pen, Key, and Graff i t i Functions
Key Manager Functions
KeyRates

Purpose Get or set the key repeat rates.

Prototype Err KeyRates (Boolean set,
WordPtr initDelayP,
WordPtr periodP,
WordPtr doubleTapDelayP,
BooleanPtr queueAheadP)

Parameters set If TRUE, settings are changed; if FALSE,
current settings are returned.

initDelayP Initial delay in ticks for a auto-repeat event.

periodP Auto-repeat rate specified as period in ticks.

doubleTapDelayP Max double-tap delay in ticks.

queueAheadP If TRUE, auto-repeating keeps queueing up
key events if the queue has keys in it. If
FALSE, auto-repeat does not enqueue keys
unless the queue is already empty.

Result Returns 0 if no error.

See Also KeyCurrentState

Functions for System Use Only

KeyBootKeys

Prototype DWord KeyBootKeys (void)

WARNING: This function for use by system software only.
Developing Palm OS Applications, Part I 389

Pen, Key, and Graff i t i Functions
Key Manager Functions
KeyHandleInterrupt

Prototype ULong KeyHandleInterrupt(Boolean periodic,
DWord status)

WARNING: This function for use by system software only.

KeyInit

Prototype Err KeyInit (void)

WARNING: This function for use by system software only.

KeyResetDoubleTap

Prototype Err KeyResetDoubleTap (void)

WARNING: This function for use by system software only.

KeySleep

Prototype Err KeySleep (Boolean untilReset,
Boolean emergency)

WARNING: This function for use by system software only.

KeyWake

Prototype Err KeyWake (void)

WARNING: This function for use by system software only.
390 Developing Palm OS Applications, Part I

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
Graffiti Manager Functions

GrfAddMacro

Purpose Add a macro to the macro list.

Prototype Err GrfAddMacro (CharPtr nameP,
BytePtr macroDataP,
Word dataLen)

Parameters nameP Name of macro.

macroDataP Data of macro.

dataLen Size of macro data in bytes.

Result Returns 0 if no error; returns grfErrNoMacros,
grfErrMacroPtrTooSmall, dmErrNotValidRecord,
dmErrWriteOutOfBounds if an error occurs.

See Also GrfGetMacro, GrfGetMacroName, GrfDeleteMacro

GrfAddPoint

Purpose Add a point to the Graffiti point buffer.

Prototype Err GrfAddPoint (PointType* ptP)

Parameters ptP Pointer to point.

Result Returns 0 if no error; returns grfErrPointBufferFull if an
error occurs.

See Also GrfFlushPoints
Developing Palm OS Applications, Part I 391

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
GrfCleanState

Purpose Remove any temporary shifts from the dictionary state.

Prototype Err GrfCleanState (void)

Parameters None

Result Returns 0 if no error, or grfErrNoDictionary if an error occurs.

See Also GrfInitState

GrfDeleteMacro

Purpose Delete a macro from the macro list.

Prototype Err GrfDeleteMacro (Word index)

Parameters index Which macro to delete.

Result Returns 0 if no error, or grfErrNoMacros,
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro

GrfFindBranch

Purpose Locate a branch in the Graffiti dictionary by flags.

Prototype Err GrfFindBranch (Word flags)

Parameters flags Flags of the branch we're searching for.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrBranchNotFound if an error occurs.

See Also GrfCleanState, GrfInitState
392 Developing Palm OS Applications, Part I

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
GrfFilterPoints

Purpose Filter the points in the Graffiti point buffer.

Prototype Err GrfFilterPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfMatch

GrfFlushPoints

Purpose Dispose of all points in the Graffiti point buffer.

Prototype Err GrfFlushPoints (void)

Parameters None.

Result Always returns 0.

See Also GrfAddPoint
Developing Palm OS Applications, Part I 393

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
GrfGetAndExpandMacro

Purpose Look up and expand a macro in the current macros.

Prototype Err GrfGetAndExpandMacro(CharPtr nameP,
BytePtr macroDataP,
WordPtr dataLenP)

Parameters nameP Name of macro to look up.

macroDataP Macro contents returned here.

dataLenP On entry, size of macroDataP buffer;
on exit, number of bytes in macro data.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro
394 Developing Palm OS Applications, Part I

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
GrfGetGlyphMapping

Purpose Look up a glyph in the dictionary and return the text.

Prototype Err GrfGetGlyphMapping(Word glyphID,
WordPtr flagsP,
void* dataPtrP,
WordPtr dataLenP,
WordPtr uncertainLenP)

Parameters glyphID Glyph ID to lookup.

flagsP Returned dictionary flags.

dataPtrP Where returned text goes.

dataLenP On entry, size of dataPtrP;
on exit, number of bytes returned.

uncertainLenP Return number of uncertain characters in text.

Result Returns 0 if no error, or grfErrNoDictionary or
grfErrNoMapping if an error occurs.

See Also GrfMatch

GrfGetMacro

Purpose Look up a macro in the current macros.

Prototype Err GrfGetMacro(CharPtr nameP, BytePtr macroDataP,
 WordPtr dataLenP)

Parameters nameP Name of macro to lookup.

macroDataP Macro contents returned here.

dataLenP On entry: size of macroDataP buffer.
On exit: number of bytes in macro data.

Result Returns 0 if no error or grfErrNoMacros, grfErrMacroNotFound.

See Also GrfAddMacro
Developing Palm OS Applications, Part I 395

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
GrfGetMacroName

Purpose Look up a macro name by index.

Prototype Err GrfGetMacroName (Word index, CharPtr nameP)

Parameters index Index of macro.

nameP Name returned here.

Result Returns 0 if no error, or grfErrNoMacros or
grfErrMacroNotFound if an error occurs.

See Also GrfAddMacro, GrfGetMacro

GrfGetNumPoints

Purpose Return the number of points in the point buffer.

Prototype Err GrfGetNumPoints (WordPtr numPtsP)

Parameters numPtsP Returned number of points.

Result Always returns 0.

See Also GrfAddPoint

GrfGetPoint

Purpose Return a point out of the Graffiti point buffer.

Prototype Err GrfGetPoint (Word index, PointType* pointP)

Parameters index Which point to get.

pointP Returned point.

Result Returns 0 if no error, or grfErrBadParam if an error occurs.

See Also GrfAddPoint, GrfGetNumPoints
396 Developing Palm OS Applications, Part I

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
GrfGetState

Purpose Returns the current shift state of Graffiti.

Prototype Err GrfGetState(Boolean* capsLockP,
Boolean* numLockP,
WordPtr tempShiftP,
Boolean* autoShiftedP)

Parameters capsLockP Returns TRUE if caps lock on.

numLockP Returns TRUE if num lock on.

tempShiftP Current temporary shift.

autoShiftedP Returns TRUE if shift not set by the user.

Result Always returns 0.

See Also GrfSetState

GrfInitState

Purpose Reinitialize the Graffiti dictionary state.

Prototype Err GrfInitState (void)

Parameters None.

Result Always returns 0.

See Also GrfGetState, GrfSetState
Developing Palm OS Applications, Part I 397

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
GrfMatch

Purpose Recognize the current stroke in the Graffiti point buffer and return
with the recognized text.

Prototype Err GrfMatch (WordPtr flagsP,
void* dataPtrP,
WordPtr dataLenP,
WordPtr uncertainLenP,
GrfMatchInfoPtr matchInfoP)

Parameters flagsP Glyph flags are returned here.

dataPtrP Return text is placed here.

dataLenP Size of dataptr on exit; number of characters
returned on exit.

uncertainLenP Return number of uncertain characters.

matchInfoP Array of grfMaxMatches, or nil.

Result Returns 0 if no error, or grfErrNoGlyphTable,
grfErrNoDictionary, or grfErrNoMapping if an error occurs.

See Also GrfAddPoint, GrfFlushPoints
398 Developing Palm OS Applications, Part I

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
GrfMatchGlyph

Purpose Recognize the current stroke as a glyph.

Prototype Err GrfMatchGlyph (GrfMatchInfoPtr matchInfoP,
Word maxUnCertainty,
Word maxMatches)

Parameters matchInfoP Pointer to array of matches to fill in.

maxUnCertainty Maximum number of errors to tolerate.

maxMatches Size of matchInfoP array.

Result Returns 0 if no error, or grfErrNoGlyphTable if an error occurs.

See Also GrfMatch

GrfProcessStroke

Purpose Translate a stroke to keyboard events using Graffiti.

Prototype Err GrfProcessStroke (PointType* startPtP,
 PointType* endPtP,

Boolean upShift)

Parameters startPtP Start point of stroke.

endPtP End point of stroke.

upShift Set to TRUE to feed an artificial upshift into the
engine.

Result 0 if recognized.

Comments Called by SysHandleEvent when a pen-up is detected in the
writing area. This routine recognizes the stroke and sends the rec-
ognized characters into the key queue. It also flushes the stroke out
of the pen queue after recognition.

See Also SysHandleEvent
Developing Palm OS Applications, Part I 399

Pen, Key, and Graff i t i Functions
Graffiti Manager Functions
GrfSetState

Purpose Set the current shift state of Graffiti.

Prototype Err GrfSetState(Boolean capsLock,
Boolean numLock,
Boolean upperShift)

Parameters capsLock Set to TRUE to turn on caps lock.

numLock Set to TRUE to turn on num lock.

upperShift Set to TRUE to put into upper shift.

Result Always returns 0.

See Also GrfGetState

SysShortCutListDialog

Purpose Pop up the Graffiti ShortCut list as a field object with the focus.

Prototype void SysGrfShortCutListDialog (void)

Parameters event Pointer to an EventType structure.

Result The field’s text chunk is changed.

See Also GrfGetMacro, GrfGetMacroName

Functions for System Use Only

GrfFieldChange

Prototype Err GrfFieldChange(Boolean resetState,
UIntPtr characterToDelete)

WARNING: System Use Only.
400 Developing Palm OS Applications, Part I

Pen, Key, and Graff i t i Functions
GraffitiShift Functions
GrfFree

Prototype Err GrfFree(void)

WARNING: System Use Only.

GraffitiShift Functions

GsiEnable

Purpose Enable or disable the Graffiti-shift state indicator.

Prototype void GsiEnable (Boolean enableIt)

Parameters enableIt TRUE to enable, FALSE to disable.

Result Returns nothing.

Comments Enabling the indicator makes it visible, disabling it makes the inser-
tion point invisible.

GsiEnabled

Purpose Return TRUE if the Graffiti-shift state indicator is enabled, or
FALSE if it’s disabled.

Prototype Boolean GsiEnabled (void)

Parameters None.

Result TRUE if enabled, FALSE if not.
Developing Palm OS Applications, Part I 401

Pen, Key, and Graff i t i Functions
GraffitiShift Functions
GsiInitialize

Purpose Initialize the global variables used to manage the Graffiti-shift state
indicator.

Prototype void GsiInitialize (void)

Parameters None.

Result Returns nothing.

GsiSetLocation

Purpose Set the display-relative position of the Graffiti-shift state indicator.

Prototype void GsiSetLocation (short x, short y)

Parameters x, y Coordinate of left side and top of the indicator.

Result Returns nothing.

Comments The indicator is not redrawn by this routine.

GsiSetShiftState

Purpose Set the Graffiti-shift state indicator.

Prototype void GsiSetShiftState (Word lockFlags,
Word tempShift)

Parameters lockFlags glfCapsLock or glfNumLock.

tempShift The current temporary shift.

Result Returns nothing.

Comment This function affects only the state of the UI element, not the under-
lying Graffiti engine.

See Also GrfSetState
402 Developing Palm OS Applications, Part I

	Part I: System and User Interface Management
	Developing Palm OS™ Applications
	Part I
	Table of Contents
	Developing Palm OS Applications
	Overview of Application Development
	Designing UI and Program Functionality
	Designing Screen Layout and User Interaction

	Constructing UI Resources
	Using Managers and Filling out the Program Logic
	Using Events and Launch Codes
	Using the Palm OS Managers

	Building, Debugging, and Testing
	Building the Application and Running it on the Dev...
	Using Other Components of the SDK

	Internal Structure of an Application
	Naming Conventions
	Basic Hardware
	RAM and ROM
	Palm OS Modes of Operation
	Palm OS Connectivity
	Real-Time Clock and Timer
	Palm OS Device Screen and Sound Generation
	Palm OS Device Reset Switch

	Application Control Flow
	How Events Control an Application
	Basic Application Stages
	The Startup Routine
	The Event Loop
	The Stop Routine

	How Action Codes Control the Application
	Action Code Example
	Responding to Action Codes
	Predefined Action Codes
	Action Code Flags

	Action Code Parameter Blocks
	sysAppLaunchCmdSaveData
	sysAppLaunchCmdSystemReset
	sysAppLaunchCmdInitDatabase
	sysAppLaunchCmdSyncCallApplication
	sysAppLaunchCmdGoto Command
	sysAppLaunchCmdFind

	Creating Your Own Action Codes

	Palm OS User Interface Resources
	Menu Bar Resource
	Menu Resource
	Application Icon Name Resource
	Alert Resource
	Button Resource
	Check Box Resource
	Field Resource
	Form Bitmap Resource
	Form Resource
	Gadget Resource
	Graffiti Shift Resource
	Label Resource
	List Resource
	Popup List Resource
	Popup Trigger Resource
	Push Button Resource
	Repeating Button Resource
	Selector Trigger Resource
	String Resource
	Table Resource
	Title Resource
	Version Number String
	Supported Fonts

	Palm OS Events
	appStopEvent
	ctlEnterEvent
	ctlExitEvent
	ctlRepeatEvent
	ctlSelectEvent
	daySelectEvent
	fldChangedEvent
	fldEnterEvent
	fldHeightChangedEvent
	frmCloseEvent
	frmLoadEvent
	frmOpenEvent
	frmSaveEvent
	frmUpdateEvent
	keyDownEvent
	lstEnterEvent
	lstExitEvent
	lstSelectEvent
	menuEvent
	nilEvent
	penDownEvent
	penMoveEvent
	penUpEvent
	popSelectEvent
	tblEnterEvent
	tblExitEvent
	tblSelectEvent
	winEnterEvent
	winExitEvent

	Palm OS UI Objects
	Control Objects
	Control Object Overview
	Control Object Events
	Structure of a Control
	Fields of a ControlType Structure

	Associated Resources
	Control Functions

	Field Objects
	Field Object Overview
	Field Object Events
	Structure of a Field
	Fields of a Field Structure

	Associated Resources
	Field Functions

	Form Objects
	Form Object Overview
	Structure of a Form
	Fields of Form Objects

	Associated Resource
	Form Functions

	List Object
	List Object Overview
	List Object Events
	Structure of a List
	List Object Fields

	Associated Resources
	List Functions

	Menu Objects
	Menu Object Overview
	Menu Events
	Structure of a Menu
	Menu Object Fields
	Menu Pull-Down Fields
	Menu Item Fields

	Associated Resources
	Menu Functions

	Date and Time UI Objects
	Date and Time Functions

	Insertion Point Object
	Insertion Point Functions

	Table Objects
	Table Events
	Structure of a Table
	Fields of a Table Structure

	Associated Resource
	Table Functions

	Window Objects
	Window Events
	Structure of a Window
	Fields of a Window Structure

	Window Functions

	Using Palm OS Managers
	The System Manager
	System Boot and Reset
	Power Management
	Palm OS Power Modes
	Guidelines for Application Developers

	The Microkernel
	Application Support
	Launching and Clean-Up
	Event Processing
	Inter-Application Communication

	Using the System Manager
	System Reset Calls
	Power Management Calls
	Application Utilities

	System Manager Functions

	The Feature Manager
	Feature Manager Overview
	Using the Feature Manager
	Feature Manager Functions

	The String Manager
	The Time Manager
	Using Real-Time Clock Functions
	Using System Ticks Functions
	Time Manager Structures
	Time Manager Function Summary

	The System Event Manager
	Event Translation: Pen Strokes to Key Events
	Pen Queue Management
	Key Queue Management
	Auto-Off Control
	System Event Manager Function Summary

	The Pen Manager
	Pen Manager Functions

	The Key Manager
	Key Manager Functions

	The Graffiti Manager
	Graffiti Manager Function Summary

	The Alarm Manager
	Alarm Manager Overview
	Using the Alarm Manager
	Alarm Manager Function Summary

	The Alert Manager
	The Alert Resource
	Alert Manager Functions

	The Sound Manager
	Using the Sound Manager
	Sound Manager Function Summary

	The Error Manager
	Displaying Development Errors
	The Try and Catch Mechanism
	Using the Error Manager
	Using the Try and Catch Mechanism

	Error Manager Function Summary

	Control, Field, and Insertion Point Functions
	Control Functions
	CtlDrawControl
	CtlEraseControl
	CtlGetLabel
	CtlGetValue
	CtlHandleEvent
	CtlHideControl
	CtlHitControl
	CtlEnabled
	CtlSetEnabled
	CtlSetLabel
	CtlSetUsable
	CtlSetValue
	CtlShowControl

	Field UI Functions
	FldCalcFieldHeight
	FldCompactText
	FldCopy
	FldCut
	FldDelete
	FldDirty
	FldDrawField
	FldEraseField
	FldFreeMemory
	FldGetAttributes
	FldGetBounds
	FldGetFont
	FldGetInsPtPosition
	FldGetMaxChars
	FldGetScrollPosition
	FldGetSelection
	FldGetTextAllocatedSize
	FldGetTextHandle
	FldGetTextHeight
	FldGetTextLength
	FldGetTextPtr
	FldGetVisibleLines
	FldGrabFocus
	FldHandleEvent
	FldInsert
	FldMakeFullyVisible
	FldPaste
	FldRecalculateField
	FldReleaseFocus
	FldScrollable
	FldScrollField
	FldSendChangeNotification
	FldSendHeightChangeNotification
	FldSetAttributes
	FldSetBounds
	FldSetDirty
	FldSetFont
	FldSetInsPtPosition
	FldSetMaxChars
	FldSetScrollPosition
	FldSetSelection
	FldSetText
	FldSetTextAllocatedSize
	FldSetTextHandle
	FldSetTextPtr
	FldSetUsable
	FldUndo
	FldWordWrap

	Insertion Point Functions
	InsPtEnable
	InsPtEnabled
	InsPtGetHeight
	InsPtGetLocation
	InsPtSetHeight
	InsPtSetLocation
	Functions for System Use Only
	InsPtCheckBlink
	InsPtInitialize

	Form, List, and Menu Functions
	Form Functions
	FrmAlert
	FrmCloseAllForms
	FrmCopyLabel
	FrmCopyTitle
	FrmCustomAlert
	FrmDeleteForm
	FrmDispatchEvent
	FrmDoDialog
	FrmDrawForm
	FrmEraseForm
	FrmGetActiveForm
	FrmGetActiveFormID
	FrmGetControlGroupSelection
	FrmGetControlValue
	FrmGetFirstForm
	FrmGetFocus
	FrmGetFormBounds
	FrmGetFormId
	FrmGetFormPtr
	FrmGetGadgetData
	FrmGetLabel
	FrmGetNumberOfObjects
	FrmGetObjectBounds
	FrmGetObjectId
	FrmGetObjectIndex
	FrmGetObjectPositon
	FrmGetObjectPtr
	FrmGetObjectType
	FrmGetTitle
	FrmGetUserModifiedState
	FrmGetWindowHandle
	FrmGotoForm
	FrmHandleEvent
	FrmHelp
	FrmHideObject
	FrmInitForm
	FrmPopupForm
	FrmReturnToForm
	FrmSaveAllForms
	FrmSetActiveForm
	FrmSetCategoryLabel
	FrmSetControlGroupSelection
	FrmSetControlValue
	FrmSetEventHandler
	FrmSetFocus
	FrmSetGadgetData
	FrmSetNotUserModified
	FrmSetObjectPositon
	FrmSetTitle
	FrmShowObject
	FrmUpdateScrollers
	FrmUpdateForm
	FrmVisible

	List UI Functions
	LstDrawList
	LstEraseList
	LstGetNumberOfItems
	LstGetSelection
	LstGetSelectionText
	LstHandleEvent
	LstMakeItemVisible
	LstPopupList
	LstSetDrawFunction
	LstSetHeight
	LstSetListChoices
	LstSetPosition
	LstSetSelection
	LstSetTopItem

	Menu Functions
	MenuDispose
	MenuDrawMenu
	MenuEraseStatus
	MenuGetActiveMenu
	MenuHandleEvent
	MenuInit
	MenuSetActiveMenu

	Table Functions
	TblDrawTable
	TblEditing
	TblEraseTable
	TblFindRowData
	TblFindRowID
	TblGetBounds
	TblGetColumnSpacing
	TblGetColumnWidth
	TblGetCurrentField
	TblGetItemBounds
	TblGetItemInt
	TblGetLastUsableRow
	TblGetNumberOfRows
	TblGetRowData
	TblGetRowHeight
	TblGetRowID
	TblGetSelection
	TblGrabFocus
	TblHandleEvent
	TblInsertRow
	TblMarkRowInvalid
	TblMarkTableInvalid
	TblRedrawTable
	TblReleaseFocus
	TblRemoveRow
	TblRowInvalid
	TblRowSelectable
	TblRowUsable
	TblSelectItem
	TblSetColumnSpacing
	TblSetColumnUsable
	TblSetColumnWidth
	TblSetCustomDrawProcedure
	TblSetItemInt
	TblSetItemPtr
	TblSetItemStyle
	TblSetLoadDataProcedure
	TblSetRowData
	TblSetRowHeight
	TblSetRowID
	TblSetRowSelectable
	TblSetRowUsable
	TblSetSaveDataProcedure
	TblUnhighlightSelection

	Window Functions
	WinAddWindow
	WinClipRectangle
	WinCopyRectangle
	WinCreateWindow
	WinCreateOffscreenWindow
	WinDeleteWindow
	WinDisableWindow
	WinDisplayToWindowPt
	WinDrawBitmap
	WinDrawChars
	WinDrawGrayLine
	WinDrawGrayRectangleFrame
	WinDrawInvertedChars
	WinDrawLine
	WinDrawRectangle
	WinDrawRectangleFrame
	WinDrawWindowFrame
	WinEnableWindow
	WinEraseChars
	WinEraseLine
	WinEraseRectangle
	WinEraseRectangleFrame
	WinEraseWindow
	WinFillLine
	WinFillRectangle
	WinGetActiveWindow
	WinGetClip
	WinGetDisplayExtent
	WinGetDisplayWindow
	WinGetDrawWindow
	WinGetFirstWindow
	WinGetFramesRectangle
	WinGetPattern
	WinGetWindowBounds
	WinGetWindowExtent
	WinGetWindowFrameRect
	WinGetWindowPointer
	WinInitializeWindow
	WinInvertChars
	WinInvertLine
	WinInvertRectangle
	WinInvertRectangleFrame
	WinModal
	WinRemoveWindow
	WinResetClip
	WinRestoreBits
	WinSaveBits
	WinScrollRectangle
	WinSetActiveWindow
	WinSetClip
	WinSetDrawWindow
	WinSetPattern
	WinSetUnderlineMode
	WinWindowToDisplayPt

	Miscellaneous User Interface Functions
	Category Functions
	CategoryCreateList
	CategoryEdit
	CategoryFind
	CategoryFreeList
	CategoryGetName
	CategoryGetNext
	CategoryTruncateName
	CategorySetTriggerLabel
	CategorySelect

	Character Attribute Functions
	GetCharAttr
	GetCharCaselessValue
	GetCharSortValue

	ClipBoard Functions
	ClipboardAddItem
	ClipboardGetItem

	Font Functions
	FntAccentHeight
	FntAscent
	FntAverageCharWidth
	FntBaseLine
	FntCharHeight
	FntCharsInWidth
	FntCharsWidth
	FntCharWidth
	FntDescenderHeight
	FntGetFont
	FntGetFontPtr
	FntLineHeight
	FntLineWidth
	FntProportionalFont
	FntSetFont

	Other User Interface Functions
	AbtShowAbout
	DayHandleEvent

	Functions for System Use Only
	Find
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr
	UIInitialize
	UIReset

	System, Error, Preferences, and Find Functions
	System Functions
	SysAppLaunch
	SysBatteryInfo
	SysBroadcastActionCode
	SysCopyStringResource
	SysCurAppDatabase
	SysFormPointerArrayToStrings
	SysHandleEvent
	SysInsertionSort
	SysKeyboardDialog
	SysQSort
	SysRandom
	SysReset
	SysSetAutoOffTime
	SysTaskDelay
	SysUIAppSwitch
	Functions for System Use Only
	SysAppExit
	SysAppInfoPtr
	SysAppInfoPtr SysCurAppInfoP (void)
	SysAppStartup
	SysBatteryDialog
	SysCardImageDeleted
	SysCardImageInfo
	SysColdBoot
	SysCurAppInfoP
	SysDisableInts
	SysDoze
	SysGetTrapAddress
	SysInit
	SysKernelInfo
	SysLaunchConsole
	SysLibFind
	SysLibInstall
	SysLibRemove
	SysLibTblEntry
	SysNewOwnerID
	SysPowerOn
	SysRestoreStatus
	SysSetA5
	SysSetTrapAddress
	SysSleep
	SysUILaunch

	Error Manager Functions
	ErrDisplay
	ErrDisplayFileLineMsg
	ErrFatalDisplayIf
	ErrNonFatalDisplayIf
	ErrThrow

	System Preferences Functions
	PrefGetAppPreferences
	PrefGetPreferences
	PrefOpenPreferenceDB
	PrefSetAppPreferences
	PrefSetPreferences

	Find Functions
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr

	System Event Manager Functions
	EvtAddEventToQueue
	EvtCopyEvent
	EvtDequeuePenPoint
	EvtDequeuePenStrokeInfo
	EvtEnableGraffiti
	EvtEnqueueKey
	EvtFlushKeyQueue
	EvtFlushNextPenStroke
	EvtFlushPenQueue
	EvtGetEvent
	EvtGetPen
	EvtGetPenBtnList
	EvtKeyQueueEmpty
	EvtKeyQueueSize
	EvtPenQueueSize
	EvtProcessSoftKeyStroke
	EvtResetAutoOffTimer
	EvtWakeup
	Functions for System Use Only
	EvtDequeueKeyEvent
	EvtEnqueuePenPoint
	EvtGetSysEvent
	EvtInitialize
	EvtSetKeyQueuePtr
	EvtSetPenQueuePtr
	EvtSysInit

	Feature, Time, Float, and String Functions
	FtrGet
	FtrGetByIndex
	FtrSet
	FtrUnregister
	For System Use Only
	FtrInit

	String Manager Functions
	StrAToI
	StrCat
	StrCaselessCompare
	StrChr
	StrCompare
	StrCopy
	StrIToA
	StrIToH
	StrLen
	StrStr
	StrToLower

	Time Manager Functions
	DateAdjust
	DateDaysToDate
	DateSecondsToDate
	DateToAscii
	DateToDays
	DateToDOWDMFormat
	DayOfMonth
	DayOfWeek
	DaysInMonth
	SelectDay
	TimAdjust
	TimDateTimeToSeconds
	TimGetSeconds
	TimGetTicks
	TimSecondsToDateTime
	TimSetSeconds
	TimeToAscii
	Functions for System Use Only
	TimGetAlarm
	TimHandleInterrupt
	TimInit
	TimSetAlarm

	Float Manager Functions
	FplAdd
	FplAToF
	FplBase10Info
	FplDiv
	FplFloatToLong
	FplFloatToULong
	FplFree
	FplFToA
	FplInit
	FplLongToFloat
	FplMul
	FplSub

	Alarm Manager API
	AlmGetAlarm
	AlmSetAlarm
	Functions for System Use Only
	AlmAlarmCallback
	AlmCancelAll
	AlmDisplayAlarm
	AlmEnableNotification
	AlmInit

	Sound Manager Functions
	SndDoCmd
	SndGetDefaultVolume
	SndPlaySystemSound
	SndSetDefaultVolume
	Functions for System Use Only
	SndInit

	Pen, Key, and Graffiti Functions
	Pen Manager Functions
	PenCalibrate
	PenResetCalibration
	Functions for System Use Only
	PenClose
	PenGetRawPen
	PenOpen
	PenSleep
	PenRawToScreen
	PenScreenToRaw
	PenWake

	Key Manager Functions
	KeyCurrentState
	KeyRates
	Functions for System Use Only
	KeyBootKeys
	KeyHandleInterrupt
	KeyInit
	KeyResetDoubleTap
	KeySleep
	KeyWake

	Graffiti Manager Functions
	GrfAddMacro
	GrfAddPoint
	GrfCleanState
	GrfDeleteMacro
	GrfFindBranch
	GrfFilterPoints
	GrfFlushPoints
	GrfGetAndExpandMacro
	GrfGetGlyphMapping
	GrfGetMacro
	GrfGetMacroName
	GrfGetNumPoints
	GrfGetPoint
	GrfGetState
	GrfInitState
	GrfMatch
	GrfMatchGlyph
	GrfProcessStroke
	GrfSetState
	SysShortCutListDialog
	Functions for System Use Only
	GrfFieldChange
	GrfFree

	GraffitiShift Functions
	GsiEnable
	GsiEnabled
	GsiInitialize
	GsiSetLocation
	GsiSetShiftState

