

Welcome to the

Palm OS Tutorial
Navigate this online document as follows:

To see bookmarks Type Command-7
To see information on
Adobe Acrobat Reader

Type Command-?

To navigate Click on any Table of
Contents entry
or use the arrows in the
menu bar

U.S. Robotics®

Palm OS™ Tutorial

Some information in this manual may be out of date.
Read all Release Notes files for the latest information.

©1996 U.S. Robotics, Inc. All rights reserved.

Documentation stored on the compact disk may be printed by licensee for personal use.
Except for the foregoing, no part of this documentation may be reproduced or transmit-
ted in any form by any means, electronic or mechanical, including photocopying, record-
ing, or any information storage and retrieval system, without permission in writing from
U.S. Robotics.

U.S. Robotics, the U.S. Robotics logo and Graffiti are registered trademarks, and Palm
Computing, HotSync, Palm OS, and the Palm OS logo are trademarks of U.S. Robotics
and its subsidiaries.

All other trademarks or registered trademarks are the property of their respective
owners.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK ARE
SUBJECT TO THE LICENSE AGREEMENT.

Canada
Metrowerks Inc.
1500 du College, suite 300
St. Laurent, QC
H4L 5G6 Canada

voice: (514) 747-5999
fax: (514) 747-2822

U.S.A. and International
Metrowerks Corporation
2201 Donley Drive
Suite 310
Austin, TX 78758

voice: (512) 873-4700
fax: (512) 873-4900

U.S. Robotics, Palm Computing Division
Mail Order
1-800-881-7256
Metrowerks Mail Order
voice: (800) 377-5416
fax: (512) 873-4901

U.S. Robotics, Palm Computing Division
World Wide Web site: http://www.usr.com/palm

Metrowerks World Wide Web site (Internet): http://www.metrowerks.com
Registration information (Internet): register@metrowerks.com

Technical support (Internet): support@metrowerks.com
Sales, marketing, & licensing (Internet): sales@metrowerks.com

AppleLink: METROWERKS
America OnLine: goto: METROWERKS

Compuserve: goto: METROWERKS

Table of Contents

Table of Contents . v

Phase 0 Introduction . 1
Overview . 1
0.1 System Requirements 1

0.1.1 Hardware Requirements 1
0.1.2 Software Requirements 2

0.2 Installation: The Folder Structure 2
0.3 Navigating Tutorial Phases 3

Phase 1 Creating Memo Pad Form and Button 5
Overview . 5
1.1 Creating a Desktop Project Folder 5
1.2 Building a ResEdit Resource File 6

1.2.1 Creating the MemoPad Form, Title, and Button Resources. 6
1.2.2 Notes on Resource Numbering 9
1.2.3 Attaching Resources to a Form. 10

1.3 Modifying a CodeWarrior Project 12
1.3.1 Adding Files to the Project 12
1.3.2 Assigning an Application Name 13

1.4 Setting File Access Paths 14
1.5 Examining the Code 15

1.5.1 Examining MemoPad.c 16
1.5.2 Examining MemoPadRsc.c 18
1.5.3 Examining MemoPadRsc.h 18

1.6 Building and Exercising the Project Application 19

Phase 2 Adding a Menu and a Simple Dialog 21
Overview . 21
2.1 Adding a Main Menu with a Get Info Item 22

2.1.1 Adding Resources for a Get Info Menu Item 22
2.1.2 Examining the Code 24
2.1.3 Adding a Get Info Form with an OK Button 25
2.1.4 Examining the Code 30

2.2 Building and Exercising the Application 31
Palm OS Tutorial v

Table of Contents

Phase 3 Adding a Button, an Edit Form, and Navigation. 33
Overview . 33
3.1 Adding a New Button to the Main Form 34

3.1.1 Creating a “New” Button 34
3.1.2 Adding the New Button Resource to the Main Form . . 35
3.1.3 Examining the Code 35

3.2 Creating an Edit Form with a Title and a Done Button . . . 36
3.2.1 Creating the Edit Form and Its Resources 36
3.2.2 Examining the Code 38

3.3 Building and Exercising the Application 40
3.4 Using the Event Trace Window 40

Phase 4 Adding a Text Field and Menu Commands 43
Overview . 43
4.1 Adding a Large Text Field to the Edit Form 44
4.2 Adding a Resource for the Graffiti Shift UI 45

4.2.1 Adding the Field and Graffiti UI Resources to the Edit Form
45

4.2.2 Examining the Code 46
4.3 Adding Resources for the Edit Menu and Options Menu . . 47

4.3.1 Copying Resources from Main to modify them for Edit . 47
4.3.2 Adding Commands to the Edit Menu. 48
4.3.3 Setting Edit Menu IDs 49
4.3.4 Adding Commands to the Options Menu 49
4.3.5 Adding the Edit Menu to the Menu Bar 50
4.3.6 Examining the Code for the New Edit Menu and Option

Resources . 50
4.4 Building and Exercising the Application 52

Phase 5 Storing and Retrieving Text in a Database. 55
Overview . 55
5.1 Adding Text Storage in a Database Record 56

5.1.1 Database Basics 56
5.1.2 Database Create, Open, And Close Functions 56

5.2 Revising the Handler for the Done Button. 57
5.2.1 EditFormHandleEvent 58
5.2.2 EditSaveData 58
Palm OS Tutorial vi

Table of Contents

5.3 Adding an Edit Button to the Main Form 59
5.3.1 Creating the Edit Button Resource 59
5.3.2 Adding the Edit Button to the Main Form 59
5.2.3 Examining the Code 60

5.3 Adding Retrieval of Text from a Database Record 60
5.3.1 Revising the Edit Form Handler 61

5.4 Building and Exercising the Application 62

Phase 6 Editing a Data Record in Place 65
Overview . 65
6.1 About Edit-in-Place 65
6.2 Adding a Handler for Edit in Place 66

Phase 7 Adding a List to Display and Select a Record 69
Overview . 69
7.1 Adding Record Display List to the Main Form 70

7.1.1 Adding a List Resource 70
7.1.2 Removing Buttons 70
7.1.3 Adding a List Resource 71
7.1.4 Revising Code for a List of Records 71

7.2 Adding Multiple Records to the Database 75
7.3 Building and Exercising the Application 76

Phase 8 Adding Display List Items as Required 79
Overview . 79
8.1 The Display-As-Required Approach 79
8.2 Examining the Code 80
8.3 Building and Exercising the Application 80

Phase 9 Adding a Page Menu to the Edit Form 83
Overview . 83
9.1 Adding a Page Menu. 83
9.1.1 Adding Menu Items for New Page and Delete Page. . . . 83

9.1.2 Adding a Resource for a Delete Memo Alert 85
9.1.3 Examining the Code 86

9.2 Building and Exercising the Application 87
Palm OS Tutorial vii

Table of Contents

Phase 10 Adding a Details Dialog and the Secret Record Attribute89
Overview . 89
10.1 Adding a Details Dialog to the Edit Form 90

10.1.1 Adding a Resource for Details Button on Main Form . 90
10.1.2 Creating a Details Resource File. 91
10.1.3 Examining the Code. 95

10.2 Building and Exercising the Application 97

Phase 11 Adding Categories . 99
Overview . 99
11.1 Adding Category UI to the Forms 101

11.1.1 Adding Category UI to the Main Form. 101
11.1.2 Adding Category UI to the Edit Form 103
11.1.3 Adding Category UI to the Details Dialog 105
11.1.4 Examining the Code. 107

11.2 Building and Exercising the Application 109

Phase 12 Using a Table to Display the Database 111
Overview . 111
12.1 Adding Table UI to the Main Form 112

12.1.1 Removing the Record List UI from the Main Form . . 112
12.1.2 Adding the Table UI to the Main Form. 113
12.1.3 Examining the Code. 114

12.2 Building and Exercising the Application 115

Phase 13 Adding Scrolling to the Main and Edit Forms 117
Overview . 117
13.1 Adding Scrolling to the Forms 118

13.1.1 Adding Scroll Arrows to the Main Form 118
13.1.2 Adding Scroll Arrows to the Edit Form 119
13.1.3 Examining the Code. 121

13.2 Building and Exercising the Application 122

Phase 14 Adding System Find Support 125
Overview . 125
14.1 Adding System Find 126

14.1.1 Adding a Find Header String 126
Palm OS Tutorial viii

Table of Contents

14.1.2 Examining the Code. 127
14.2 Building and Exercising the Application 130

Phase 15 Saving Program Settings Between Executions 131
Overview . 131
15.1 Saving the Program’s State 131

15.1.1 Examining the Code. 132
15.2 Building and Exercising the Application 133

Phase 16 Flashy Features . 135
Overview . 135
16.1 Adding UI Elements to the Edit Form 136

16.1.1 Adding Resources for the Edit View Title. 136
16.1.2 Modifying the Text Field Resource 136
16.1.3 Adding Resources for the Edit View Font Selection . . 137
16.1.4 Examining the Code. 138

16.2 Building and Exercising the Application 140

Phase 17 Working With the Desktop 143
Overview . 143
17.1 Integrating with HotSync 143
Examining the Code 17.1.1 144

17.1.1 Adding Event Handlers 144
17.2 Building and Exercising the Application 146

Phase 18 Adding Shell Commands 147
Overview . 147
18.1 Adding Console Commands 148

18.1.1 The Simulator Console Window 148
18.1.2 Creating a New Console Command 149

18.2 Building and Exercising the Application 151

Phase 19 Localizing For Other Countries 153
Overview . 153
19.1 Localizing Your Application 154

19.1.1 Localization Techniques 154
19.1.2 Localization of MemoPad 155
Palm OS Tutorial ix

Table of Contents

19.2 Building and Exercising the Application 156

Phase 20 Running the Application on Pilot 159
Overview . 159
20.1 Building an Executable for Pilot 159

20.1.1 Creating MemoPad.r 160
20.1.2 Creating the Makefile and Building MemoPad for Pilot 160
20.1.3 Sending the MemoPad Application to Pilot. 161

Pilot Resource Cookbook . 163
x Palm OS Tutorial

Phase 0

Introduction

Overview
The goal of this tutorial is to lead you, the developer, through the
process of creating and testing a sample Palm OS application. The
sample app is a memo pad, similar to a Palm OS’s built-in Memo
Pad. In doing so, you will learn the basic techniques of Palm OS pro-
gramming, using the Pilot Simulator, and debugging.

The tutorial is presented as a series of phases, each phase contains a
series of steps. Each phase creates a functioning application with ca-
pabilities that build on and extend those of the previous phase. Each
step describes what to do and why. Source code for each completed
phase is included, so that you can build each phase independently.
You’ll find the tutorial illustrated throughout with the source code
and resources of the sample application, and diagrams where ap-
propriate.

To work the tutorial, you must have installed the Macintosh-based
development environment (see Release Notes and installation in-
structions). To develop software in this environment, you should be
an experienced C or C++ programmer, familiar with the Macintosh
and its development tools. A review of “Application Control Flow
Overview” in the Developing Palm OS Applications Part 1 docu-
ment is highly recommended.

0.1 System Requirements
To run the Palm OS SDK and tutorial you need the following:
• Hardware
• Software

0.1.1 Hardware Requirements
• CPU: Macintosh Quadra 700 or “better.” PowerPCs are fine.
Palm OS Tutorial 1

Introduction

0.2 Installation: The Folder Structure

• RAM: 16MB recommended
• Disk space: 40+MB

0.1.2 Software Requirements
• Apple System 7.1 or later with a 68030 or 68040 processor.
• Apple System 7.1.2 or later for the PowerPC 601 and 604 pro-

cessors.
• Metrowerks CodeWarrior version 9.0 or greater
• Apple ResEdit 2.1.x (comes with CodeWarrior)
• Apple Macintosh Programmer’s Workshop (MPW - also sup-

plied with CodeWarriorMPW)

0.2 Installation: The Folder Structure
This section describes the Macintosh folder structure and installa-
tion procedures for loading the Palm OS SDK.

To work through the Palm OS SDK tutorial and build Palm OS ap-
plications, the following folder structure has been created:

Palm OS SDK

Apps

Debugger

Docs

Examples

Incs

Libraries

Tools

Tutorial

The Tutorial folder contains all the source files for each phase. These
source code files serve as a backup and standard against which you
can check your work. The “Working Folder”, located in the Apps
folder is where you will build each phase of this tutorial. Your work
for each phase will overwrite your work for the previous phase.
2 Palm OS Tutorial

Introduction

0.3 Navigating Tutorial Phases

0.3 Navigating Tutorial Phases
It is recommended that you work through all of the phases in order,
to get the best sense of how an application is built. However, once
you’ve finished the tutorial, you may want random access to vari-
ous phases. The folder structure is set up to allow this. Generally, to
set up any particular phase of the tutorial after 0, follow these steps:

1. Copy the MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h
files from the desired Tutorial:MemoPad <n>:Src folder into
Working Folder:Src

2. Copy the MemoPadMain.rsrc resource file from the Tutorial
MemoPad <n-1>:Rsc folder into Working Folder:Rsc

3. Copy the Tutorial:MemoPad <n-1>:MemoPad.µ project file
into Working Folder.
Palm OS Tutorial 3

Introduction

0.3 Navigating Tutorial Phases

4 Palm OS Tutorial

Phase 1

Creating Memo Pad Form
and Button

Overview
Phase 1 differs from other phases in that you must create a
CodeWarrior project. The purpose is to give you the experience of
creating all the pieces of a project except the source code. If you’ve
never worked in the Macintosh environment or with ResEdit, going
thorugh this process is a big help. When you begin creating your
own projects, you can use Phase 1 as a model for fitting the pieces
together. The basic steps in Phase 1 of this tutorial are:
• Creating a Desktop Project Folder
• Building a ResEdit Resource File
• Modifying a CodeWarrior Project
• Setting File Access Paths
• Examining the Code
• Building and Exercising the Project Application

Convention: Although Phase 1 reminds you to run CodeWarrior or
ResEdit before proceeding with a series of steps, the rest of the
phases of the tutorial assume that you have these tools running.

1.1 Creating a Desktop Project Folder
To contain all the pieces of programming project, we set up a series
of Macintosh desktop folders—one for each phase of the project.
Take a look:

1. From the Finder, open the Palm OS SDK folder.
2. Navigate to the start of the tutorial. Follow this path on your

hard disk—Palm OS SDK:Tutorial:MemoPad 01:Src.
3. Copy these three source files into the Src folder of your work-

ing folder, located at Palm OS SDK:Apps:Working Folder:
Palm OS Tutorial 5

Creating Memo Pad Form and Button

1.2 Building a ResEdit Resource File

– MemoPad.c
– MemoPadRsc.c
– MemoPadRsc.h

4. Copy the project file from Palm OS SDK:Tutorial:MemoPad
00:MemoPad.µ to the Working Folder.

Tip: To make life easier for yourself, put aliases to ResEdit and Code
Warrior.IDE 1.4 in the folder where you’re building your project, or
on the Apple menu, or on the desktop. (If you’re unfamiliar with
aliases, see your “Macintosh Reference” for details on the
File>Make Alias command.)

1.2 Building a ResEdit Resource File
The first task is to build your resources. (A resource is a statically
initialized UI object or string.) Begin by creating a resource file for
the MemoPad project; follow these steps:

1. Launch ResEdit.
2. Create a ResEdit file to hold project resources (File>New).
3. In the file dialog, select a file path to the desired project

folder, Palm OS SDK:Apps:Working Folder:Rsc.
4. Enter the resource file name MemoPadMain.rsrc and click

New.

 MemoPadMain.rsrc is an empty container that you will fill with the
resources you create for the first screen of the MemoPad application.

1.2.1 Creating the MemoPad Form, Title, and
Button Resources
Figure 1.1 shows the memo pad you’re creating. Study its compo-
nents:
• A main window or form, the basic object that contains the

other components
• A title (MemoPad)
• An Exit button
6 Palm OS Tutorial

Creating Memo Pad Form and Button
1.2 Building a ResEdit Resource File
Figure 1.1 The Phase 1 Memo Pad

You can create each of these resources (and many others) quickly
and easily with ResEdit. This section shows you how to create the
resources needed for MemoPad 1, beginning with the form. The
form is the visible area that acts as a container for other user inter-
face objects in the project—the title and the button.

1.2.1.1 Creating the Main Form Resource

With ResEdit running and the MemoPadMain.rsrc resource file
open, create a form (tFRM) resource for the memo pad. Choose Re-
source>Create New Resource (CMD-K). Create a form resource; in
the Select New Type dialog, enter tFRM, and click OK. See “Re-
source Cookbook” for details.

Fill in the edit form for the resource as follows:

1. Set the dimensions to 0, 0, 160, 160.
2. Set the radio buttons as follows:

– Usable radio button (True)
– Modal radio button (False)
– Save behind radio button (False)

3. Set Form ID field to an ID number of 1000. See the section,
“Notes on Resource Numbering,” below for details. You
must change this ID in two places—in the this field and in
Resource Info (see the next section).
Palm OS Tutorial 7

Creating Memo Pad Form and Button
1.2 Building a ResEdit Resource File
4. To complete the form attributes, type a 0 into the Help Rsc
ID, Menu Rsc ID, and Default Button ID boxes.

5. Skip the Number of Objs attribute. ResEdit automatically fills
that in for you as you add objects (like the title and button) to
the form.

1.2.1.2 Setting a Name for the Form

Palm OS uses the ID number you set in the editor window. You need
to set a name for the resource and an ID number for the Macintosh
system. Later, in the sections Examining MemoPadRsc.c and Exam-
ining MemoPadRsc.h, you’ll see how code uses these numbers to
manipulate resources. Set a name and ID number for the main form;
follow these steps:

1. Open the Resource Info dialog (CMD-I).
2. Assign an ID number; type 1000 into the Form ID box (re-

placing 128).
For debugging purposes, keep this number the same as the
ID number in the tFRM edit window.

3. Set the name to “Memo Pad Main”.
4. Close the Info window.
5. Close the editor window.

The window in the forefront lists the one resource you have
created. ResEdit users call this a “resource picker” or “re-
source picker window.” You’ll add more form resources to
this project in later phases and then pick them from it.

6. Close the resource picker.
The remaining window, representing the different types of
resources in the project, is called the “type picker window” or
“type picker.” In the next section, you’ll add two resources to
it. Do not close the type picker.

1.2.1.3 Creating the MemoPad Title Resource

Resource creation, regardless of the type, follows a pattern. In this
section, you create a title (a tTTL resource) for the memo pad. Fol-
low these steps:

1. Within MemoPadMain.rsrc, create a title (tTTL) resource
(CMD-K). See the “Resource Cookbook” for details.

2. In the editor window, type the title “Memo Pad”.
8 Palm OS Tutorial

Creating Memo Pad Form and Button
1.2 Building a ResEdit Resource File
3. Set resource Info (CMD-I). Enter 1001 for the ID and “Memo
Pad” as the name.

4. Close the all windows back to the MemoPadMain.rsrc type
picker.

1.2.1.4 Creating the MemoPad Button

Within MemoPadMain.rsrc, create a button (tBTN) resource (CMD-
K). See the “Resource Cookbook” for details.

Create the button (a tBTN resource), follow these steps:

1. Continue the consecutive numbering of IDs. Give the Button
ID as 1002.

2. Specify button position and size as 110, 146, 40, and 12.
3. Leave all radio button options set to their default: True
4. Specify the default font; type 0 (zero) for the font number.
5. Give the button a label; type “Exit”.
6. Set resource Info (CMD-I). Enter 1002 for the ID and “Exit” as

the name.
7. Close all the windows back to the MemoPadMain.rsrc type

picker.

1.2.2 Notes on Resource Numbering
If you don’t have any resource numbering conventions try ours:
• Form IDs, beginning with 1000, are multiples of 100.
• Only system resources get ID’s less than 1000.
• Each user interface (UI) ID within a particular form begins

with the number of its form.
• All objects in application/project have a unique resource ID

number. Note: Resources of different types can have the same
ID, we recommend against this practice. In complex projects,
non-unique IDs can create confusion.

Here are a couple of numbering examples:
– Form ID = 1000. Its button ID = 1001. Its title ID = 1002.
– Form ID = 1100. Its button ID = 1101. Its title ID = 1102.
Palm OS Tutorial 9

Creating Memo Pad Form and Button
1.2 Building a ResEdit Resource File
1.2.3 Attaching Resources to a Form
This section shows you how to put the title and button resources
into an array in the form resource; follow these steps:

1. Go to the MemoPadMain.rsrc type picker and open the Form
resource picker, the tFRM item.

2. From the resource picker, open the main form (ID 1000) edi-
tor window.

3. The tFRM resource lets you build an array of objects that the
form itself is to contain. Look below the label “Number of
Objs” (skipped earlier) and click the item labeled “1) ******”.

4. Create a field for the title (CMD-K). Notice that ResEdit incre-
mented the Number of Objs to one.

5. You may need to scroll the editor window a bit to do the next
step. Put the title resource in the field. Set the ID to 1001 and
the Type to tTTL.

6. Click the item labeled “2) ******”
7. Create a field for the button. Notice that the field Number of

Objs is 2.
8. Scroll, if necessary, and fill in the information for the button

resource. Set the ID to 1002 and the Type to tBTN. See Figure
1.2 below.

9. Close the all windows back to the MemoPadMain.rsrc type
picker.

10.Save the resource file.
10 Palm OS Tutorial

Creating Memo Pad Form and Button
1.2 Building a ResEdit Resource File
Figure 1.2 The tFRM editor window with resources filled in.
Palm OS Tutorial 11

Creating Memo Pad Form and Button
1.3 Modifying a CodeWarrior Project
1.3 Modifying a CodeWarrior Project
The tutorial starts you with basic source files (MemoPad.c, Memo-
Pad.h, MemoPadrsc.c). To that you’ve added a ResEdit resource file
(MemoPadMain.rsrc). This section shows you how to modify a basic
CodeWarrior project file. Double-click on MemoPad.µ in the Work-
ing Folder. This will load CodeWarrior with the project file Memo-
Pad.µ opened.

1.3.1 Adding Files to the Project
The Project window has some placeholders: <replace me Mac>.c for
code and <replace me>.rsrc under Resources. The typical pattern is
to load the files you want for your project and then remove place-
holders; follow these steps:

1. Select the Application file area, by selecting the placeholder,
<replace me Mac>.c.

2. Choose Project>Add files.
3. Navigate to the Working Folder:Src folder.
4. From the dialog box, select the following source (.c) files to

add, and click Add, or Double-click on the files:
– MemoPad.c
– MemoPadRsc.c

5. When you have clicked in the files from the list, click Done.
6. Remove the placeholder. Select <replace me Mac>.c and

choose Project>Remove Files.

NOTE: You don’t need to specify header (.h) files like Memo-
PadRsc.h in this process. CodeWarrior is smart enough to find
these, based on your included specifications.

To load resources into the project, follow these steps:

1. Select the Resources file area by selecting the placeholder,
<replace me>.rsrc.

2. Choose Project>Add files.
3. From the dialog box, select the resource file Working

Folder:Rsc:MemoPadMain.rsrc
12 Palm OS Tutorial

Creating Memo Pad Form and Button
1.3 Modifying a CodeWarrior Project
4. Click Add and then Done.
5. Remove the placeholder. Select <replace me>.rsrc and choose

Project>Remove Files.

There are other files to be added to the project as the tutorial contin-
ues. Figure 1.3 shows a completed project window.

Figure 1.3 A completed CodeWarrior project window.

1.3.2 Assigning an Application Name
An application name has already been assigned to this project. To
learn how it was done, follow these steps:

1. Choose Edit>Preferences.
2. Click the 68K Project icon.
3. Type the project name; MemoPad.mac.
Palm OS Tutorial 13

Creating Memo Pad Form and Button
1.4 Setting File Access Paths
4. For Creator, enter Pilot.
5. For Preferred Heap Size, enter 2048. For Minimum Heap

Size, enter 2048. Your screen should resemble Figure 1.4.
6. Save your application references and return to the project;

click OK.

Figure 1.4 The 68K Project window completed.

1.4 Setting File Access Paths
If you move your project to a place other than the Apps:Working
Folder folder, then you may have to reset the access paths. This can
be done via the Edit>Preferences>Access Paths dialog. See the
CodeWarrior documentation for further instructions.
14 Palm OS Tutorial

Creating Memo Pad Form and Button
1.5 Examining the Code
Figure 1.5 The Access Path window.

1.5 Examining the Code
Although the code for Phase 1 is fairly brief, it presents an accurate
picture of the basic elements. The three key application code files
are:
• MemoPad.c contains the C code for the application, includ-

ing the event loop and key functions.
• MemoPadRsc.c identifies to the Pilot Simulator application

which application resource files are required by the applica-
tion at run time.
15 Palm OS Tutorial

Creating Memo Pad Form and Button
1.5 Examining the Code
• MemoPadRsc.h contains #define macros for resource IDs
that are used by the application. These macros map resource
names to their IDs.

1.5.1 Examining MemoPad.c
From CodeWarrior, open MemoPad.c in the MemoPad 01 folder. Ex-
amine the basic application code structure. In the preprocessor area,
the inclusion of the Pilot.h file includes all the header files for the
Palm OS system functions and data structures.

Function prototypes for the file follow the macro definitions:
• StartApplication
• MainFormHandleEvent
• EventLoop

The PilotMain function drives these functions.

1.5.1.1 The PilotMain Function

The PilotMain function is at the end of the file. It serves as the entry
point for the application. It takes the place of the “main()” entry
point in traditional C programming. In many programs, you pass
parameters to PilotMain that can influence its operation. In this sim-
ple case, these parameters are ignored. Take a look at PilotMain. It
makes two calls—one to StartApplication and one to EventLoop.

1.5.1.2 The StartApplication Function

The StartApplication function initializes the required data struc-
tures or system facilities and initiates the application’s user interface
before the event loop begins processing events. In this simple exam-
ple, the main form is loaded into memory and set as the active form.
It is then drawn on the display.

1.5.1.3 The EventLoop Function

The EventLoop function (found just above PilotMain) retrieves the
next available event from the system and passes it to a succession of
event handlers for processing. Each handler can choose (by return-
ing a non-zero value) to handle an event, so that it is not seen or pro-
cessed by subsequent event handlers. The EventLoop function
processes all the events that flow through the application as it exe-
16 Palm OS Tutorial

Creating Memo Pad Form and Button
1.5 Examining the Code
cutes. EventLoop returns when an event is encountered that directs
the application to quit. When control returns to PilotMain from
EventLoop, the application quits by returning an error code of zero.

1.5.1.4 The SysHandleEvent Function

EventLoop gives the SysHandleEvent function the first opportunity
to process each event. This function processes low-level events, like
low battery conditions, application launch, power keys, and Graffiti
recognition.

1.5.1.5 The MainFormHandleEvent Function

If SysHandleEvent doesn’t handle the event (indicated by a return
value of zero), it gets passed to the MainFormHandleEvent func-
tion. This function (found just above the EventLoop routine in the
file) processes events related to the application’s main form. The
MainFormHandleEvent routine handles all events that require spe-
cial processing for the main form. This simple example has only one
event to be handled, ctlSelectEvent.

The presence of a ctlSelectEvent means that the user has tapped a
button. The event structure contains the button’s identity. However,
there is currently only one button on the form, the Exit button. It
causes the application to quit by creating a new appStopEvent and
adding it to the system’s event queue. The application retrieves this
event later in the EventLoop routine. The MainFormHandleEvent
routine returns a value of True, if no further processing is required
for the event. This tells subsequent event handlers not to process the
event.

1.5.1.6 The FrmHandleEvent Function

If MainFormHandleEvent doesn’t handle the event, it gets passed to
FrmHandleEvent function for default processing, if any, for every
event. The event loop continues processing events, until it gets an
appStopEvent. This event is the standard mechanism for causing
the application to quit. When running an application from within
the Pilot Simulator, the Pilot Simulator generates the appStopEvent,
when you choose File>Quit.
17 Palm OS Tutorial

Creating Memo Pad Form and Button
1.5 Examining the Code
1.5.2 Examining MemoPadRsc.c
With CodeWarrior still running, open MemoPadRsc.c and examine
its file structure. This file defines the application and resources. The
application’s resources consist of the Main form and its compo-
nents. These are contained in the MemoPadMain.rsrc file that you
created earlier with ResEdit. This set of required resources grows as
you add more resources to the application.

1.5.3 Examining MemoPadRsc.h
Open the MemoPadRsc.h file (located in the Src folder) and take a
look at its contents. A shortcut for opening the .h file that corre-
sponds to a .c file is to type CMD-TAB from the .c files window. The
file includes definitions for all the resource ID’s that constitute the
application’s interface to the outside world. The MemoPadRsc.h file
lists two of the three resources:

#definemainForm1000
#definemainExitButton1002

The programmer didn’t create a macro for the tTTL resource, be-
cause the title doesn’t interact with the outside world. It belongs to
the main form, which does the interacting.

These macro definitions make it possible to pass a resource ID to a
function meaningfully, using the resource’s name. Also notice the
beginning of a convention here. The form name (main) comes first
and then the resource name. Soon, you’ll see new resources like
editForm added to this list. Keep this convention in mind when you
begin your own design and coding.

As a rule, for each resource that the application must manage, you
must define the resource name and the corresponding resource ID.
The ID must match the ID of the corresponding resource in the Me-
moPadMain.rsrc resource file. As more resources are added to the
application, this list of macros grows.
18 Palm OS Tutorial

Creating Memo Pad Form and Button
1.6 Building and Exercising the Project Application
1.6 Building and Exercising the Project
Application

Now that you have a project, resources, and code for the first Memo-
Pad project, you can build and run your project. Follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger. If the item
says Disable Debugger, choose it.

2. Reset the file paths by choosing Project>Reset File Paths, and
OK’ing the dialog.

3. Remove any binary files by choosing Project>Remove Bina-
ries, and OK’ing the dialog.

4. Build the project (CMD-M).
5. Assuming that all goes well, run your MemoPad application

(CMD-R). The Pilot Simulator starts and displays the Pilot
with your memo pad application in it. It should resemble
Figure 1.6.

6. To retire the MemoPad, click the Exit button you built. Hint:
The Escape key also generates an appStopEvent.
Palm OS Tutorial 19

Creating Memo Pad Form and Button
1.6 Building and Exercising the Project Application
Figure 1.6 Phase 1 Code Running the Pilot Simulator.
20 Palm OS Tutorial

Phase 2

Adding a Menu and a
Simple Dialog

Overview
Phase 2 adds a menu with a Get Info item and an Info dialog that
appears when you tap the menu item. See Figure 2.1 and Figure 2.2.

To set up the appropriate files for this phase, follow these steps:

1. If MemoPadMain.rsrc does not already exist in Working
Folder:Rsc from Phase 1, then copy the MemoPadMain.rsrc
resource file from the MemoPad 01:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 02:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase 1,
copy it from MemoPad 01.

Figure 2.1 Phase 2 Memo Pad with Get Info menu item open.
Palm OS Tutorial 21

Adding a Menu and a Simple Dialog
2.1 Adding a Main Menu with a Get Info Item
Figure 2.2 Phase 2 Memo Pad with the Get Info item displayed.

2.1 Adding a Main Menu with a Get Info Item
The key activity in Phase 2 is building a simple menu structure from
which you can summon an Info dialog. This involves creating:
• Menu resources
• Get Info form resources
• Appropriate handlers and #defines to run the resources

2.1.1 Adding Resources for a Get Info Menu
Item
In the world of UI menu construction, most systems follow a similar
architecture:
• A form or window in which to anchor the menu system
• A menu bar to hold the various menus
• The menus themselves (File, Edit, Help, and so on)
• The menu items (New, Open, Close, Save, Quit, and so on)

Palm OS follows this same hierarchy, using ResEdit to construct a
menu system. To build a menu within the main form (created in
22 Palm OS Tutorial

Adding a Menu and a Simple Dialog
2.1 Adding a Main Menu with a Get Info Item
Phase 1), first construct the individual components and then put
them together. These components are:
• The Main Menu menu bar, an MBAR resource.
• The Options menu, a MENU resource.
• Within the Menu, you create menu items. This example has

only one item.

2.1.1.1 Creating the Menu Bar

To begin, open the resource file for the main form in ResEdit:

1. Open the Working Folder:Rsc folder.
2. Open MemoPadMain.rsrc.

To create the menu bar (MBAR) resource, follow these steps see “Re-
source Cookbook” for details):

1. Create a new resource (CMD-K).
2. Enter MBAR as the resource type and click OK.
3. In the editor window, click the item labeled “1) ******”
4. Insert a new field (CMD-K).
5. Set Menu res ID to 1051.
6. Set resource Info (CMD-I).
7. In the Info window, set the ID to 1050 and the name to “Main

Menu”.
8. Close all the windows back to the MemoPadMain.rsrc type

picker.

2.1.1.2 Creating a Menu

To create a menu (MENU) resource to hang on the menu bar, follow
these steps (see the “Resource Cookbook” for details):

1. Create a new resource (CMD-K).
2. Enter MENU as the resource type and click OK.
3. In the editor window, set the menu title to “Options”.
4. Set resource Info (CMD-I).
5. Set the ID to 1051 and the name to “Options Menu”.
6. Close the Info window.
Palm OS Tutorial 23

Adding a Menu and a Simple Dialog
2.1 Adding a Main Menu with a Get Info Item
7. If you get a dialog asking to update the menu ID to 1051,
click OK.

2.1.1.3 Creating a Menu Item

Populate the menu you just created with a menu item. Add one item
and name it “Get Info”; follow these steps:

1. In the MENU editor window, choose Resource>Create New
Item (CMD-K).

2. Set the menu item text to “Get Info” and Cmd-Key to ‘I’.

Set a resource ID for the Get Info menu item; follow these steps:

1. Choose MENU>Edit Menu & MDEF ID.
2. Set the Menu ID to 100. Subsequent menu items increment

this number. Leave the MDEF ID as 0. Then, click OK.
3. Close the editor window and the MENU resource picker.
4. Save the resource file.
5. Quit ResEdit (CMD-Q).

2.1.2 Examining the Code

2.1.2.1 Adding #define Macros for New Resources

The MemoPadRsc.h file contains #define macros for the menu bar
and the Info command. Open MemoPadRsc.h from CodeWarrior
and take a look.

Note: You may wonder why the programmer assigned these partic-
ular IDs in this application. At this point, they may not make sense.
However, as you get deeper into this application and see the de-
velopment of the MemoPadRsc.h file, the reasoning behind this
scheme should become evident.

2.1.2.2 Adding a Menu Event Handler

The file MemoPad.c in the :Src folder includes code changes to in-
corporate a menu bar with an Options menu. From CodeWarrior;
open MemoPad.c.
24 Palm OS Tutorial

Adding a Menu and a Simple Dialog
2.1 Adding a Main Menu with a Get Info Item
Take a look at the changes to MemoPad 1. Notice that the program-
mer has added “P2” to some comments. These are entries made for
Phase 2. Tip: To locate changes for this phase, search with “P2” as
the target string.

Near the top of the file, Phase 2 adds a global variable, Current-
Menu, to keep track of the currently active menu by way of a
pointer. Note: Each form can have its own menu bar and set of
menus.

The StartApplication routine now contains a call to a new function,
SetCurrentMenu. This function sets up the menus for the initial
(Main) form, based on the mainMenu resource.

The SetCurrentMenu routine follows. It first checks for the need to
dispose of an existing menu. (Note the CurrentMenu was initialized
to NULL.) Then, the new menu is initialized by a call to MenuInit.

Phase 2 adds a test for a menuEvent to the MainFormHandleEvent
routine. The identity of the menu item is included in the event struc-
ture. In this case, there is only one menu item, so you can presume
it’s the Get Info item. Choosing this item triggers a series of events,
culminating in the appearance of the Info dialog. These events are:
• Call the MenuEraseStatus function to clear the menu com-

mand prompt from the display.
• Initialize the Info form.
• Display the Info form.

The last two are described in detail in a later section. Take a look at
the EventLoop routine. For Phase 2, the programmer has inserted a
call to MenuHandleEvent to process menu events. Note that this
new event handler is placed immediately after SysHandleEvent and
before MainFormHandleEvent. The system still gets the first shot at
each event, but the menu takes priority over the application’s pri-
vate handling of the form.

2.1.3 Adding a Get Info Form with an OK
Button
With a menu structure in place, the programmer needs to add an
OK button to the dialog. Generally, we’ll use a separate resource file
to contain each form for the application. Start by building a new re-
Palm OS Tutorial 25

Adding a Menu and a Simple Dialog
2.1 Adding a Main Menu with a Get Info Item
source file named MemoPadInfo.rsrc to contain the new form and
new resources:
• A title for the Info dialog
• An OK button to dismiss the dialog
• Labels to act as the text of the dialog: “Memo Pad” and “Ver-

sion 1.0”
• A string to hold the Help text for the dialog
• A form bitmap for the company logo
• A PICT graphic to hold the actual logo

2.1.3.1 Creating a Resources Document for the Get Info Form

Create a new resources document, MemoPadInfo.rsrc to contain the
resources for the Info dialog. Follow these steps:

1. With ResEdit running, choose File>New and enter Memo-
PadInfo.rsrc as the name.

2. In the file dialog, set the path to Working Folder:Rsc and click
New. A type picker named MemoPadInfo.rsrc appears on the
screen.

3. With the new resource file active, build the info form’s re-
sources.

2.1.3.2 Creating a New Form

With ResEdit running and the MemoPadInfo.rsrc resource file open,
create a form (tFRM) resource for the memo pad. Fill in the form
fields as follows:

1. Set the dimensions to 2, 46, 156, 112.
2. Leave all the radio buttons set to True and set the Form ID to

1100.
3. Set resource Info; choose Resource>Get Resource Info (CMD-

I).
4. Set the ID to 1100 and the name to “Memo Pad Info.”
5. Close the Info window, the tFRM Memo Pad Info editor win-

dow, and the tFRM resource picker.

2.1.3.3 Creating a Title Resource

With the type picker open, create a title (tTTL) resource for the Info
dialog. Fill in the fields as follows:
26 Palm OS Tutorial

Adding a Menu and a Simple Dialog
2.1 Adding a Main Menu with a Get Info Item
1. Set the Title to “Info”.
2. Set resource Info; choose Resource>Get Resource Info (CMD-

I).
3. Set the ID to 1101 and the name to “Memo Info”.
4. Close all windows back to the type picker.

2.1.3.4 Creating a Button Resource

Create a button (tBTN) resource to dismiss the Info dialog. Fill in the
fields as follows:

1. Set the Button ID to 1105.
2. Set the button’s position to 60, 95, 37, 12.
3. Leave all the radio buttons set to True.
4. Set the font to 0 and the label to “OK”.
5. Set resource Info; choose Resource>Get Resource Info (CMD-

I).
6. Set the ID to 1105 and the name to “OK”.
7. Close all windows back to the type picker.

2.1.3.5 Creating a Label Resource

Create a label (tLBL) resource to display the application name in the
Info dialog. Fill in the fields as follows:

1. Set the Label ID to 1103.
2. Set the left, top coordinates to 50, 28.
3. Set the font to 1 and the Text to “Memo Pad”.
4. Set resource Info; choose Resource>Get Resource Info (CMD-

I).
5. Set the ID to 1103 and the name to “Appl Name”.
6. Close all windows back to the type picker.

2.1.3.6 Creating a Second Label Resource

Create another label (tLBL) resource to display the application ver-
sion in the Info dialog. Fill in the fields as follows:

1. Set the Label ID to 1104.
2. Set the left, top to 50, 39.
3. Set the font to 1 and the Text to “Version 1.0”.
Palm OS Tutorial 27

Adding a Menu and a Simple Dialog
2.1 Adding a Main Menu with a Get Info Item
4. Set resource Info; choose Resource>Get Resource Info (CMD-
I).

5. Set the ID to 1104 and the name to “Version #”.
6. Close all windows back to the type picker.

2.1.3.7 Creating a String Resource

Create a new string (tSTR) resource to contain the Help text for the
Info dialog. Fill in the fields as follows:

1. Set the String to “The Info dialog provides information about
the application such as the development company and ver-
sion number.”
Note: For the purposes of this project, you can safely ignore
the Data field.

2. Set resource Info (CMD-I).
3. Set the ID to 1107 and the name to “Help: Info form”.
4. Close all windows back to the type picker.

2.1.3.8 Creating a Form Bitmap Resource

Create a form bit map (tFBM) resource to display and position the
development company’s logo. Fill in the fields as follows:

1. Set X and Y coordinates to 5 and 25, respectively and the Bit-
mapRsc ID to 1110.

2. Set resource Info; choose Resource>Get Resource Info (CMD-
I).

3. Set the ID of the form Bitmap Resource to 1102 and the name
to “Company Logo”.

4. Close all windows back to the type picker.

2.1.3.9 Creating a PICT Resource

To put a graphic into a PICT resource you need some kind of
graphic editor, like MacPaint. (You could pre-load a graphic into the
Macintosh Scrapbook, making it easy to access when programming.

In the steps below, you copy your PICT image from a graphic editor
into the PICT resource.

Begin by putting the company logo on the Clipboard; follow these
steps:
28 Palm OS Tutorial

Adding a Menu and a Simple Dialog
2.1 Adding a Main Menu with a Get Info Item
1. Open your graphic editor and open the file named Company
Logo. It is located in the MemoPad 02:Rsc folder.

2. Use the lasso tool to select only the graphic.
3. Copy the selected graphic onto the Clipboard.

Create a PICT resource to display the company’s logo. Complete the
resource as follows:

1. Choose Resource>Create New Resource (CMD-K).
2. In the Select New Type dialog, enter PICT and click OK.
3. With the PICT window open, paste the logo in from the Clip-

board.
4. Set resource Info; choose Resource>Get Resource Info (CMD-

I).
5. Set the ID to 1110 and the name to “Company Logo”. This ID

establishes the connection to the form bit map (tFBM) re-
source.

6. Close all windows back to the type picker.

2.1.3.10 Adding Resources to a Form

Now that you have constructed a number of resources for your
form, add them to the object array in the form resource; follow these
steps:

1. From the type picker window, open the tFRM resource
picker.

2. Open the Memo Pad Info form (ID 1100). Add the new UI
components to the form’s collection of objects.

3. To establish the connection to the help string resource, set the
Help Rsc ID to 1107.

4. Set the Default Button ID to 1105.
5. Below the label “Number of objects” click the item labeled

“1) ******”
6. Insert a new field (CMD-K).
7. Fill in the information for the title resource. Set Obj ID to 1101

and Obj Type to tTTL.
8. Click the item labeled “2) ******”
9. Insert a another field (CMD-K).
Palm OS Tutorial 29

Adding a Menu and a Simple Dialog
2.1 Adding a Main Menu with a Get Info Item
10.Fill in the information for the form bit map resource. Set Obj
ID to 1102 and Obj Type to tFBM.

11.Click the item labeled “3) ******”
12.Insert a another field (CMD-K).
13.Fill in the information for the first label resource. Set Obj ID

to 1103 and Obj Type to tLBL.
14.Click the item labeled “4) ******”
15.Insert a another field (CMD-K).
16.Fill in the information for the second label resource. Set Obj

ID to 1104 and Obj Type to tLBL.
17.Click the item labeled “5) ******”
18.Insert a another field (CMD-K).
19.Fill in the information for the button resource. Set Obj ID to

1105 and Obj Type to tBTN.

That’s all the array work for this session. Go ahead and wrap it up
with ResEdit:

1. Close all windows back to the type picker.
2. Save the resource file.

2.1.4 Examining the Code

2.1.4.1 Adding a #define Macro for the InfoForm Resource

The system handles the processing of the Info form pretty much on
an automatic basis. For this reason, the app doesn’t need to refer to
the ID’s of its components. To identify your resource to your appli-
cation code, the programmer added a #define to the MemoPadRsc.h
file for the infoForm resource ID. Switch to CodeWarrior and take a
look at the file. Notice that the infoForm macro has a value of 1100,
the same as its ID. Remember, you can search the comments for
“P2” in MemoPadRsc.h and in MemoPadRsc.c (see below).

The programmer also includes the Info form resources (MemoPad-
Info.rsrc) and the system’s Help resources (:::Resources:Help Dia-
log, a.k.a. Tips) in the MemoPadRsc.c file.
30 Palm OS Tutorial

Adding a Menu and a Simple Dialog
2.2 Building and Exercising the Application
2.1.4.2 Adding a Handler for the Info Dialog with Do Dialog

The file MemoPad.c includes code changes required to use the Info
dialog box. Open MemoPad.c from CodeWarrior and take a look at
the changes since Phase 1.

The MainFormHandleEvent routine now contains a test for a
menuEvent, as discussed above. In review, here’s what happens:
• A call to the MenuEraseStatus function clears the menu com-

mand prompt, so the Info dialog can be displayed.
• A call to FrmInitForm loads the Info form into memory.
• A call to FrmDoDialog displays the Info form. FrmDoDialog

takes care of displaying the Info form and handling all the
user events, while the form is displayed.

• When the user taps the OK button on the Info form, Frm-
DoDialog restores the display to its appearance before the
Info form was displayed.

• When FrmDoDialog returns, the FrmDeleteForm function
deletes the no longer needed Info form from memory.

2.2 Building and Exercising the Application
To build and exercise the phase 2 application, follow these steps:

1. With CodeWarrior running, open MemoPadµ.
2. Add MemoPadInfo.rsrc to the project under the Resources

section. Drag the Working Folder:Rsc:MemoPadInfo.rsrc file
icon to the project window and drop it in under Resources.

3. Check the Project menu to make sure that the debugger is
disabled before running the application. It should show the
item Enable Debugger. If the item says Disable Debugger,
choose it.

4. Build the application (CMD-M).
5. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

Try out the menu system:

1. Display the Options menu and the Get Info menu item; tap
the Menu button.
Palm OS Tutorial 31

Adding a Menu and a Simple Dialog
2.2 Building and Exercising the Application
2. Display the Info form; tap the Get Info item.
3. Display Help for the form on the Info form, tap the Tips icon

to the right of the form’s title.
4. Dismiss the Tips form; tap the Done button.
5. Dismiss the Info form; tap the OK button.
6. Quit the application; tap the main form’s Exit button.
32 Palm OS Tutorial

Phase 3

Adding a Button, an Edit
Form, and Navigation

Overview
Phase 3 adds a New button, a full-screen edit form, and some navi-
gation between the edit form and the main form. See Figures 3.1 and
3.2. To set up the appropriate files for this phase, follow these steps:

1. If MemoPadMain.rsrc and MemoPadInfo.rsrc do not already
exist in Working Folder:Rsc from Phase 2, then copy them
from the MemoPad 02:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 03:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase 2,
copy it from MemoPad 02.

Figure 3.1 The Phase 3 Memo Pad with its New button.
Palm OS Tutorial 33

Adding a Button, an Edit Form, and Navigation
3.1 Adding a New Button to the Main Form
Figure 3.2 The Phase 3 Memo Pad with its edit form.

3.1 Adding a New Button to the Main Form
This section shows you how to:
• Add a button resource to the main form
• Connect the menu to the main form, so as make menu pro-

cessing more automatic.

It also describes the code for activating that resource.

3.1.1 Creating a “New” Button
This section shows you how to create a “New” button for the main
form. This button, when tapped, displays the edit form.

To begin, open the main form resource file in ResEdit:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadMain.rsrc type picker.

Create a button (tBTN) resource, and fill in the fields as follows:

1. Set the Button ID to 1003.
2. Set the button’s dimensions to 60, 146, 40, 12.

Leave all the radio buttons set to True.
34 Palm OS Tutorial

Adding a Button, an Edit Form, and Navigation
3.1 Adding a New Button to the Main Form
3. Set the Font to 0 and the Label to “New”.
4. Set resource Info (CMD-I).
5. Set the ID to 1003 and the Name to “New”.
6. Close all windows back to the type picker.

3.1.2 Adding the New Button Resource to the
Main Form
Now that you have a new button, add it to its parent form; follow
these steps:

1. From the MemoPadMain.rsrc type picker window, open the
tFRM resource.

2. In the resource picker window, open the Memo Pad resource
for the main form, Memo Pad Main.

3. Attach the menu to the main form. Set the value of Menu Rsc
ID to 1050 to refer to the main menu bar.

4. Add the New button to the main form. Click the item labeled
“3) ******” and create a new field.

5. Set Obj ID to 1003 and Obj Type to tBTN.
6. Close all windows back to the type picker.
7. Save the resource file (CMD-S).

3.1.3 Examining the Code

3.1.3.1 Adding a #define Macro for the “New” Button Resource

To identify a resource to the application code, add a #define to the
MemoPadRsc.h file for the New button resource ID. Open Memo-
PadRsc.h from CodeWarrior. Notice that the mainNewButton macro
has a value of 1003, the same as its ID.

3.1.3.2 Adding Event-Handler Code for New Button

The file MemoPad.c includes changes required to use the New but-
ton. Open MemoPad.c from CodeWarrior and take a look at the
changes from MemoPad 2.

The MainFormHandleEvent routine now contains a switch state-
ment to pass control to one of several cases based on event type. The
Palm OS Tutorial 35

Adding a Button, an Edit Form, and Navigation
3.2 Creating an Edit Form with a Title and a Done Button
case for ctlSelectEvent now includes a test to determine which but-
ton was pressed—Exit or New.

The test matches a button’s resource ID to the ID of the pressed but-
ton contained in the event structure. When the New button is
pressed, a call to FrmGotoForm with the ID of the Edit form loads
and displays the Edit form, after closing the Main form.

FrmGotoForm does this by adding frmCloseEvent, frmLoadEvent
and frmOpenEvent events to the event queue. The application re-
trieves these events later from the EventLoop routine.

The MainFormHandleEvent routine also handles the frmOpen-
Event event for the Main form. When the Edit form’s Done button is
pressed, the Main form displays. When the frmOpenEvent event ar-
rives, the Main form has been loaded and activated and remains
only to be drawn on the display.

The handled variable is set to True to indicate that subsequent event
handlers should not process these events.

3.2 Creating an Edit Form with a Title and a
Done Button

This section shows you how to create an Edit form and its resources.

3.2.1 Creating the Edit Form and Its Resources
The first version of the Edit form is similar to the first version of the
main form. It contains only a title and a button. Clicking the button
causes an exit from the form and a return to the main form.

3.2.1.1 Borrowing from MemoPad 01

Create the Edit form resource from the previous version of the Main
form; follow these steps:

1. Switch to the Finder and duplicate MemoPad 01:Rsc:Memo-
PadMain.rsrc (Press CMD-D).

2. Drag the copy to Working Folder:Rsc and rename it to Me-
moPadEdit.rsrc.
36 Palm OS Tutorial

Adding a Button, an Edit Form, and Navigation
3.2 Creating an Edit Form with a Title and a Done Button
Adapt the form to MemoPad 03 by revising the Edit form’s form, ti-
tle, and button resources.

3.2.1.2 Creating the Edit Form

Modify the form resource to create the Edit form; follow these steps:

1. Continue in ResEdit and double-click on the new file Memo-
PadEdit.rsrc to open.

2. From the MemoPadEdit.rsrc type picker window, open the
tFRM resource picker.

3. Open the Memo Pad Main item.
4. Change the Form ID to 1200.
5. Change the ID for the tTTL object to 1201.
6. Change the ID for the tBTN object to 1202.
7. Set resource Info (CMD-I).
8. Set the ID to 1200 and the name to “Memo Pad Edit”.
9. Close all windows back to the type picker.

3.2.1.3 Creating the Edit Form Title

Modify the title resource; follow these steps:

1. From the MemoPadEdit.rsrc type picker window, open the
tTTL resource picker.

2. Open the Memo Pad item.
3. Change the title to: “Edit Memo”.
4. Set resource Info (CMD-I).
5. Change the ID to 1201 and the name to “Edit Memo”.
6. Close all windows back to the type picker.

3.2.1.4 Creating the Done Button

Modify the button resource; follow these steps:

1. From the MemoPadEdit.rsrc type picker window, open the
tBTN resource picker.

2. Double-click the only entry in the list.
3. Change the Button ID to 1202.
4. Change the Label to “Done”.
5. Set resource Info (CMD-I).
Palm OS Tutorial 37

Adding a Button, an Edit Form, and Navigation
3.2 Creating an Edit Form with a Title and a Done Button
6. Change the ID to 1202.
7. Change the name to “Done”.
8. Close all windows back to the type picker.
9. Save the resource file and quit ResEdit.

3.2.2 Examining the Code

3.2.2.1 Adding #define Macros for New Resources

To identify the resource to the application code, the programmer
added two #define macros to the MemoPadRsc.h file. Switch to
CodeWarrior and examine the file. Notice that the values for the
editForm (1200) and editDoneButton (1202) macros are the same as
their IDs.

3.2.2.2 Adding Edit Form Handling to the Code

The file MemoPad.c includes changes required to use the Edit form.
Use CodeWarrior to open MemoPad.c and take a look at the
changes.

The EditFormHandleEvent routine is new. It handles two events
that require special processing for the Edit form: clicking the Done
button and opening a form. This example has two events to be han-
dled.

If the event type is ctlSelectEvent, it means the user has tapped a
button. The identity of the button is included in the event structure
and is verified to be the Done button. This button causes the Edit
form to close and the Main form to display.

A call to FrmGotoForm with the ID of the Main form closes the Edit
form while loading and displaying the Main form. FrmGotoForm
does this by adding frmCloseEvent, frmLoadEvent and frmOpen-
Event events to the event queue. The application retrieves these
later in the EventLoop routine.

The EditFormHandleEvent also handles the frmOpenEvent for the
Edit form. This event is generated when the Main form’s New but-
ton is pressed. When the frmOpenEvent arrives, the Edit form has
already been loaded and activated. All that remains is for it to be
drawn on the display.
38 Palm OS Tutorial

Adding a Button, an Edit Form, and Navigation
3.2 Creating an Edit Form with a Title and a Done Button
For both these events, the EditFormHandleEvent routine returns a
value of true to indicate that subsequent event handlers should not
process the event.

3.2.2.3 Other Changes to the Application Code

Several other changes have been made to the example code for this
phase. The addition of FrmGotoForm to go between forms accom-
panies the Edit form. This introduces the frmLoadEvent and a new
mechanism for dispatching events to each form’s event handler.

In the PilotMain routine, a call to FrmGotoForm with CurrentView
as an argument follows StartApplication. Inspection of the StartAp-
plication routine shows the previous calls to InitForm, SetActive-
Form and DrawForm are no longer used. Instead a global variable,
CurrentView, is set to the ID of the (soon-to-be) current form.

As mentioned above, FrmGotoForm adds frmCloseEvent, frmLoad-
Event and frmOpenEvent events to the event queue. These events
will be retrieved later by the application in the EventLoop routine.

Inspection of the EventLoop routines shows that the calls to Appli-
cationHandleEvent and FrmDispatchEvent replace calls to Main-
FormHandleEvent and FrmHandleEvent. Take a look at the new
ApplicationHandleEvent routine, just above EventLoop, to under-
stand what’s happening.

The ApplicationHandleEvent routine processes the frmLoadEvent
event. The structure of this event contains the ID of the form to be
loaded. InitForm loads the form, and SetActiveForm activates it.

Finally, the system is informed which application routine will pro-
cess events for that form. For the Main form, this is the MainForm-
HandleEvent routine. For the Edit form, it is the
EditFormHandleEvent routine. FrmDispatchEvent (called in the
EventLoop routine) calls these routines for each event processed,
while the form is active.

Another change is the setup of the main menu. The resource for the
Main form was modified above to include setting the menu rsc ID to
the ID of the menu bar resource. This lets the default form-event
processing routine, FrmHandleEvent (called internally by FrmDis-
patchEvent) handle setup and teardown of the menu for a form. As
39 Palm OS Tutorial

Adding a Button, an Edit Form, and Navigation
3.3 Building and Exercising the Application
a result, SetCurrentMenu is no longer required, because FrmSetAc-
tiveForm handles this task automatically.

3.3 Building and Exercising the Application
With resources and code in place for Phase 3, build the project and
exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, open MemoPad.µ, and check the
Project menu to make sure that the debugger is disabled be-
fore running the application. It should show the item Enable
Debugger. If the item says Disable Debugger, choose it.

2. Add MemoPadEdit.rsrc to the project in the Resources sec-
tion. Drag the Working Folder:Rsc:MemeoPadEdit.rsrc icon
to the project window and drop it in under Resources.

3. Choose Project>Remove Binaries.
4. Build the application (CMD-M).
5. Launch the application (CMD-R). The Pilot Simulator dis-

plays your memo pad application.
6. Testing the system:

a. Get the Edit form; tap the Main form’s New button.
b. Tap the Menu button. Notice that there is no menu for this

form.
c. To return to the Main form, tap the Done button.

3.4 Using the Event Trace Window
One of the Pilot Simulator’s debugging features is its Event Trace
window see Figure 3.3. Select Window>Event Trace to activate the
Event Trace window. The Event Trace window will display all
events running through the main event queue, along with some of
their relevant data. Exercise the application and observe the event
flow. Since the Palm OS UI is largely single-threaded, this event
flow gives an excellent view of the state of the system at any time.
40 Palm OS Tutorial

Adding a Button, an Edit Form, and Navigation
3.4 Using the Event Trace Window
.

Figure 3.3 The Event Trace window.
Palm OS Tutorial 41

Adding a Button, an Edit Form, and Navigation
3.4 Using the Event Trace Window
42 Palm OS Tutorial

Phase 4

Adding a Text Field and
Menu Commands

Overview
Phase 4 adds a text field, an Edit menu, and menu commands to
make field interaction possible. See Figures 4.1, 4.2, and 4.3. You’ll
learn how to set up basic edit commands and field navigation com-
mands. To set up the appropriate files for this phase, follow these
steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, and Memo-
PadEdit.rsrc do not already exist in Working Folder:Rsc from
Phase 3, then copy them from the MemoPad 03:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 04:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase 3,
copy it from MemoPad 03.

Figure 4.1 Phase 4 Memo Pad with text entered in Edit area.0
Palm OS Tutorial 43

Adding a Text Field and Menu Commands
4.1 Adding a Large Text Field to the Edit Form
Figure 4.2 Phase 4 Memo Pad with additional Options menu items.

Figure 4.3 Phase 4 Memo Pad with Edit menu items.

4.1 Adding a Large Text Field to the Edit Form
Editing memos requires a text field. In this section, you’ll create one.
You’ll also create a Graffiti UI object to handle the Graffiti shift sym-
bol.

To begin, open the edit resource file in ResEdit, follow these steps:

1. Open the Working Folder:Rsc folder.
44 Palm OS Tutorial

Adding a Text Field and Menu Commands
4.2 Adding a Resource for the Graffiti Shift UI
2. Open MemoPadEdit.rsrc.

The Edit form needs a text field (tFLD) resource. Follow these steps:

1. Create a tFLD resource.
2. Set the Field ID to 1203.
3. Set the field’s position to 10, 17, 140, 130.
4. Set Single Line to False. Leave all the radio buttons set to

True.
5. Set Max chars to 1028 and Font to 0.
6. Set resource Info (CMD-I).
7. Set the ID to 1203 and the name to “Edit Field”.
8. Close all windows back to the type picker.

4.2 Adding a Resource for the Graffiti Shift UI
The Graffiti Shift Indicator (tGSI) specifies the position where the
Graffiti Shift symbol (for punctuation, symbol, uppercase shift, and
uppercase lock) appears in the form window. Follow these steps:

1. Create a tGSI resource for the Edit form.
2. Put the resource in the lower left of the Pilot display. Set the x

position to 5 and the y position to 146.
3. Set resource Info (CMD-I).
4. Set the ID to 1204 and the Name to “Graffiti Shift”.
5. Close all windows back to the type picker.

4.2.1 Adding the Field and Graffiti UI
Resources to the Edit Form
Now that you have a new field, add it to its parent form; follow
these steps:

1. From the type picker, open the tFRM resource.
2. From the tFRM resource picker, open Memo Pad Edit.
3. Set the Menu Rsc ID to 1250.
4. Click the item labeled “3) ******”.
5. Create a new field (CMD-K).
Palm OS Tutorial 45

Adding a Text Field and Menu Commands
4.2 Adding a Resource for the Graffiti Shift UI
6. Insert the edit field; set ID to 1203 and Type to tFLD.
7. Click the item labeled “4) ******”.
8. Create a new field (CMD-K).
9. Insert the Graffiti Shift field; set ID to 1204 and Type to tGSI.
10.Close all windows back to the type picker.
11.Save the resource file (CMD-S).

4.2.2 Examining the Code

4.2.2.1 Adding #define Macros for New Resources

To identify resources to the application code, the programmer
added two #define macros to the MemoPadRsc.h file. Open Memo-
PadRsc.h from CodeWarrior. Notice that the values for the editField
(1203) and editDoneButton (1202) macros are the same as their IDs.

NOTE: You needn’t add the 1204 ID for the Graffiti UI to the header
file. The reason is that the application doesn’t interact directly with
this resource, so you don’t need to tell your code it’s here. The
same is true of some other resources, like titles and strings.

4.2.2.2 Revising a Handler for the Text Field

The file MemoPad.c in the MemoPad 04 folder includes changes re-
quired to use the text field in the Edit form. Open MemoPad.c from
CodeWarrior and take a look at the changes from MemoPad 03.
These changes support the new resources in Phase 4.

Within the EditFormHandleEvent routine, the programmer made
an addition to the frmOpenEvent case. After the form is drawn on
the screen, the focus for text input needs to be set to the text field. A
call to FrmSetFocus, passing the index of the text field, sets the fo-
cus.
46 Palm OS Tutorial

Adding a Text Field and Menu Commands
4.3 Adding Resources for the Edit Menu and Options Menu
4.3 Adding Resources for the Edit Menu and
Options Menu

This section shows you how to:
• Add a menu to the Edit form.
• Populate the menu with commands.
• Add two commands to the Options menu.

The steps to do all this are:
• Copy resources from Main and modify them for Edit.
• Add commands to the Edit menu.
• Set Edit menu IDs.
• Add commands to the Options menu.
• Add the Edit menu on the menu bar.

4.3.1 Copying Resources from Main to modify
them for Edit
Initially, the Edit form menu looks similar to that of the Main form.
It contains an Options menu with a Get Info item that displays the
Info form.

Leverage your earlier work by creating the Edit form’s menu re-
source from the menu of the Main form. Follow these steps:

1. Switch to ResEdit.
2. Open the file MemoPadEdit.rsrc.
3. Open the file MemoPadMain.rsrc.
4. In MemoPadMain.rsrc, select the MENU and MBAR resource

types and copy the selection.
5. Select MemoPadEdit.rsrc and paste in the two resources.

Both menu resources appear in the target window.
6. Close the MemoPadMain.rsrc window.
Palm OS Tutorial 47

Adding a Text Field and Menu Commands
4.3 Adding Resources for the Edit Menu and Options Menu
Edit the resource copies you just made to suit the Edit menu; follow
these steps:

1. Select the MemoPadEdit.rsrc type picker and open the
MENU resource.

2. Select the entry for Options Menu.
3. Set resource Info (CMD-I).
4. Set the ID to 1251.
5. Close the Info window. If you get a dialog asking to update

the menuID, click Cancel.
6. Close the MENU resource picker.
7. Open the MBAR resource picker and the Main Menu re-

source.
8. Select the first entry and change the Menu res ID to 1251.
9. Set resource Info (CMD-I).
10.Set the ID to 1250 and the name to “Edit Form Menu”.
11.Close all windows back to the type picker.

4.3.2 Adding Commands to the Edit Menu
Now that you have a menu for the Edit form, populate it with menu
items, commands. Begin by creating and populating an Edit menu
follow these steps:

1. In the MenuPadEdit.rsrc window, open the MENU resource
picker.

2. Create a new resource (CMD-K).
3. Set the menu title to “Edit”. Do NOT close the window.
4. Create a new item (CMD-K).
5. Set the menu item text to “Cut” and the Cmd-Key to X. Press

Enter.
6. Set the menu item text to “Copy” and the Cmd-Key to C.

Press Enter.
7. Set the menu item text to “Paste” and the Cmd-Key to P.

Press Enter.
8. Set the menu item text to “Undo” and the Cmd-Key to U.

Press Enter.
48 Palm OS Tutorial

Adding a Text Field and Menu Commands
4.3 Adding Resources for the Edit Menu and Options Menu
9. Set the menu item text to “Select All” and the Cmd-Key to S.
Press Enter.

10.Click the radio button for separator line. Press Enter.
11.Click the radio button for Text.
12.Set the menu item text to “Keyboard” and set the Cmd-Key

to K. The Keyboard command displays the on-screen key-
board.

4.3.3 Setting Edit Menu IDs
With the Edit menu completed, set its IDs; follow these steps:

1. Set resource Info; choose Resource>Get Resource Info (CMD-
I).

2. Set the ID to 1252 and the name to “Edit Menu”.
3. Close the Info window.
4. Cancel the warning dialog.
5. Choose MENU>Edit Menu & MDEF ID....
6. Set the Menu ID to 200 and click OK.
7. Close the MENU “Edit Menu” window.

4.3.4 Adding Commands to the Options Menu
Continuing in ResEdit, add two navigational commands to the Op-
tions menu:

1. Select the Option Menus entry in the MENU resource picker
and open it.

2. Create a new item (CMD-K).
3. Set the menu item text to “Go to top of page” and the CMD-

Key to T. Press Enter.
4. Set the menu item text to “Go to bottom of page” and the

CMD-Key to B.
5. Close the MENU “Options Menu” editor window and the

MENU resource picker.
Palm OS Tutorial 49

Adding a Text Field and Menu Commands
4.3 Adding Resources for the Edit Menu and Options Menu
4.3.5 Adding the Edit Menu to the Menu Bar
Continuing in ResEdit, add two navigational commands to the Op-
tions menu:

1. Open the MBAR resource picker and the Edit Form Menu re-
source.

2. Click the item labeled “2) ******”.
3. Insert a new field (CMD-K).
4. In the new entry, set the Menu res ID to 1252 to add the Edit

menu to the menu bar.
5. Close the MBAR “Edit Form Menu” editor window and the

MBAR resource picker.
6. Save the resource file.

4.3.6 Examining the Code for the New Edit
Menu and Option Resources
With new resources in place, take a look at the code changes needed
to activate the resources.

4.3.6.1 Adding #define Macros for New Resources

To identify the resources to the application code, the programmer
added a #define macro to the MemoPadRsc.h file for the Edit menu
and the new menu command resource IDs. Switch to CodeWarrior
and take a look at the file.

4.3.6.2 Adding an Event Handler for the Edit Menu

The file MemoPad.c includes changes required to use the new
menus in the Edit form. Use CodeWarrior to open MemoPad.c and
take a look at the changes from MemoPad 03.

Within the EditFormHandleEvent routine, the programmer has
added a new case for the menuEvent. First, MenuEraseStatus clears
the menu command prompt from the display. Then, EditDoMenu-
Command executes the menu command (based on the command ID
as extracted from the event structure).
50 Palm OS Tutorial

Adding a Text Field and Menu Commands
4.3 Adding Resources for the Edit Menu and Options Menu
4.3.6.3 Adding a Menu Item Handler for the Edit Form Menu

EditDoMenuCommand is a new routine located just above Edit-
FormHandleEvent. It has responsibility for handling all the menu
commands for the Edit form. The getInfo command displays the
Info form using the same actions as were put in place earlier for the
menuEvent in the MainFormHandleEvent routine.

4.3.6.4 Adding Handlers for Menu Commands

The goToTop command moves the location of the text insertion
point to the beginning of the text field. It calls GetFocusObjectPtr to
retrieve a pointer to the field that currently has the focus for text in-
sertion. If a field currently has the focus, FldSetInsPtPosition is
called to set the insertion point to position zero, the beginning of
text. This will cause the text to scroll in the field, when necessary.

The goToBottom command moves the insertion point to the end of
the text field. If a field currently has the focus, the routine calls
FldGetTextLength to get the length of the text and FldSetInsPtPosi-
tion to set the insertion point to the end of text. This also will cause
the text to scroll in the field, when necessary.

The cutCmd command places a copy of the currently selected text
on the system clipboard and removes the text from the field. FldCut
handles all this and the necessary display updates.

The copyCmd command places a copy of the currently selected text
on the system clipboard and doesn’t alter the text in the field. Fld-
Copy handles these chores.

The pasteCmd command inserts a copy of the text currently on the
system clipboard into the text field at the location of the insertion
point. FldPaste handles all this as well as the necessary display up-
dates.

The undoCmd command reverses the last text change. FldUndo
handles this including the necessary display updates.

The selectAllCmd command selects all the text in the field. FldSetSe-
lection is called to select all the text from position zero to the last
character for the field.

The keyboardCmd command displays the on-screen keyboard. Sys-
KeyboardDialog handles display of the keyboard and all its interac-
Palm OS Tutorial 51

Adding a Text Field and Menu Commands
4.4 Building and Exercising the Application
tions, including updating text with the changes made through the
keyboard.

GetFocusObjectPtr is a new routine located just above EditDoMenu-
Command. It finds the text field in the current form that has the fo-
cus, if any, and returns a pointer to the field structure.

4.4 Building and Exercising the Application
To build the MemoPad project, follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Choose project/remove binaries.
3. Build the application (CMD-M).
4. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

To try out the system, follow these steps:

1. Display the edit form; tap the main form’s New button. Note
the flashing insertion point bar at the beginning of the text
field.

2. Tap the Menu button. You get a menu bar with the Options
and Edit menus.

3. Display the Info form; tap the Get Info item, which displays
the Info form.

4. Close the Info form.
5. Type or write with Graffiti some words into the text field, like

“Palm OS is the best handheld system ever!”.

With some text in place, experiment with moving the insertion
point; follow these steps:

1. Notice that you can change the location of the insertion point
by tapping on the displayed text.

2. Tap the Menu button and select the Go to top of page item.
Note that the insertion point bar jumps to the beginning of
52 Palm OS Tutorial

Adding a Text Field and Menu Commands
4.4 Building and Exercising the Application
the text. Similarly, the Go to bottom of page item moves the
insertion point to the end of text.

Give the edit commands a try; follow these steps:

1. Try the command stroke. (The command stroke is a diagonal
slash from lower left to upper right in the Graffiti area.)

2. Select some of the text by clicking and dragging over it.
3. Tap the menu button and choose the Edit>Copy item. The se-

lected text is copied to the clipboard.
4. Choose the Paste item. This inserts text from the clipboard

into the text field at the insertion point, thus creating a sec-
ond copy of the text in the field.

5. Select all the text in the field; choose the Select All item.
6. Choose the Cut item to copy selected text to the clipboard

and remove it from the displayed text.
7. Undo the Cut operation; select the Undo item.

Exercise the on-screen keyboard; follow these steps:

1. Display the on-screen keyboard; tap the Edit>Keyboard item
and use it to add some characters to the text.

2. Dismiss the keyboard; tap the keyboard’s Done button.

Take a look at how your application handles larger amounts of text;
follow these steps:

1. Enter several lines of text, even if you just copy the initial text
and paste it several times. Note that the text field automati-
cally word wraps at the end of a line and scrolls the lines,
when the number of lines is greater than the lines on the dis-
play.

2. Return to the main form, tap the Done button.
3. Quit the application, tap the main form’s Exit button.
Palm OS Tutorial 53

Adding a Text Field and Menu Commands
4.4 Building and Exercising the Application
54 Palm OS Tutorial

Phase 5

Storing and Retrieving Text
in a Database

Overview
In this phase, you add some data management to the application. By
the end of this phase, you’ll be able to store and retrieve text data
entered into the text field of the Edit form. To do this, you create a
Palm OS database and within it, a record to store the data. This
phase keeps it simple and works with a single record. Figure 5.1
shows changes to the main forms. To set up the appropriate files for
this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, and Memo-
PadEdit.rsrc do not already exist in Working Folder:Rsc from
Phase 4, then copy them from the MemoPad 04:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 05:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase 4,
copy it from MemoPad 04.
Palm OS Tutorial 55

Storing and Retrieving Text in a Database
5.1 Adding Text Storage in a Database Record
Figure 5.1 The Phase 5 Memo Pad

5.1 Adding Text Storage in a Database Record
This section describes the basics of Palm OS databases and describes
three key functions for running a database.

5.1.1 Database Basics
The first step is to create a new database for this application. Nor-
mally, each Palm OS application has its own database for storing its
records. The database resides in the Palm OS device’s non-volatile
storage. Each database has a name, a creator, and a type. The name
can be up to 31 characters in length. Because it is the primary identi-
fier, it must be unique within the system. The creator is a four-char-
acter value that must be either all uppercase or mixed case. An all-
lowercase name is illegal, because the Palm OS system software re-
serves all-lowercase names for itself. The type is also a four-charac-
ter value that must be either all-uppercase or mixed case.

5.1.2 Database Create, Open, And Close
Functions
Take a look at the code for Phase 5 to see how storage is handled.
From CodeWarrior open MemoPad.µ and select MemoPad.c.
56 Palm OS Tutorial

Storing and Retrieving Text in a Database
5.2 Revising the Handler for the Done Button
There are two key functions in Phase 5 that handle starting and
stopping an application, each uses a database:
• StartApplication
• StopApplication

StartApplication has been revised to create and open a database for
this application. Here’s how:
• StartApplication looks for an existing application database.

The DmFindDatabase function returns an ID for the database
that matches the requested name. If the database doesn’t ex-
ist, a call to the DmCreateDatabase function creates it. If the
create fails, there is a call to ErrFatalDisplay, and the applica-
tion exits.

• Normally, the create succeeds, so FindDatabase is called
again to get an ID for the database. The ID is used to open the
database for both read and write access.

• The handle to the opened database is stored in a new global
variable named MemoPadDB. Another new global variable,
CurrentRecord, is initialized to indicate that no database
record is being processed. This variable stores the index of
the current database record.

Here’s how the application database works. The application’s data-
base is kept open while the application is running. PilotMain calls it
just prior to the application’s exit. StopApplication is a new routine.
StopApplication cleans up the state of the application’s data before
exit. Finally, DmCloseDatabase closes the database.

5.2 Revising the Handler for the Done Button
With the picture of stopping and starting in mind, you may wonder
what happens in between these programmatic bookends. Take a
look at these functions:
• EditFormHandleEvent
• EditSaveData
• DmNewRecord

and how they use these functions:
– MemHandleLock
Palm OS Tutorial 57

Storing and Retrieving Text in a Database
5.2 Revising the Handler for the Done Button
– DmWrite
– MemHandleUnLock
– DmReleaseRecord

5.2.1 EditFormHandleEvent
The programmer has modified EditFormHandleEvent, so that it
saves the Edit form’s text-field data to the application’s database,
when the form is done. If the CtlSelectEvent case finds that the Done
button has been selected, it does the following:
• It gets a pointer to the edit field’s data structure
• It passes the pointer to a new routine named EditSaveData.
• It resets the CurrentRecord global variable to indicate that

there is no longer a current record.

5.2.2 EditSaveData
The EditSaveData function’s job is to write text-field data to the first
record of the application’s database. Here’s how it works:
• It gets a pointer to the text field.
• It tests the pointer for data in the field to ensure that there is

an allocated string for the text and that the string is not
empty.

• Given some data in the field, it calls DmNewRecord to create
a new record in the database and return a pointer to the
newly created record. The new record size equals the byte
count for text-field data and an additional zero terminator
character.

• A call to MemHandleLock locks the handle, thus locking the
record’s location in memory, before directly manipulating the
data in the record. MemHandleLock also returns a pointer to
the record in memory.

• A call to DmWrite writes the data from the text field to the
record, starting at location zero in the record.

• Once the record’s data has been set, MemHandleUnlock un-
locks the record, so that the memory system may move the
record’s location, if required by fragmentation problems.

• DmReleaseRecord releases the record to the system’s data-
base manager. When the record was initially created it was
58 Palm OS Tutorial

Storing and Retrieving Text in a Database
5.3 Adding an Edit Button to the Main Form
marked internally by the system as being busy, meaning in
use by the application. Releasing the record lets the database
manager regain control of the record from the application. In
the call to DmReleaseRecord the application also indicates to
the database manager that the record contains “dirty” data,
i.e., data that has been changed since it was last released.

5.3 Adding an Edit Button to the Main Form
Adding a button is a question of setting up the right resources and a
bit of coding. Begin with the resources.

5.3.1 Creating the Edit Button Resource
To begin, open the resource file for the main form in ResEdit:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadMain.rsrc type picker.

Add an Edit button to the main form, follow these steps:

1. Open the tBTN resource picker.
2. Create a new button resource for the Edit button (CMD-K).
3. Set the Button ID to 1004.
4. Set the dimensions to 10, 146, 40, and 12.
5. Leave all the radio buttons set to True
6. Set the Font to 0 and the Label to “Edit”.
7. Set resource Info (CMD-I).
8. Set the ID to 1004 and the name to “Edit”.
9. Close all the windows down to the type picker.

5.3.2 Adding the Edit Button to the Main Form
Continue by incorporating the new button into the main form; fol-
low these steps:

1. Open the tFRM resource picker and, from within it, the
Memo Pad Main form resource.

2. Click the item labeled “4) *****”.
Palm OS Tutorial 59

Storing and Retrieving Text in a Database
5.3 Adding Retrieval of Text from a Database Record
3. Insert a new field (CMD-K).
4. Fill in the information for the Edit button. Set the ID to 1004

and the Type to tBTN.
5. Close the tFRM form editor window and the tFRM resource

picker.
6. Save the resource file.

5.2.3 Examining the Code

5.2.3.1 Adding a #define Macro for the Edit Button

To identify a resource to the application code, the programmer
added a #define macro to the MemoPadRsc.h file for the Edit button
resource ID. Open MemoPadRsc.h from CodeWarrior and take a
look at the changes from MemoPad 4. Notice that the mainEditBut-
ton macro is assigned the ID value 1004, to match the resource.

5.2.3.2 Adding a Handler for the Edit Button

The programmer modified the MainFormHandleEvent routine to
handle the new Edit button by adding a new case for the mainEdit-
Button. To tell the Edit form that the user selected the Edit button,
the CurrentRecord global variable is set to the index of the record to
be edited. In this example, it is always the first record in the data-
base, index value zero. Calling FrmGotoForm initiates the transition
to the edit form.

5.2.3.3 Revising the Handler for the New Button

The MainFormHandleEvent routine’s handling of the New button
has been modified. Now, it tells the Edit form that this is a new
record by setting the CurrentRecord global to a special value of
noRecordsSelected. Then, a call to FrmGotoForm initiates transition
to the edit form.

5.3 Adding Retrieval of Text from a Database
Record

Adding text retrieval is a question of revising the Edit Form Han-
dler.
60 Palm OS Tutorial

Storing and Retrieving Text in a Database
5.3 Adding Retrieval of Text from a Database Record
5.3.1 Revising the Edit Form Handler
In the Phase 5 version, EditFormHandleEvent reads the first
record’s data from the application’s database into the edit form’s
text field when the form is opened. The case for the openFormEvent
event now includes getting a pointer to the edit field’s data struc-
ture. It passes this pointer to a new routine named EditRetrieve-
Data.

The EditRetrieveData routine reads the first record of the applica-
tion’s database into the text field. The routine first checks to see if
there is a current record by checking the value of the CurrentRecord
global variable. It also checks to see if the database contains any
records. If the New button is tapped on the main form, the value of
CurrentRecord is noRecordSelected. In this case, no attempt is made
to read from the database, and the field retains its initialized value,
an empty string.

If a record is present, these actions take place:
• A call to DmGetRecord gets a handle for the first record in

the database. (Remember that CurrentRecord was set to zero
in the code-handling mainEditButton).

• Before the data in the record can be directly manipulated, the
handle must be locked to pin down the record’s location in
memory. MemHandleLock does this and returns a pointer to
the record in memory.

• A new block of memory is allocated to contain a copy of the
data for the field of the form. MemHandleNew is called with
a size determined by the size of the data in the record, plus
one for a zero terminator on the string. The function returns a
handle to the new memory block.

• MemHandleLock is called again to pin down the new mem-
ory block. Now the data from the first database record is cop-
ied to the new memory block via StrCopy. The new memory
block is then unlocked, so that it is again under the control of
the memory system. The new memory block, containing a
copy of the record data can now be provided to the field. Fld-
SetTextHandle takes the handle of the new memory block
and sets the value of the field to the text contained in the new
memory block.
61 Palm OS Tutorial

Storing and Retrieving Text in a Database
5.4 Building and Exercising the Application
• Now that the record’s data has been retrieved, it is unlocked
so that the memory system may move its location, if required
by fragmentation problems.

• The record is released to the system’s database manager.
When the record was initially created, it was marked inter-
nally by the system as being busy, meaning in use by the ap-
plication. Releasing the record lets the database manager
regain control of the record from the application. In the call to
DmReleaseRecord, the application also indicates to the data-
base manager that the record has not been changed since the
call to DmGetRecord.

5.4 Building and Exercising the Application
To build the MemoPad project, follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the MemoPad application (CMD-R). The Pilot Simu-

lator starts and displays the Pilot with your memo pad appli-
cation in it.

Write, save, and review your work; follow these steps:

1. Display the edit form; tap the main form’s New button.
2. Enter some words into the text field, like “Palm OS is the best

handheld system ever!”. Note: To change the location of the
insertion point, tap the displayed text.

3. Return to the main form; tap the Done button.
4. Cause the edit form to re-appear; tap the edit button. Note

that the previously entered text is displayed again.
5. Return to the main form; tap the Done button.
6. Display the edit form; tap the main form’s New button. Note

that the text field is empty.
7. Enter new text into the text field, like “I’m going to create the

best application ever for Palm OS!”.
8. Return to the main form; tap the Done button.
62 Palm OS Tutorial

Storing and Retrieving Text in a Database
5.4 Building and Exercising the Application
9. Cause the edit form to re-appear, tap the edit button. Note
that the new text is displayed again.

10.Return to the main form; tap the Done button.

The next activity shows you how to interact with the Console, using
its commands; follow these steps:

1. Tap the Pilot Simulator’s Window>Console menu item to
display the Console window.

2. Select the Console window and press Enter (or CMD-Return)
to move the insertion point to a new line.

3. Type the command “opened” and press Enter. A list of cur-
rently open databases appears. The first entry is named “Me-
moPadDB” and is the application’s database.
Note the value in the accessP column of the list. This value is
known as the access pointer of the database. The two TRES
databases are resource databases. One contains application
resources and the other contains system resources as speci-
fied in MemoPadRsc.c. Graffiti contains macros and appears
automatically.

4. Next, examine information about the records in the Memo
Pad database. Type the command “listrecords”, add a space,
and type the value of accessP for Memo Pad’s database. For
example:

listrecords 00DAB484

It is often more convenient and less error prone to use copy/
paste on access pointers.
A list of the current records appears, including the index,
some of the data, and other information. Note that our cur-
rent application’s record list (as shown in Figure 5.2) contains
duplicates of each record. This is because the application in
its current state creates a copy of a record for editing, and
never deletes the copy. This will be taken care of in later
phases.

5. Quit the application, tap the main form’s Exit button.
63 Palm OS Tutorial

Storing and Retrieving Text in a Database
5.4 Building and Exercising the Application
Figure 5.2 The Console
64 Palm OS Tutorial

Phase 6

Editing a Data Record in
Place

Overview
Phase 6 introduces a technique for working with data records
known as edit in place. Phase 6 makes no changes to resources.

To set up the appropriate files for this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, and Memo-
PadEdit.rsrc do not already exist in Working Folder:Rsc from
Phase 5, then copy them from the MemoPad 05:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 06:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase 5,
copy it from MemoPad 05.

6.1 About Edit-in-Place
In the previous example (Phase 5), the data is copied from the long-
term storage to a temporary buffer in dynamic memory (RAM) for
editing.

The user interacts with the data in the buffer by means of the user
interface. The buffer absorbs and contains these modifications.
When the display and editing are complete, the updated contents of
the buffer are written back to long term storage. Because of the inef-
ficiencies of editing directly in long-term storage on most systems,
you need to create the extra copy and move the data back and forth.

The Palm OS system allows for a more efficient mechanism called
“edit-in-place”. Long-term storage is simply a section of the sys-
tem’s battery-backed dynamic memory. There is no requirement to
move data from one area of dynamic memory to another for presen-
tation and editing in the user interface.
Palm OS Tutorial 65

Editing a Data Record in Place
6.2 Adding a Handler for Edit in Place
This means the user, through the user interface, can edit the data in
a database record directly, while it is still in the database. You don’t
need to put a temporary copy of the data in the system memory
area. This has the advantage of minimizing usage of the limited
amount of system memory, while avoiding the performance over-
head of extra memory allocations and data copies.

6.2 Adding a Handler for Edit in Place
The file MemoPad.c includes code changes required to set up an
edit-in-place mechanism. From CodeWarrior, open MemoPad.c and
take a look at the changes from MemoPad 5.

Go to the mainNewButton case of MainFormHandleEvent function.
To create a new record in the database, MainNewButton calls a new
routine CreateRecord. If CreateRecord fails, the edit form is not dis-
played. Since all editing is done directly in a database record, a new
record must be created before editing can begin. (The previous ex-
ample relied on the system’s form processing to provide an initial
buffer in dynamic memory for the field’s data.)

The call to CreateRecord could have been made after the edit form
gains control. However, if there is a problem from CreateRecord; the
edit form is never started, and there is no switch to and from the
edit form.

CreateRecord calls DmNewRecord to create a new record, and an
empty first record in the application’s database. The new record has
a default size of newMemoSize. The data in the record needs to be
initialized to an empty string. A call MemHandleLock gets a pointer
to the record data. A single zero byte is written to the first position
in the record.

DmWrite returns an error code that is checked by a call to ErrFa-
talDisplayIf. This routine checks the value of error and, if it is non-
zero, displays an alert message box containing the specified error
message. This alert does not let the program continue and should
only be used in cases where the error condition is truly fatal. This is
similar to the way StartApplication works (See Phase 5). If its call to
DmCreateDatabase fails, it calls ErrFatalDisplay.
66 Palm OS Tutorial

Editing a Data Record in Place
6.2 Adding a Handler for Edit in Place
If there is no error from writing the record, it is unlocked. Then, the
record is released to the system’s database manager, letting the data-
base manager regain control of the record from the application. In
the call to DmReleaseRecord, the application also indicates to the
database manager that the record contains “dirty” data, i.e., data
has been changed. Finally, the global variable CurrentRecord gets
the index of the first record.

The EditRetrieveData routine has now been simplified. Once the
current record has been retrieved by a call to DmGetRecord the han-
dle of the record is passed to the field by a call to FldSetTextHandle.
This directs the system’s field processing to access and modify the
field data by referencing the handle of the record. That is, presenta-
tion and editing will be done directly in the database record. (The
code from MemoPad 5 that has been replaced is included for refer-
ence.)

The programmer has also simplified the EditSaveData routine. A
call to FldGetTextPtr gets a pointer to the field’s data and stores it in
the variable called text. A call to FldSetTextHandle clears the handle
to the field data. This clears the reference to the field data in the field
data structure pointed to by the variable fld. Even though the han-
dle has been cleared, the field data is still available via the variable
text.

It is important to clear the handle reference in the field data struc-
ture. The reason is that when the edit form is closed, the form is dis-
posed of and cleared from memory. Part of that process frees all
memory blocks obtained by the objects within the form. If the field
data structure contains a handle for the field’s data, the memory ref-
erenced by that handle is freed. In many cases, this is appropriate
and desirable. However, in this example, the handle is referencing
data within the database record, so you don’t want it freed.

Lastly, the database record must be released back to the datbabase
manager’s control with the dirty flag set. (The code from MemoPad
5 that has been replaced is included for reference.)

Note: If you fail to clear the handle reference and there is data in
the field, you risk data loss, a crash, and an error message.
67 Palm OS Tutorial

Editing a Data Record in Place
6.2 Adding a Handler for Edit in Place
68 Palm OS Tutorial

Phase 7

Adding a List to Display and
Select a Record

Overview
This phase adds a scrolling list to the main form. See Figure 7.1. To
work this phase, follow these steps:

If MemoPadMain.rsrc, MemoPadInfo.rsrc, and MemoPadEdit.rsrc
do not already exist in Working Folder:Rsc from Phase 6, then copy
them from the MemoPad 06:Rsc folder.

1. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 07:Src folder to Working Folder:Src.

2. If MemoPad.µ does not exist in Working Folder from Phase 6,
copy it from MemoPad 06.

Figure 7.1 The Phase 7 Memo Pad with a scrolling list.

The scrolling list displays an item for each record in the application
database. Each item shows a line width (approximately the first 30-
or-so characters) of text from the record. If there are more items than
fit within the list’s boundaries, the list scrolls. When you tap an
item, the edit form displays the entire text of the corresponding
record in the text field.
Palm OS Tutorial 69

Adding a List to Display and Select a Record
7.1 Adding Record Display List to the Main Form
NOTE: The display list shown in Figure 7.1 and described in this
phase will be replaced later with a table in the main form. Using
the list provides a way to show how to use a list and postpones the
more challenging topic of tables.

7.1 Adding Record Display List to the Main Form
In this section, you do three things to the main form:
• Add a list resource
• Remove the Edit button.
• Remove the Exit button.

7.1.1 Adding a List Resource
Add a list (tLST) resource to the main form.

To begin, open the resource file for the main form in ResEdit:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadMain.rsrc type picker.

Add a list resource to the main form; follow these steps:

1. Create a new list resource (CMD-K).
2. Type tLST for the resource type and click OK.
3. Set the List ID to 1005.
4. Set the list’s dimensions to 10, 17, and 140.
5. Set Font to 0 and visible items to 11.
6. Set resource Info (CMD-I).
7. Set the ID to 1005 and the name to “Memo list”.
8. Close all the windows down to the type picker.

7.1.2 Removing Buttons
This section shows you how to remove the Exit button from the
main form. Just as it takes two activities to add an object to a form, it
70 Palm OS Tutorial

Adding a List to Display and Select a Record
7.1 Adding Record Display List to the Main Form
takes two to remove one: clear the object from the resource picker
and remove it from the form’s object array. With ResEdit open, re-
move the Exit and Edit buttons; follow these steps:

1. Open the tBTN resource.
2. Select the Exit item.
3. Remove the Exit button, choose Edit>Clear.
4. Select the Edit item.
5. Remove the Edit button, choose Edit>Clear.
6. Close the tBTN resource picker.

With the buttons gone from the resource list, remove them from the
main form; follow these steps:

1. Open the tFRM resource and, within it, the “Memo Pad
Main” resource.

2. Click the item labeled “2) *****”. (It holds the ID 1002, the Exit
button.)

3. Remove this reference from the form; choose Edit>Clear.
4. Click the item labeled “3) *****”. (It holds the ID 1004, the

Edit button.)
5. Remove this reference from the form; choose Edit>Clear.

7.1.3 Adding a List Resource
To add the list resource to the main form, follow these steps:

1. Include the list resource; click the item labeled “3) *****” and
insert a new field (CMD-K).

2. Fill in the information for the list; set ID to 1005 and Type to
tLST.

3. Close all the windows down to the type picker.
4. Save the resource file.

7.1.4 Revising Code for a List of Records
The adding or removing of a resource necessitates changes to
code—to header files and to handlers. In particular, code needs to be
revised for the removal of the Exit button and for the inclusion of
Palm OS Tutorial 71

Adding a List to Display and Select a Record
7.1 Adding Record Display List to the Main Form
list handling. This section walks you through these changes. Its sub-
sections include:
• Revising #define macros in the header file
• Revising a handler to set up a list at frmOpenEvent
• Revising a handler to free the list at frmCloseEvent
• Revising a handler for the Edit button
• Add a handler to set the CurrentRecord for the lstSelectEvent
• Removing the handler for the Exit Button

7.1.4.1 Revising #define Macros

From CodeWarrior, open the MemoPadRsc.h file. Note three
changes to the previous version:
• To identify the list resource to the application code, the pro-

grammer added a #define macro to the MemoPadRsc.h file:
mainList (1005)

• Because the Exit Button resource is gone, so is its macro
mainExitButton (1002).

• Likewise, because the Edit Button resource is gone, so is its
macro mainEditButton (1004).

7.1.4.2 Revising the Handler to Set up a List of Records

The goal is to have a list of database records appear when the main
form opens. Continuing in CodeWarrior, open the MemoPad.c file.
The programmer has modified the MainFormHandleEvent routine
to set up the list of records in the database. When the frmOpenEvent
case activates, it calls a new routine, MainFormInit, to set up the list
and draw the main form. In the MainFormInit routine, the call to
DmNumRecords shows no records in the database. No list setup is
needed, but the form is drawn.

When a database contains records, you must set up the list, so that
each database record is represented by one item. Each item consists
of the first few characters of the record. The width of the list’s dis-
play rectangle limits the number of characters displayed for an item.

The LstSetListChoices function passes items to be displayed in the
list to the system’s list processing code. The items in the list must be
organized and formatted appropriately for that function. See Figure
72 Palm OS Tutorial

Adding a List to Display and Select a Record
7.1 Adding Record Display List to the Main Form
7.2. That means an array of pointers to zero-terminated text strings,
where each string will become an item in the list.

Figure 7.2 An array of pointers to strings.

Constructing this array structure from the database records is an in-
teresting exercise in memory allocation and pointer management.
However, there is a system function that relieves some of the com-
plexity. The function SysFormPointerArrayToStrings constructs an
array of pointers given a memory block that contains the required
strings in a packed form (what the loop builds for you).

NOTE: Packed strings are strings concatenated without additional
separators. For example, the packed string “record one” “record
two” “record three” “record four” packs the four separate strings:
“record one”
“record two”
“record three”
“record four”

The strings in the block are placed one directly after the other with a
zero byte terminating each string. Given such a collection of packed
strings, SysFormPointerArrayToStrings creates and sets up an array
of pointers appropriate for LstSetListChoices. The loop within the
MainFormInit routine creates a collection of packed strings from the
database records.
Palm OS Tutorial 73

Adding a List to Display and Select a Record
7.1 Adding Record Display List to the Main Form
To determine the number of characters you can display, do the fol-
lowing:

1. Get a pointer to the list.
2. Get the width (in pixels) of the list’s rectangle from the list

data structure. This width is decreased by a couple of pixels
to ensure there is no overlap of the item text on the frame of
the list.

A new memory block, sized to one character, is allocated and its
handle saved in the global variable ChoicesHandle. The handle
must be global, because it must be freed later in another routine,
when the main form is closed. The memory block is locked in place
and its initial value set to a zero to indicate an empty string.

Here’s the process for each record in the database:
• The record is retrieved and locked in place.
• Determine the length of the record text that fits within the list

bounds. If the record consists of multiple lines, the list item
should only display the first line. To find the first linefeed
character in the string, Call StrChr. If one is found, textLen is
set to the length of text up to the linefeed. Otherwise, textLen
is set to the total length of the string.

• A call to the function FntCharsInWidth determines how
many characters of the string can fit within the bounds of the
list rectangle.

• Once the length of the string is known, the choices buffer (an
array of packed strings) is resized larger to contain a copy of
the text from the record.

• The data is copied from the database record to the current lo-
cation in the choices buffer, as indicated by choicesOffset.

• A zero terminator goes at the end of the copied text
• The choicesOffset variable gets updated to the location for

the next record text.
• The record is unlocked and released back to the system’s con-

trol.

When all the records in the database have been processed, the Sys-
FormPointerArrayToStrings function is called to create an array of
pointers from the packed strings in the choices memory block. The
function returns a handle for the newly allocated memory block
containing the array of pointers. This handle is stored in a global
74 Palm OS Tutorial

Adding a List to Display and Select a Record
7.2 Adding Multiple Records to the Database
variable, ChoicesPtrsHandle. The handle must be global, because it
will be freed when the main form is closed. The memory block is
locked in place and passed to LstSetListChoices to establish the col-
lection of strings as the items to be displayed in the list. The list is
displayed as part of the form by the call to FrmDrawForm.

7.1.4.3 Revising a Main Form Handler to Free the List at Form
Close

To free the list at frmCloseEvent, the MainFormHandleEvent rou-
tine includes processing for the frmCloseEvent case. Before the form
is closed, the memory blocks allocated for the list items must be
freed. An if statement tests ChoicesHandle to ensure that the list is
populated. If it is, both the Choices and the ChoicesPtrs memory
blocks are freed. Note that the handled variable is not set to True for
this event. In fact, the system’s form-handling code needs to process
this event as part of its own form cleanup.

7.1.4.4 Removing the Handler for the Exit and Edit Buttons

The user doesn’t explicitly exit a Palm OS application. Rather, the
user simply launches another application. When this happens, the
system automatically adds an appStopEvent to the currently execut-
ing application’s event queue. When running a Palm OS application
within the Pilot Simulator, this is simulated by choosing File>Quit
from the Pilot Simulator’s menu or by pressing Escape.

7.1.4.5 Adding a Handler to Set the CurrentRecord for the
lstSelectEvent

The MainFormHandleEvent routine now includes processing for
the lstSelectEvent case. This event indicates that the user tapped an
item in the list. Event processing gets the index of the list item and
saves it in CurrentRecord. Then, a call to FrmGotoForm switches to
the edit form.

7.2 Adding Multiple Records to the Database
Previous steps have almost completed this. Tapping the New button
on the main form calls the CreateRecord routine. It always inserts a
new record as the first record before the previous first record in the
database. The list setup in MainFormInit has the ability to handle
75 Palm OS Tutorial

Adding a List to Display and Select a Record
7.3 Building and Exercising the Application
multiple records in a database. Tapping an item that represents a
record in the list sets the CurrentRecord global variable to the index
of the selected record. When the edit form processes the frmOpen-
Event, a call to RetrieveRecord retrieves the record indicated by
CurrentRecord.

One small cleanup task remains—eliminating empty database
records. Such records cause problems for the list and incur unneces-
sary overhead in the database. This version of the EditSaveData rou-
tine automatically deletes a record from the database, in either of
two cases:
• If you create a new record and don’t enter any data in it.
• If you completely delete the text of an existing record.

After retrieving the pointer to the text data, a test determines if text
is present. If the current database record is empty, a call to DmRe-
moveRecord removes it from the database.

7.3 Building and Exercising the Application
With resources and code in place for Memo Pad 7, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

With the application running; follow these steps:

1. Display the edit form; tap the main form’s New button.
2. Enter several words into the text field.
3. Return to the main form; tap the Done button. The main form

now displays a list with a single item at the top already se-
lected.

4. Display the edit form again; tap the item in the list. Note that
the previously entered text is displayed again. Return to the
main form; tap the Done button.
76 Palm OS Tutorial

Adding a List to Display and Select a Record
7.3 Building and Exercising the Application
5. Tap the New button on the main form to cause the edit form
to be displayed.

6. Type, or write with Graffiti several words into the text field
such as “I’m going to create the best application ever for
Palm OS!”.

7. Return to the main form; tap the Done button. The main form
now displays a list with two items. The more recent item ap-
pears as the first item of the list and is selected. It is truncated
to fit within the horizontal bounds of the list rectangle. Tap-
ping either item displays its text in the edit form.

8. Tap either item and, in the edit form, delete all the text of the
record.

9. Return to the main form; tap the Done button. The Palm OS
system has removed the item from the list and from the data-
base.

10.Quit the application; choose the Pilot Simulator File>Quit
item.
Palm OS Tutorial 77

Adding a List to Display and Select a Record
7.3 Building and Exercising the Application
78 Palm OS Tutorial

Phase 8

Adding Display List Items
as Required

Overview
Phase 8 describes an alternative to packed strings for delivering dis-
play items, “display-as-required”. This phase also shows you how
to use Gremlins to exercise your application. To work this phase, fol-
low these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, and Memo-
PadEdit.rsrc do not already exist in Working Folder:Rsc from
Phase 7, then copy them from the MemoPad 07:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 08:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase 7,
copy it from MemoPad 07.

8.1 The Display-As-Required Approach
The previous example (Phase 7) displays a list of all items in the da-
tabase. To do this, the application makes a copy of the first portion
of text in each record and makes that copy a list item. As a result,
each record in the database is represented by an item in the list. But
there are problems with this approach. If the database grows to con-
tain a large number of records in the list, a collection of packed
strings, could exhaust available dynamic memory. In addition, this
approach takes extra time and storage to create list items for records
that are not displayed in the list, unless it is scrolled.

The Palm OS system offers a more efficient approach. The key is that
you don’t have to hand an array of packed strings to the list process-
ing code. Instead, the application can provide each item only when
it’s time to display that item. The system’s list processing code can
ask the application to draw each list item, when it is required.
Palm OS Tutorial 79

Adding Display List I tems as Required
8.2 Examining the Code
8.2 Examining the Code
The file MemoPad.c incorporates changes for drawing the list items
as required (No changes have been made to the resources from the
Phase 7). From CodeWarrior, open MemoPadRsc.h and take a look
at the changes from MemoPad 7.

In the MainFormInit routine, LstSetListChoices is now called with a
null pointer for the array of list choices. Next the function LstSet-
DrawFunction is called and passed the address of the application’s
MainFormListDrawItem routine. This tells the system that this ap-
plication routine has responsibility for drawing the items in the list.
LstDrawList calls this routine once for each item that is displayed in
the list. Note this includes only those items that are currently dis-
played in the list, not every item that might be shown. Scrolling the
list calls MainFormListDrawItem once for each item that scrolls into
view.

The new MainFormListDrawItem routine is passed the item num-
ber, which in this example is interpreted as the record number and
the display bounds within which the list item should be drawn.
(The third argument, itemsText, is not used in the example.) The
task is to draw the data for this item and draw it within the given
bounds.

The record with index itemNum is retrieved from the database and
locked down. The code still calculates the length of the text to be
drawn as it did in the previous example. However, now the bounds
argument is used to constrain the width. WinDrawChars is called to
draw the characters on the display starting at the top-left corner of
the bounds. Once the item is added to the list, the record is unlocked
and released back to the system.

8.3 Building and Exercising the Application
With resources and code in place, build the project and exercise it in
the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
80 Palm OS Tutorial

Adding Display List I tems as Required
8.3 Building and Exercising the Application
3. Launch the application (CMD-R). The Pilot Simulator starts
and displays the Pilot with your memo pad application in it.

With the application running, use the Gremlins feature to exercise it.
This feature exercises the app by generating a series of random
input events, including
• Pen taps on buttons
• Pen taps on other screen gadgets
• Entering text into fields.

Gremlins is an effective way to test an application for failures due to
unanticipated user input. Gremlins continues beating up the sys-
tem, until you choose the Gremlin>Stop item. Go ahead and run
Gremlins; follow these steps:

1. From the Pilot Simulator menu, choose Gremlin>New.
2. When you’re done with the Gremlins, choose Gremlin>Stop.
Palm OS Tutorial 81

Adding Display List I tems as Required
8.3 Building and Exercising the Application
82 Palm OS Tutorial

Phase 9

Adding a Page Menu to the
Edit Form

Overview
This phase adds a page menu with new page and delete page com-
mands. To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, and Memo-
PadEdit.rsrc do not already exist in Working Folder:Rsc from
Phase 8, then copy them from the MemoPad 08:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 09:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase 8,
copy it from MemoPad 08.

9.1 Adding a Page Menu
The edit form of the application currently has two menus. The Page
Menu will be the third. It will have two items: New Page and Delete
Page.

Selecting New Page will save any changes to the currently dis-
played record and clear the form for a new record. If the currently
displayed record is empty, there is no effect.

Selecting Delete Page will display a dialog box to confirm the dele-
tion of the current record. After confirmation, the current record will
be deleted and the edit form will be closed.

9.1.1 Adding Menu Items for New Page and
Delete Page

This section shows you how to:
• Add a new menu: Page
Palm OS Tutorial 83

Adding a Page Menu to the Edit Form
9.1.1 Adding Menu Items for New Page and Delete Page
• Add two items to the Page menu: New Page and Delete Page
• Include these items in the MBAR container.

To begin, open the resource file for the edit form in ResEdit:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadEdit.rsrc type picker.

The first task is to add resources for deleting a page; follow these
steps:

1. Open the MENU resource picker; double-click the MENU re-
source item.

2. With the type picker selected, create a new resource (CMD-
K).

3. Set the Title to “Page”. Do not close this window.

With a menu created, populate it with menu items; follow these
steps:

1. Create a new item for the menu; create a new item (CMD-K).
2. Set the menu item Text to “New Page” and set CMD-Key to

N.
3. Add another new item for the menu; press Enter.
4. Set the menu item Text to “Delete Page” and set CMD-Key to

D.

Now, finish up; follow these steps:

1. Set resource Info (CMD-I).
2. Set the ID to 1253 and the name to “Page Menu”.
3. Close the Info window.
4. Cancel the dialog that asks to update the menuID to 1253.
5. Choose MENU>Edit Menu & MDEF ID.
6. Set Menu ID to 300 and click OK.
7. Close the MENU “Page Menu” editor window and the

MENU resource picker.
84 Palm OS Tutorial

Adding a Page Menu to the Edit Form
9.1.1 Adding Menu Items for New Page and Delete Page
Add the new menu to the menu bar; follow these steps:

1. Open the MBAR resource picker.
2. Open the Edit Form Menu item.
3. Click the item labeled “3) *****”.
4. Insert a new field (CMD-K).
5. Set the Menu res ID to 1253.
6. Close the MBAR “Edit Form Menu” editor window and the

MBARs resource picker.
7. Save the resource file.

9.1.2 Adding a Resource for a Delete Memo
Alert
In this section, you build an alert dialog that appears when the user
deletes a memo; follow these steps:

1. With the type picker still open, create a new Talt resource
(CMD-K). This opens the alert editor.

2. Set the Alert type to 2.
3. Set # Buttons to 2.
4. Set Default Button to 1.
5. Set the Title to “Delete Memo”.
6. Set the Message to “Do you wish to permanently remove this

page?”.

Create the buttons for the alert dialog; follow these steps:

1. Click the item labeled “1) *****”.
2. Insert a new field (CMD-K).
3. Set Button Text to “OK”.
4. Click the item labeled “2) *****”.
5. Insert a new field (CMD-K).
6. Set Button Text to “Cancel”.

With the resource constructed, set resource Info; follow these steps:
Palm OS Tutorial 85

Adding a Page Menu to the Edit Form
9.1.1 Adding Menu Items for New Page and Delete Page
1. Choose Resource>Get Resource Info (CMD-I).
2. Set the ID to 1210 and the name to “Delete Alert”.

Go ahead and wrap it up.

1. Close the Info window, the Talt “Delete Alert” editor win-
dow, and the Talt resource picker.

2. Save the resource file.

9.1.3 Examining the Code

9.1.3.1 Adding #define Macros for New Resources

To identify resources to the application code, the programmer
added four #define macros to the MemoPadRsc.h file. Switch to
CodeWarrior and take a look at the file. Notice that the programmer
has entered values for the new resources:
• editDeleteAlert (1210)
• editDeleteOK (0)
• newPageCmd (300)
• deletePageCmd (301)

9.1.3.2 Adding Handlers for the New Commands

The file MemoPad.c includes changes required for the new menu
commands. Open MemoPad.c from CodeWarrior and take a look at
the changes from MemoPad 08. The programmer has added two
new cases, newPageCmd and deletePageCmd, to the EditDoMenu-
Command routine.

9.1.3.3 How the New Page Menu Command Works

To create a new memo page, the newPageCmd follows these steps:
• EditSaveData saves the current data in the edit field to the

database.
• FldDelete clears the field of any existing text in preparation

for a new record.
• CreateRecord creates a new first record in the database and

sets CurrentRecord accordingly.
86 Palm OS Tutorial

Adding a Page Menu to the Edit Form
9.2 Building and Exercising the Application
• EditRetrieveData sets up the new record with the field for an
edit-in-place operation.

9.1.3.4 How the Delete Page Menu Command Works

To delete a memo page, the deletePageCmd case follows these steps:
• To ensure it’s the user’s intention to delete a page, deleteP-

ageCmd displays an alert dialog.
• FrmAlert gets the ID of the delete alert. FrmAlert displays

the alert dialog and handles all the user interaction until the
OK or Cancel button is tapped.

• When the user taps a button, FrmAlert erases the alert dialog
and restores the display.

• FrmAlert returns a value that indicates which button was
tapped.

• If the OK button is tapped, any text in the field is deleted.
• EditSaveData saves the current field data. Because the field

is empty, this causes the record to be removed from the data-
base.

• CurrentRecord is set to indicate that there is no current data-
base record.

• FrmGotoForm replaces the edit form with the main form.

9.2 Building and Exercising the Application
With resources and code in place, build the project and exercise it in
the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

With the application running; follow these steps:

1. Tap the New button.
2. Type some text into the new page.
Palm OS Tutorial 87

Adding a Page Menu to the Edit Form
9.2 Building and Exercising the Application
3. Tap the Done button.
4. Add another page by choosing Page>New Page from the

menus.
5. Add some text into the new page.
6. Tap the Done button.
7. From the List View, select one of the records.
8. Delete the page; choose Page>Delete Page and respond to the

Delete alert dialog.
9. Quit the application; choose the Pilot Simulator File>Quit

item.
88 Palm OS Tutorial

Phase 10

Adding a Details Dialog and
the Secret Record Attribute

Overview
In Phase 10, you add a Details button and dialog plus a secret record
attribute. See Figure 10-1.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, and Memo-
PadEdit.rsrc do not already exist in Working Folder:Rsc from
Phase 9, then copy them from the MemoPad 09:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 10:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase 9,
copy it from MemoPad 09.

Figure 10.1 Phase 10 Memo Pad with Details dialog.
Palm OS Tutorial 89

Adding a Details Dialog and the Secret Record Attribute
10.1 Adding a Details Dialog to the Edit Form
10.1 Adding a Details Dialog to the Edit Form
In this section, you add a Details button to the edit form and a De-
tails dialog to the project.

10.1.1 Adding a Resource for Details Button
on Main Form
This section shows you how to create a Details button on the main
form.

To begin, from ResEdit, open the resource file for the edit form:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadEdit.rsrc type picker.

Add the button; follow these steps:

1. Within the type picker, open the tBTN resource type.
2. Create a new tBTN resource (CMD-K).
3. Set the Button ID to 1205.
4. Set the dimensions to: 60, 146, 40, and 12.
5. Set Font to 0 (zero) and the Label to “Details”.
6. Set the resource Info (CMD-I).
7. Set the ID to 1205 and the name to “Details”.
8. Close all the windows down to the type picker.

Add the Details button to the edit form; follow these steps:

1. Open the tFRM resource.
2. Open the Memo Pad Edit form (ID 1200)
3. Click the item labeled “5) ******”.
4. Insert a new field (CMD-K).
5. Insert the edit field; set ID to 1205 and Type to tBTN.
6. Close all the windows down to the type picker.
7. Save the resource file.
90 Palm OS Tutorial

Adding a Details Dialog and the Secret Record Attribute
10.1 Adding a Details Dialog to the Edit Form
10.1.2 Creating a Details Resource File
In this section, you create a new resource file to contain the re-
sources for the Details dialog. The new resource file is named Me-
moPadDetails.rsrc; follow these steps:

1. With ResEdit open, choose File>New.
2. In the new resource dialog, navigate to the Working

Folder:Rsc folder.
3. In the New File Name box, type MemoPadDetails.rsrc.
4. Click the New button.

10.1.2.1 Creating a Details Form

Create a form to contain the dialog’s various resources; follow these
steps:

1. With the type picker selected, create a new resource (CMD-
K).

2. Create a form resource for the Details form; in the Select New
Type dialog, enter tFRM and click OK.

3. Set the dimensions to 2, 86, 156, 72.
4. Set the Form ID to 1300.
5. Set the resource Info (CMD-I).
6. Set the ID to 1300 and the Name to “Memo Pad Details”.
7. Close all the windows down to the type picker. ResEdit may

generate a warning about an “Invalid Rectangle” while clos-
ing the tFRM edit window; ignore it.

10.1.2.2 Creating a Details Title

Create a title (a tTTL resource) for the Details dialog; follow these
steps:

1. From type picker, create a tTTL resource (CMD-K).
2. In the Select New Type dialog, enter tTTL and click OK.
3. Set the title to “Details”.
4. Set the resource Info (CMD-I).
5. Set the ID to 1301 and the Name to “Memo Details”.
6. Close all the windows down to the type picker.
Palm OS Tutorial 91

Adding a Details Dialog and the Secret Record Attribute
10.1 Adding a Details Dialog to the Edit Form
10.1.2.3 Creating Buttons for Details Form

This section has you create three buttons for the Details form:
• OK
• Cancel
• Delete

Like most dialogs, this one needs an OK button; follow these steps:

1. From the type picker, create a tBTN resource (CMD-K).
2. Set the Button ID to 1302.
3. Set the button’s dimensions to 10, 52, 37, 12.
4. Set the Font to 0 and the Label to “OK”.
5. Set resource Info (CMD-I).
6. Set the ID to 1302 and the Name to “OK”.

With the tBTN resource picker still open, create another button re-
source for the Cancel button; follow these steps:

1. Create a tBTN resource (CMD-K).
2. Set the Button ID to 1303.
3. Set the dimensions to 61, 52, 37, 12.
4. Set the Font to 0 and Label to “Cancel”.
5. Set resource Info; choose Resource>Get Resource Info (CMD-

I).
6. Set the ID to 1303 and the Name to “Cancel”.
7. Close the Info window, the tBTN “Cancel” editor window.

With the tBTN resource picker still open, create a button resource for
the Delete button; follow these steps:

1. Create a tBTN resource (CMD-K).
2. Set the Button ID to 1304.
3. Set the dimensions to 111, 52, 37, 12.
4. Set the Font to 0 and Label to “Delete”.
5. Set resource Info (CMD-I).
92 Palm OS Tutorial

Adding a Details Dialog and the Secret Record Attribute
10.1 Adding a Details Dialog to the Edit Form
6. Set the ID to 1304 and the Name to “Delete”.
7. Close all the windows down to the type picker.

10.1.2.4 Creating a Label for the Secret Checkbox

Create a label (tLBL) resource for the secret checkbox; follow these
steps:

1. From type picker, create a tLBL resource (CMD-K).
2. Set the Label ID to 1308
3. Set the label’s position to 13 and 33.
4. Set the Font to 1 and Text to “Private”.
5. Set resource Info (CMD-I).
6. Set the ID to 1308 and the Name to “Private”.
7. Close all the windows down to the type picker.

10.1.2.5 Creating a Help String

Create a string (tSTR) resource to contain the help text for the De-
tails dialog; follow these steps:

1. Create a tSTR resource (CMD-K).
2. Set the String to “To hide private records, tap the Applica-

tions (arrow) icon and go to the Security application”.
3. Set resource Info (CMD-I).
4. Set the ID to 1305 and the Name to “Details:Help”.
5. Close all the windows down to the type picker.

10.1.2.6 Creating a Secret Checkbox

Create a checkbox (tCBX) resource for the secret checkbox; follow
these steps:

1. Set the Check box ID to 1306.
2. Set dimensions to 55, 31, 14, 14.
3. Set Selected to False.
4. Set Group to 0.
5. Set Font to 0.
6. Leave the Label box empty.
7. Set resource Info (CMD-I).
Palm OS Tutorial 93

Adding a Details Dialog and the Secret Record Attribute
10.1 Adding a Details Dialog to the Edit Form
8. Set the ID to 1306 and the Name to “Private”.
9. Close all the windows down to the type picker.

10.1.2.7 Putting Resources into the Details Form

Put the six new resources into the form; follow these steps:

1. Open the tFRM resource picker.
2. Open the Memo Pad Details form (ID 1300).
3. Set the Help Rsc ID to 1305 to set the connection to the help

string resource.
4. Below the label “Number of Objs”, click the item labeled “1)

*****” and insert a new field (CMD-K).
5. For the title resource; set the Obj ID to 1301 and the Obj Type

to tTTL.
6. Click the item labeled “2) *****” and insert a new field (CMD-

K).
7. For the OK button; set the Obj ID to 1302 and the Obj Type to

tBTN.
8. Click the item labeled “3) *****” and insert a new field (CMD-

K).
9. For the Cancel button; set the Obj ID to 1303 and the Obj Type

to tBTN.
10.Click the item labeled “4) *****” and insert a new field (CMD-

K).
11.For the Delete button; set ID to 1304 and the Obj Type to

tBTN.
12.Click the item labeled “5) *****” and insert a new field (CMD-

K).
13.For the private checkbox; set ID to 1306 and the Obj Type to

tCBX.
14.Click the item labeled “6) *****” and insert a new field (CMD-

K).
15.For the private label; set the Obj ID to 1308 and the Obj Type

to tLBL.
16.Close all the windows down to the type picker.
17.Save the resource file.
94 Palm OS Tutorial

Adding a Details Dialog and the Secret Record Attribute
10.1 Adding a Details Dialog to the Edit Form
10.1.3 Examining the Code

10.1.3.1 Adding #define Macros for New Resources

The programmer has added #define macros for the components of
the details form to MemoPadRsc.h. In addition, the MemoPadRsc.c
file was modified to include the MemoPadDetails.rsrc file in the list
of application resource files. This phase adds event handlers for the
Details button and for the Details dialog.

10.1.3.2 Adding Event Handlers

This phase adds event handlers for the Details button and for the
Details dialog. To view the code, from CodeWarrior; open Memo-
PadRsc.h.

10.1.3.3 Adding an Event Handler for the Details Button

The EditFormHandleEvent routine has been modified to handle the
new Details button. The programmer has added a test for the edit-
DetailsButton. When this button is tapped, the details form is
started by a call to FrmPopupForm. This routine generates a frm-
LoadEvent and a frmOpenEvent. It does not generate a frmClo-
seEvent before the other two events. This means the edit form is not
erased before the details form is displayed. This has the effect of
popping up the details form over the edit form.

10.1.3.4 Adding an Event Handler for the Details Dialog

The ApplicationHandleEvent routine has been modified to include
a case for the detailsForm. FrmSetEventHandler is called to set up
the application’s new DetailsFormHandleEvent routine to receive
events, while the details form is active.

The new routine, DetailsFormHandleEvent, processes events for the
details form. It includes processing for each of the three buttons on
the form and for the frmOpenEvent.

For the frmOpenEvent, the new DetailsInit routine is called to set up
the form after which the form is displayed by a call to FrmDraw-
Form. The DetailsInit routine retrieves the setting for “private” for
the current record, then sets the corresponding value for the private
checkbox in the form.
95 Palm OS Tutorial

Adding a Details Dialog and the Secret Record Attribute
10.1 Adding a Details Dialog to the Edit Form
A call to DmRecordInfo retrieves the attribute information for the
current record. The attribute information is a collection of flags and
other data packed into a byte. Each database record has an attribute
byte that is stored and maintained by the system’s database man-
ager. One of the flags indicates that a record is private (secret). The
system uses this flag to hide private records, if that preference has
been set in the Security application.

The value of the private flag is stored in the record attribute. A call
to the new routine GetObjectPtr gets a pointer to the private check-
box’s data. The value of the checkbox control is set, based on the
value of the secret flag in the record attributes. When the form is
later displayed, the setting of the checkbox corresponds to the value
in the record.

The DetailsFormHandleEvent routine contains a switch to handle
the ctlSelectEvent for each button on the form. Tapping the OK but-
ton calls the new DetailsApply routine to apply changes made in the
details form to the current record. Then, the details form is cleared,
and the edit form displayed by a call to FrmReturnToForm. This
routine erases and deletes the details form and then activates the
edit form. FrmReturnToForm assumes that the edit form is already
loaded into memory.

The DetailsApply routine retrieves the attribute of the current
record and calls CtlGetValue to retrieve the setting of the secret
checkbox on the details form. If the checkbox value is different from
the setting in the record attribute, the user changed the checkbox on
the details form. If so, the new value for the secret flag is set in the
attribute byte. Also, the dirty flag is set in the attribute byte. This
flag indicates to the database manager that the record contains data
that has changed. Finally, the updated attribute byte is written to the
database by calling DmSetRecordInfo.

In the DetailsFormHandleEvent routine, the case for the Cancel but-
ton has a simple task. Changes made in the details dialog are ig-
nored. A call to FrmReturnToForm clears the details form and
displays the edit form.

The case for the Delete button calls the new EditDeleteCurren-
tRecord routine which deletes the record, if the user confirms the re-
quest. If the record is deleted, a call is made to FrmCloseAllForms.
This routine generates frmCloseEvents for all currently open forms
96 Palm OS Tutorial

Adding a Details Dialog and the Secret Record Attribute
10.2 Building and Exercising the Application
and sets no form to be active. In this case, that includes the details
and the edit forms. Then, a call to FrmGotoForm starts the main
form.

The EditDeleteCurrentRecord routine is actually the same code that
had previously been contained within the case for the deletePage
menu command in the EditDoMenuCommand routine. The new
routine includes the return of a Boolean value to inform the caller if
the record was deleted or not.

NOTE: The case for the deletePage command in EditDoMenu-
Command has been revised to call the EditDeleteCurrentRecord
routine.

10.2 Building and Exercising the Application
With resources and code in place for Memo Pad 10, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

With the application up and running, exercise the features added in
this phase; follow these steps:

1. Tap the New button on the main form to cause the edit form
to be displayed. Enter a few words into the text field.

2. Tap the Details button to display the details dialog.
3. Tap the checkbox labeled Private to check the box.
4. Tap the OK button to dismiss the details dialog and record

the private setting in the database record.
5. Tap the Done button on the edit form to display the main

form.
Palm OS Tutorial 97

Adding a Details Dialog and the Secret Record Attribute
10.2 Building and Exercising the Application
6. Tap the item in the list to display the edit form again with the
previously entered text.

7. Tap the Details button to display the Details dialog and note
that the checkbox is checked.

8. Tap the Delete button. Tap the Cancel button on the Delete
Memo alert to return to the Details dialog.

9. Tap the Delete button again. Tap the OK button on the Delete
Memo alert. The details and edit forms are erased and the
main form is displayed with no records in the list.

10.Quit the application; choose the Simulator File>Quit item.
98 Palm OS Tutorial

Phase 11

Adding Categories

Overview
In Phase 11, you add category assignment to the memos. The data-
base contains slots for 16 categories some of which have predefined
names. One of them is the default category “unfiled”. Each record is
assigned to one of the categories. The Main form is enhanced to
show all the records (as before) or show only those records in a sin-
gle category.

A new dialog is added to allow the user to create and edit category
names. The Edit and Details forms are enhanced to display and as-
sign the category of the current record. See Figures 11-1 through
11-3.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 10, then copy them from
the MemoPad 10:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 11:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase
10, copy it from MemoPad 10.
Palm OS Tutorial 99

Adding Categories
Overview
Figure 11.1 Phase 11 Memo Pad Main form with Category selection.

Figure 11.2 Phase 11 Memo Pad Details form with Category selection.
100 Palm OS Tutorial

Adding Categories
11.1 Adding Category UI to the Forms
Figure 11.3 System-Provided Category Edit Form.

11.1 Adding Category UI to the Forms
Categories are a fundamental element of Palm OS databases. Under
Palm OS, categories serve a similar function as files do on the desk-
top.

Record-based Palm OS applications generally offer category-based
viewing of records in the list view, if any.

Applications usually allow the user to create and edit the categories,
but it is also possible to pre-load a fixed set of categories. Applica-
tions also generally allow users to assign records to categories as
they wish, but can, alternatively, do this internally based on pro-
gram logic. This Memo Pad tutorial chooses the more basic ap-
proach.

11.1.1 Adding Category UI to the Main Form
This section shows you how to create a category trigger and popup
selection list on the main form.

To begin, from ResEdit, open the resource file for the main form:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadMain.rsrc type picker.
Palm OS Tutorial 101

Adding Categories
11.1 Adding Category UI to the Forms
11.1.1.1 Adding the Category Popup Trigger

Add the popup trigger to display the name of the current category
and when tapped bring up the list of categories; follow these steps:

1. Create a new tPUT resource (CMD-K).
2. Set the Popup Trigger ID to 1007.
3. Specify position and size as follows: 160, 0, 0, and 13.
4. Set Left anchor to False.
5. Set Font to 0 (zero) and leave the Label empty.
6. Set the resource Info (CMD-I).
7. Set the ID to 1007 and the name to “Category”.
8. Close all the windows down to the type picker.

11.1.1.2 Adding the Category List

Add the list of categories; follow these steps:

1. Create a new tLST resource (CMD-K).
2. Set the List ID to 1008.
3. Specify position and size as follows: 86, 1, and 72.
4. Set Usable to False.
5. Set Font to 0 (zero).
6. Set Visible Items to 0 (zero).
7. Set the resource Info (CMD-I).
8. Set the ID to 1008 and the name to “Category List”.
9. Close all the windows down to the type picker.

11.1.1.3 Connecting the Popup Trigger to the List

Add the popup list which links the popup trigger to the list to be
displayed; follow these steps:

1. Create a new tPUL resource (CMD-K).
2. Set the Control ID to 1007 and the List ID to 1008.
3. Set the resource Info (CMD-I).
4. Set the ID to 1006 and the name to “Categories”.
5. Close all the windows down to the type picker.
102 Palm OS Tutorial

Adding Categories
11.1 Adding Category UI to the Forms
11.1.1.4 Attaching the Category UI to the Main Form

Add the Category UI to the main form; follow these steps:

1. Open the tFRM resource.
2. Open the Memo Pad Main form (ID 1000).
3. Click the item labeled “5) ******” and insert a new field

(CMD-K).
4. For the popup list; set ID to 1006 and Type to tPUL.
5. Click the item labeled “6) ******” and insert a new field

(CMD-K).
6. For the popup trigger; set ID to 1007 and Type to tPUT.
7. Click the item labeled “7) ******” and insert a new field

(CMD-K).
8. For the list; set ID to 1008 and Type to tLST.
9. Close all the windows down to the type picker.
10.Save and close the resource file.

11.1.2 Adding Category UI to the Edit Form
This section shows you how to create a category trigger and popup
selection list on the edit form.

To begin, from ResEdit, open the resource file for the edit form:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadEdit.rsrc type picker.

11.1.2.1 Creating the Category Popup Trigger

Add the popup trigger to display the name of the current category
and when tapped bring up the list of categories; follow these steps:

1. Create a new tPUT resource (CMD-K).
2. Set the Popup Trigger ID to 1207.
3. Specify position and size as follows: 160, 0, 0, and 13.
4. Set Left anchor to False.
5. Set Font to 0 (zero) and leave the Label empty.
6. Set the resource Info (CMD-I).
7. Set the ID to 1207 and the name to “Category”.
8. Close all the windows down to the type picker.
Palm OS Tutorial 103

Adding Categories
11.1 Adding Category UI to the Forms
11.1.2.2 Creating the Category List

Add the list of categories; follow these steps:

1. Create a new tLST resource (CMD-K).
2. Set the List ID to 1208.
3. Specify position and size as follows: 86, 1, and 72.
4. Set Usable to False.
5. Set Font to 0 (zero).
6. Set Visible Items to 0 (zero).
7. Set the resource Info (CMD-I).
8. Set the ID to 1208 and the name to “Category List”.
9. Close all the windows down to the type picker.

11.1.2.3 Connect the List to the Popup Trigger

The list object is associated with the popup trigger object by using a
popup list object. Add the popup list which links the popup trigger
to the list to be displayed; follow these steps:

1. Create a new tPUL resource (CMD-K).
2. Set the Control ID to 1207 and the List ID to 1208.
3. Set the resource Info (CMD-I).
4. Set the ID to 1206 and the name to “Categories”.
5. Close all the windows down to the type picker.

11.1.2.4 Adding the Category UI to the Edit Form

Add the Category UI to the edit form; follow these steps:

1. Open the tFRM resource.
2. Open the Memo Pad Edit form (ID 1200).
3. Click the item labeled “5) ******” and insert a new field

(CMD-K).
4. For the popup list; set ID to 1206 and Type to tPUL.
5. Click the item labeled “6) ******” and insert a new field

(CMD-K).
6. For the popup trigger; set ID to 1207 and Type to tPUT.
7. Click the item labeled “7) ******” and insert a new field

(CMD-K).
104 Palm OS Tutorial

Adding Categories
11.1 Adding Category UI to the Forms
8. For the list; set ID to 1208 and Type to tLST.
9. Close all the windows down to the type picker.
10.Save and close the resource file.

11.1.3 Adding Category UI to the Details Dialog
This section shows you how to create a category trigger and popup
selection list on the details form.

To begin, from ResEdit, open the resource file for the details form:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadDetails.rsrc type picker.

11.1.3.1 Creating the Category Popup Trigger

Add the popup trigger to display the name of the current category
and when tapped bring up the list of categories; follow these steps:

1. Create a new tPUT resource (CMD-K).
2. Set the Popup Trigger ID to 1311.
3. Specify position and size as follows: 57, 18, 0, and 13.
4. Set Font to 0 (zero) and leave the Label empty.
5. Set the resource Info (CMD-I).
6. Set the ID to 1311 and the name to “Category”.
7. Close all the windows down to the type picker.

11.1.3.2 Creating the Category List

Add the list of categories; follow these steps:

1. Create a new tLST resource (CMD-K).
2. Set the List ID to 1312.
3. Specify position and size as follows:59, 19, and 72.
4. Set Usable to False.
5. Set Font to 0 (zero).
6. Set Visible Items to 0 (zero).
7. Set the resource Info (CMD-I).
8. Set the ID to 1312 and the name to “Category List”.
9. Close all the windows down to the type picker.
105 Palm OS Tutorial

Adding Categories
11.1 Adding Category UI to the Forms
11.1.3.3 Connect the List to the Popup Trigger

Add the popup list which links the popup trigger to the list to be
displayed; follow these steps:

1. Create a new tPUL resource (CMD-K).
2. Set the Control ID to 1311.
3. Set the List ID to 1312.
4. Set the resource Info (CMD-I).
5. Set the ID to 1310 and the name to “Categories”.
6. Close all the windows down to the type picker.

11.1.3.4 Creating a Label for the Popup Trigger

Add a label for the category popup trigger; follow these steps:

1. Create a new tLBL resource (CMD-K).
2. Set the Label ID to 1309.
3. Specify position as follows: 4 and 18.
4. Set Font to 1.
5. Set Text to “Category:”.
6. Set the resource Info (CMD-I).
7. Set the ID to 1309 and the name to “Category”.
8. Close all the windows down to the type picker.

11.1.3.5 Attaching the Category UI to the Details Form

Add the Category UI to the details form; follow these steps:

1. Open the tFRM resource.
2. Open the Memo Pad Details form (ID 1300).
3. Click the item labeled “5) ******” and insert a new field

(CMD-K).
4. For the label; set ID to 1309 and Type to tLBL.
5. Click the item labeled “6) ******” and insert a new field

(CMD-K).
6. For the popup list; set ID to 1310 and Type to tPUL.
7. Click the item labeled “7) ******” and insert a new field

(CMD-K).
8. For the popup trigger; set ID to 1311 and Type to tPUT.
106 Palm OS Tutorial

Adding Categories
11.1 Adding Category UI to the Forms
9. Click the item labeled “8) ******” and insert a new field
(CMD-K).

10.For the list; set ID to 1312 and Type to tLST.
11.Close all the windows down to the type picker.
12.Save and close the resource file.

11.1.4 Examining the Code

11.1.4.1 Adding #define Macros for New Resources

The programmer has added #define macros for the category UI
components added to the main, edit and details forms to Memo-
PadRsc.h.

11.1.4.2 Adding Event Handlers

The system provides a high level user interface component to allow
the user to display, select and edit the category names. This compo-
nent frees the application from most of the work associated with
managing category names. This phase adds event handling for the
category in the Main, Edit and Details forms. To view the code, from
CodeWarrior; open MemoPad.c.

11.1.4.3 Handling Categories for the Main Form

The StartApplication routine now calls MemoPadInitAppInfo when
a new database is created.

The new MemoPadInitAppInfo routine installs default category
names in the newly allocated application's information block (ap-
pInfo block). This is a standard technique for storage of category
names and the system provides functions and user interface based
on this design.

The appInfo block is an optional component of a Palm OS database.
It is a good place for category names because it keeps the category
names within the database. This means that changes to the category
names are updated on the desktop during HotSync.

After the appInfo block is setup, the StartApplication routine calls
the system routine CategoryGetName to get the current category
name and category id from the appInfo block into global variables
for the application’s use.
107 Palm OS Tutorial

Adding Categories
11.1 Adding Category UI to the Forms
The MainViewInit routine calls the system routines CategoryGet-
Name and CategorySetTriggerLabel to set the category list trigger
name to the name of CurrentCategory.

The functionality to load the list with the records to display has been
extracted into its own routine, MainViewLoadRecords, so that it
may be called from several locations.

In the MainViewLoadRecords routine a call to DmNumRecordsIn-
Category replaces the call to DMNumRecords. DmNumRecordsIn-
Category is passed to the category the user selected, and will ignore
records in other categories.

Similarly, in MainViewListDrawItem the routine DmSeekRecordIn-
Category is now used because it will skip records in other catego-
ries. This creates a potential performance problem when drawing
the list if the number of records is large. Finding the next record to
draw means calling DmSeekRecordInCategory for a specific record
index.

To find the requested record DmSeekRecordInCategory must start
from record zero and advance forward n records while skipping
records from other categories. This will slow down when the num-
ber of records is large.

If there are 1000 records and the list is showing the last 10 then it
takes approximately 10 * 1000 record accesses to find the records to
draw the list. The next phase shows an alternate implementation
that avoids this problem by the use of tables.

When the user taps on the category trigger in the main form Main-
ViewHandleEvent now calls MainViewSelectCategory. This new
routine calls the system routine CategorySelect to handle the cate-
gory selection and editing of category names.

If the user selects a different category MainViewSelectCategory up-
dates the category UI, reloads the list with records from the new cat-
egory and draws the new list contents.

11.1.4.4 Handling Categories for the Edit Form

The edit view has changes like the main view to set the category UI
and handle its use. Changes to the selected category are made to the
record and are kept in the new global variable RecordCategory.
108 Palm OS Tutorial

Adding Categories
11.2 Building and Exercising the Application
EditViewUpdateDisplay is a new routine called by EditViewHan-
dleEvent to process a frmUpdateEvent. This event is used to notify a
form that it needs to be visually updated.

In this case the routine is needed to update the edit view when the
user changes the category from the details dialog. The frmUpda-
teEvent is added to the event queue from the details dialog.

11.1.4.5 Handling Categories for the Details Form

The details dialog also includes new code to handle setting and
changing the category UI. All changes are made to NewCategory in-
stead of RecordCategory in case the Cancel button is pressed in the
details dialog.

If the category does change, DetailsApply now changes the record
and returns an update code. This code informs DetailsFormHan-
dleEvent to send an update event to the edit form so it can properly
update it's category UI.

The frmUpdateEvent is used to convey a change to a form that is
not currently active. The event must arrive at the form’s event han-
dler routine after the form has become active and can handle the
event. Consequently, the frmUpdateEvent is placed on the event
queue after the frmOpenEvent.

The order of events is important because the UI for the edit form ex-
ists only after the frmOpenEvent is handled. EditViewHandleEvent
needs to have a form to update when frmUpdateEvent arrives!

11.2 Building and Exercising the Application
With resources and code in place for Memo Pad 11, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.
Palm OS Tutorial 109

Adding Categories
11.2 Building and Exercising the Application
With the application up and running, exercise the features added in
this phase; follow these steps:

1. Tap the New button on the main form to cause the edit form
to be displayed. Enter a few words into the text field.

2. Tap the Details button to display the details dialog.
3. Tap the category name trigger to display the list of categories.
4. Tap the bottom entry in the list “Edit Categories...”.
5. Tap on the empty line under Personal and enter “Recre-

ation”.
6. Tap on the Done button to dismiss the category edit dialog.
7. Tap the category name trigger and select Recreation from the

list of categories.
8. Tap the OK button to dismiss the details dialog. Notice that

the category name on the title of the Edit form is now Recre-
ation.

9. Tap the Done button to dismiss the edit form and display the
main form. Notice that since the category selection is “All”
the new record is displayed in the list.

10.Tap the category name trigger and select Business. Notice
that the list is now empty.

11.Tap the category name trigger and select Recreation. Notice
that the record is now displayed.

12.Quit the application; choose the Simulator File>Quit item.
110 Palm OS Tutorial

Phase 12

Using a Table to Display the
Database

Overview
In Phase 12, you replace the list of records in the main form with a
table. It is more efficient to use a table when displaying records with
different categories because the record displayed is stored in the ta-
ble, and the table items are loaded in one pass over the database. Ta-
bles have additional abilities like multiple columns and different
types of items like popup lists or check boxes. This phase uses only
a simple one column table to replace the list. See Figure 12-1.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 11, then copy them from
the MemoPad 11:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 12:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase
11, copy it from MemoPad 11.
Palm OS Tutorial 111

Using a Table to Display the Database
12.1 Adding Table UI to the Main Form
Figure 12.1 Phase 12 Memo Pad Main form with table based record display.

12.1 Adding Table UI to the Main Form
Tables offer a more sophisticated mechanism for viewing lists of
data. You will generally want to use a table instead of a list when
displaying large amounts of data, or when used for viewing edit-
able or highly formatted data. Tables also give you better control
over scrolling than lists.

12.1.1 Removing the Record List UI from the
Main Form
This section shows you how to remove the record display list from
the main form.

To begin, from ResEdit, open the resource file for the main form:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadMain.rsrc type picker.

Remove the record list from the form and the resource file; follow
these steps:

1. Open the tFRM resource.
2. Open the Memo Pad Main form (ID 1000).
112 Palm OS Tutorial

Using a Table to Display the Database
12.1 Adding Table UI to the Main Form
3. Click the item labeled “4) ******”
4. Cut the item (CMD-X).
5. Close all the windows down to the type picker.
6. Open the tLST resource.
7. Click the Memo list (ID 1005)
8. Cut the item (CMD-X).
9. Close all the windows down to the type picker.

12.1.2 Adding the Table UI to the Main Form
Add the table to display the records; follow these steps:

1. Create a new tTBL resource (CMD-K).
2. Set the Table ID to 1005.
3. Specify position and size as follows: 0, 18, 160 and 121.
4. Set Editable to False.
5. Set Rows to 11
6. Click the item labeled “1) ******” and insert a new field

(CMD-K).
7. Set Column Width to 160.
8. Set the resource Info (CMD-I).
9. Set the ID to 1005 and the name to “Memo Table”.
10.Close all the windows down to the type picker.

Add the table to the main form; follow these steps:

1. Open the tFRM resource.
2. Open the Memo Pad Main form (ID 1000)
3. Click the item labeled “4) ******” and insert a new field

(CMD-K).
4. For the table; set ID to 1005 and Type to tTBL.
5. Close all the windows down to the type picker.
6. Save and close the resource file.
Palm OS Tutorial 113

Using a Table to Display the Database
12.1 Adding Table UI to the Main Form
12.1.3 Examining the Code

12.1.3.1 Adding #define Macros for New Resources

The programmer has replaced the #define macro for mainList with
one for the new table in MemoPadRsc.h.

12.1.3.2 Adding Event Handlers

This phase adds event handling for the table in the Main form. To
view the code, from CodeWarrior; open MemoPad.c.

12.1.3.3 Handling the Table in the Main Form

The MainViewLoadRecords routine has been revised to work with
the table object. The first task is to position the table over the data-
base by setting the value of TopVisibleRecord to the index of one of
the database records.

The intent is to ensure that the CurrentRecord will be visible and
that all rows displayed in the table have a record (to make the most
of the screen space). Once the top record is set, the table is loaded
with records by the new routine MainViewLoadTable.

In MainViewLoadTable, for each row of the table, a database record
in the CurrentCategory is found by a call to DmQueryNextInCate-
gory.

The record’s index is assigned to the table row’s value for column
zero. This value will be used later when the table row is drawn.
Rows without records (because there are too few records in the cur-
rent category to fill the table) are marked not usable.

Once the table is loaded with appropriate record indexes, Main-
ViewLoadRecords sets the application routine that will be used to
draw each row of the table. The system’s table handling routine will
call MainViewDrawRecord to draw each one of its visible table
items. This new routine replaces and is similar to MainViewList-
DrawItem but it works with a table instead of a list.

Lastly, in MainViewLoadRecords the first, and only, column of this
table is set usable so that it can be drawn.

In MainViewHandleEvent the case for lstSelectEvent has been re-
placed by a case for tblSelectEvent. The record index is retrieved
Palm OS Tutorial 114

Using a Table to Display the Database
12.2 Building and Exercising the Application
from the table’s value for column zero of the current row and as-
signed to CurrentRecord.

12.2 Building and Exercising the Application
With resources and code in place for Memo Pad 12, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

With the application up and running, exercise the features added in
this phase; follow these steps:

1. Tap the New button on the main form to cause the edit form
to be displayed. Enter a few words into the text field.

2. Return to the main form; tap the Done button. The main form
now displays a table with a single item.

3. Tap the New button to create another new record edit form.
Enter a few words into the text field.

4. Return to the main form; tap the Done button. The main form
now displays a table with two items.

5. Tap either item and, in the edit form, delete all the text of the
record.

6. Return to the main form; tap the Done button. The main form
again displays a table with a single item. The Palm OS system
has removed the item from the table and from the database.

7. Quit the application; choose the Simulator File>Quit item.
Palm OS Tutorial 115

Using a Table to Display the Database
12.2 Building and Exercising the Application
116 Palm OS Tutorial

Phase 13

Adding Scrolling to the Main
and Edit Forms

Overview
In Phase 13, you add user controllable scrolling of the main and edit
forms. For the main form this means repositioning and reloading
the table object as it scrolls up and down. For the edit form the field
object can be instructed to scroll. Both forms have scroll buttons
added to the UI and event handlers to handle the buttons.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 12, then copy them from
the MemoPad 12:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 13:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase
12, copy it from MemoPad 12.

Figure 13.1 Phase 13 Memo Pad Main form with scrolling arrows.
Palm OS Tutorial 117

Adding Scroll ing to the Main and Edit Forms
13.1 Adding Scrolling to the Forms
Figure 13.2 Phase 13 Memo Pad Edit form with scrolling arrows.

13.1 Adding Scrolling to the Forms
You will want to add scrolling capability to almost any display of
data whether in a list, table, or field. Scrolling can involve on-screen
arrow buttons (repeating or non-repeating), the physical scroll but-
tons, or both.

Scrolling can be done by line, record, or page. Horizontal scrolling is
not natively supported by Palm OS objects, although it can be used
with custom-drawn UI, such as the Pilot Date Book’s Week View.

13.1.1 Adding Scroll Arrows to the Main Form
This section shows you how to add repeating scroll arrows to the
main form.

To begin, from ResEdit, open the resource file for the main form:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadMain.rsrc type picker.

13.1.1.1 Creating the Scroll Arrows

Add the up and down scroll arrows; follow these steps:

1. Create a new tREP resource (CMD-K).
118 Palm OS Tutorial

Adding Scroll ing to the Main and Edit Forms
13.1 Adding Scrolling to the Forms
2. Set the Button ID to 1009.
3. Specify position and size as follows: 147, 144, 13, and 8.
4. Set Frame to False.
5. Set Font to 5, for the symbol font, and leave the Label empty.
6. Set the resource Info (CMD-I).
7. Set the ID to 1009 and the name to “Scroll Up”.
8. Close all the windows down to the type picker.
9. Create a second new tREP resource (CMD-K).
10.Set the Button ID to 1010.
11.Specify position and size as follows: 147, 152, 13, and 8.
12.Set Frame to False.
13.Set Font to 5 and leave the Label empty.
14.Set the resource Info (CMD-I).
15.Set the ID to 1010 and the name to “Scroll Down”.
16.Close all the windows down to the type picker.

13.1.1.2 Attaching the Scroll Arrows UI to the Main Form

Add the scroll arrows UI to the main form; follow these steps:

1. Open the tFRM resource.
2. Open the Memo Pad Main form (ID 1000).
3. Click the item labeled “8) ******” and insert a new field

(CMD-K).
4. For the up arrow; set ID to 1009 and Type to tREP.
5. Click the item labeled “9) ******” and insert a new field

(CMD-K).
6. For the popup trigger; set ID to 1010 and Type to tREP.
7. Close all the windows down to the type picker.
8. Save and close the resource file.

13.1.2 Adding Scroll Arrows to the Edit Form
This section shows you how to add repeating scroll arrows to the
main form.

To begin, from ResEdit, open the resource file for the main form:

1. Open the Working Folder:Rsc folder.
Palm OS Tutorial 119

Adding Scroll ing to the Main and Edit Forms
13.1 Adding Scrolling to the Forms
2. Open the MemoPadEdit.rsrc type picker.

13.1.2.1 Creating the Up and Down Scroll Arrows

Add the up and down scroll arrows; follow these steps:

1. Create a new tREP resource (CMD-K).
2. Set the Button ID to 1209.
3. Specify position and size as follows: 147, 144, 13, and 8.
4. Set Frame to False.
5. Set Font to 5 and leave the Label empty.
6. Set the resource Info (CMD-I).
7. Set the ID to 1209 and the name to “Scroll Up”.
8. Close all the windows down to the type picker.
9. Create a second new tREP resource (CMD-K).
10.Set the Button ID to 1210.
11.Specify position and size as follows: 147, 152, 13, and 8.
12.Set Frame to False.
13.Set Font to 5 and leave the Label empty.
14.Set the resource Info (CMD-I).
15.Set the ID to 1210 and the name to “Scroll Down”.
16.Close all the windows down to the type picker.

13.1.2.2 Attaching the Scroll Arrows UI to the Edit Form

Add the scroll arrows UI to the edit form; follow these steps:

1. Open the tFRM resource.
2. Open the Memo Pad Edit form (ID 1200).
3. Click the item labeled “9) ******” and insert a new field

(CMD-K).
4. For the up arrow; set ID to 1209 and Type to tREP.
5. Click the item labeled “10) ******” and insert a new field

(CMD-K).
6. For the popup trigger; set ID to 1210 and Type to tREP.
7. Close all the windows down to the type picker.
8. Save and close the resource file.
120 Palm OS Tutorial

Adding Scroll ing to the Main and Edit Forms
13.1 Adding Scrolling to the Forms
13.1.3 Examining the Code

13.1.3.1 Adding #define Macros for New Resources

The programmer has added #define macros for the scroll arrow UI
components added to the main and edit forms to MemoPadRsc.h.

13.1.3.2 Handling Scrolling Arrows for the Main Form

Two new routines, MainViewScroll and MainViewUpdateScrollers,
have been added to scroll the records in the main form’s table and to
control which scroll arrows are on or off.

To scroll up or down, MainViewScroll simply moves n records from
the TopVisibleRecord. If there is a problem scrolling, the code tries
to set TopVisibleRecord so that the table is filled (no blank rows).

MainViewUpdateScrollers turns the scroll arrows on and off. It is
called whenever the table is loaded or repositioned.

The MainViewHandleEvent routine handles the scroll buttons and
physical scroll buttons with a new case for ctlRepeatEvent. The UI
scroll buttons are repeating controls which are a variation of the nor-
mal control object. The difference is that as long as the user presses
the button a ctlRepeatEvent is queued approximately once a second.
The application processes the ctlRepeatEvent by scrolling the table
up or down by a call to MainViewScroll.

Note that the handled variable is not set to true in this case. The ctl-
RepeatEvent must be passed on to the system so that the repeating
control handler can generate the next instance of the event.

13.1.3.3 Handling Scroll Arrows for the Edit Form

For the edit form, the new routine EditViewScroll lets FldScrollField
do the work of scrolling the field object. It then calls EditViewUp-
dateScrollers to turn the edit form’s scroll arrows on or off.

Calls to EditViewUpdateScrollers have to be added where ever the
field is changed. That means the menu cut and paste commands, the
goto commands, and when the record is loaded.

These updates are necessary because every change to the text of the
field, including word wrapping, may cause a line to be added or re-
moved from the field. This should be reflected by the state of the
scroll arrows.
121 Palm OS Tutorial

Adding Scroll ing to the Main and Edit Forms
13.2 Building and Exercising the Application
The EditViewHandleEvent routine is changed, in similar fashion to
the event handler, for the main form to handle the repeating scroll
buttons and the physical scroll buttons. In addition, because this
view contains the scrolling text field, entry of new characters into
the field must be monitored as well.

New characters from Graffiti are seen by the application as keyD-
ownEvents that contain the new character. Every new character can
potentially change the height of the field. The field handler is forced
to process the character immediately by calling FrmHandleEvent.
Then EditViewUpdateScrollers is called to update the scroll arrows,
if necessary.

13.2 Building and Exercising the Application
With resources and code in place for Memo Pad 13, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

With the application up and running, exercise the features added in
this phase; follow these steps:

1. Tap the New button on the main form to cause the edit form
to be displayed. Enter a few words into the text field.

2. Tap the Done button to dismiss the edit form and display the
main form.

3. Create at least 11 more records. Hint: use the Copy, Paste and
New Page menu commands available in the edit form to do
this more easily.

4. Tap the Done button to dismiss the edit form and display the
main form. Note that there are now scroll arrows on the bot-
tom right corner of the form.

5. Tap on the scroll arrows to scroll the records displayed in the
table. Note that tapping the up and down keys has similar ef-
fect.
122 Palm OS Tutorial

Adding Scroll ing to the Main and Edit Forms
13.2 Building and Exercising the Application
6. Tap on one of the records to display the edit view.
7. Enter at least 20 lines of text into the text field. Hint: use the

Copy and Paste menu commands.
8. When there are more lines than can be displayed the scroll ar-

rows will be displayed in the bottom right corner of the form.
9. Tap on the scroll arrows to scroll the text field. Note that tap-

ping the up and down keys moves the text field a full screen
at a time.

10.Quit the application; choose the Simulator File>Quit item.
Palm OS Tutorial 123

Adding Scroll ing to the Main and Edit Forms
13.2 Building and Exercising the Application
124 Palm OS Tutorial

Phase 14

Adding System Find Support

Overview
In Phase 14, you will add the system find capability. The system pro-
vides high level user interface components to allow the user to enter
text to search for and display the results of the search. These compo-
nents reduce the work that the application has to perform for the
search function. See Figures 14-1 and 14-2.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 13, then copy them from
the MemoPad 13:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 14:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase
10, copy it from MemoPad 13.

Figure 14.1 Phase 14 System Find dialog.
Palm OS Tutorial 125

Adding System Find Support
14.1 Adding System Find
Figure 14.2 Phase 14 System Find dialog.

14.1 Adding System Find
Any application that contains text data should support the system-
wide find functionality of Palm OS. Participating in this feature in-
volves three main responsibilities: responding to application launch
codes, searching your own database, and navigating to display spe-
cific data. The system provides all of the user interface and logic for
the find feature.

14.1.1 Adding a Find Header String
This section shows you how to add a string to the main form.

To begin, from ResEdit, open the resource file for the main form:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadMain.rsrc type picker.

Add a string containing the header for the records that will be dis-
played in the find results dialog; follow these steps:

1. Create a new tSTR resource (CMD-K).
2. Set The String to “Memos”.
126 Palm OS Tutorial

Adding System Find Support
14.1 Adding System Find
3. Set the resource Info (CMD-I).
4. Set the ID to 100 and the name to “Find Header Title”.
5. Close all the windows down to the type picker.
6. Save and close the resource file.

14.1.2 Examining the Code

14.1.2.1 Adding #define Macros for New Resources

The programmer has added #define macros for the Find header
string to MemoPadRsc.h.

14.1.2.2 Adding Event Handlers

This phase adds event handling and other processing for the system
Find functions. To view the code, from CodeWarrior; open Memo-
Pad.c.

The system issues two commands to each application to perform a
find. The first command is a search command. Upon a search com-
mand the application needs to search its database for records that
contain the desired text string.

The second command is the goto command. A goto command in-
structs the application to display the record found in the applica-
tion’s record edit view. There is a standard mechanism for the
application to receive these and other commands from the system.

14.1.2.3 Handling the Search Command

The search and goto commands arrive at the application as calls to
PilotMain, not as events! In essence, the application is launched by
the system to process these and other special commands. These sys-
tem launch commands and associated information are provided as
arguments to PilotMain.

PilotMain has been revised to check the cmd argument for a system
launch command. Normally, the application is launched with the
normal Launch command after another application has stopped.

For other system launch commands the application may or may not
already be running when PilotMain is called. The application code
that handles special commands must not use global variables set up
Palm OS Tutorial 127

Adding System Find Support
14.1 Adding System Find
by the application in StartApplication or elsewhere, because the
StartApplication routine has not been executed.

To process the search command the application must search through
all its database records and report any matches of the search string.
The search should not include records that are currently hidden.

The search results could include many records and be difficult to
display and read if a large list of matches were displayed. Instead,
the system incorporates the ability to halt a search when the search
results display is full, as well as resume the search at the same point
later. All of this is handled by cooperation between the system and
the application.

A Search routine has been added to search for a text string in the ap-
plication’s database. Since this routine can’t rely on the application
to be already running it must first locate and open its own database.

It then calls FindDrawHeader to provide a string to the system Find
handler, that will be displayed as a heading for records from this ap-
plication in the Find Results dialog.

Starting with the record index provided in the search launch com-
mand each record is obtained from the database and searched for
the desired string.

Each part or field of the database record that needs searching should
be passed to FindStrInStr. In this application there is only a single
field containing the text of the record. If a match is found FindSave-
Match is called to inform the system Find handler.

It is possible for an application to pass to FindSaveMatch values in
fieldNum or appCustom to indicate which part of the record con-
tained the match. This information will be passed back to the appli-
cation as arguments of the goto command. This can be useful for the
application to position the display to a specific location within the
record when it receives the goto command.

MainViewDrawRecordInBounds is a new routine that has been ex-
tracted from the MainViewDrawRecord routine. The drawing
bounds are those of the Find Results dialog.

Each application should have its own version of DrawRecordIn-
Bounds, that displays the information from the record that is most
useful to the user to identify the record in the Find Results dialog.
128 Palm OS Tutorial

Adding System Find Support
14.1 Adding System Find
Note how each of Palm OS device’s built in applications displays
search results in this dialog.

The Search routine loops to scan each of the database records until
there are no more records or until FindSaveMatch indicates that the
Find Results dialog is full. Before it returns the Search routine must
close its database.

14.1.2.4 Handling the Goto Command

A GoToItem routine has been added to handle the user tapping the
Go to button in the Find Results dialog. The record specified in the
goto command parameters must be displayed.

Note that in PilotMain when the goto command arrives a check is
made to discover if the application is already running. The user
could have initiated the search from this or any other application.

If this application is not already running, the StartApplication rou-
tine is called to get the application in a running state before calling
GoToItem and starting the event loop.

In the GoToItem routine if the application is already running all the
open forms are closed before proceeding. The edit form is started by
creating and queuing a frmLoadEvent.

Then a frmGotoEvent is queued to display the matching record in
the edit form. This event is loaded with the index of the record, the
location where the text was found and information about the search
string, all from the arguments of the goto command.

Other applications will load their own version of a record view form
and they may pass more information to display the match (like the
fieldNum or appCustom values).

For each form which can receive frmGotoEvent a handler must be
added. A new case for frmGotoEvent is added to EditViewHan-
dleEvent. The matching record is obtained from the database and
the field is scrolled to ensure that the matching text is visible. The
text is highlighted by setting the field selection.

In addition to the search and goto commands, a third command,
SaveData is now handled by PilotMain to save the application data.
This is important for certain cases where the database needs to be
saved before it can be updated.
Palm OS Tutorial 129

Adding System Find Support
14.2 Building and Exercising the Application
14.2 Building and Exercising the Application
With resources and code in place for Memo Pad 14, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

With the application up and running, exercise the features added in
this phase; follow these steps:

1. Tap the New button on the main form to cause the edit form
to be displayed. Enter a few words into the text field includ-
ing the word “Pilot”.

2. Tap the Done button to dismiss the edit form and display the
main form.

3. Create several more records, including some that include the
word “Pilot”.

4. Tap the Find icon on the Simulator’s display.
5. Enter the word “Pilot” and tap the OK button. The Find Re-

sults dialog is displayed with a list that includes several
memos.

6. Select one and tap the Go to button. The Edit form is dis-
played containing the record and find string is selected.

7. Quit the application; choose the Emulator File>Quit item.
130 Palm OS Tutorial

Phase 15

Saving Program Settings
Between Executions

Overview
In Phase 15, you add the ability for the application to save and re-
store program settings. The MemoPad will save the current record
and category displayed and return the user to them when the appli-
cation is launched the next time. This information is saved in the
system’s preferences database.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 14, then copy them from
the MemoPad 14:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 15:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase
14, copy it from MemoPad 14.

No new resources are necessary for this phase.

15.1 Saving the Program’s State
Many applications will find it desirable to save varying amounts of
state information from one execution to the next. This can range
from saving current pages or viewing options to saving bit images
of game animations.

Saving and reloading this information will significantly enhance the
usability of your user interface and contribute to the integrated,
seamless appearance of the device as a whole.
Palm OS Tutorial 131

Saving Program Settings Between Executions
15.1 Saving the Program’s State
15.1.1 Examining the Code

15.1.1.1 Adding Event Handlers

The system includes a Preferences database that is used by all appli-
cations to store their options and preferences settings that are not
dependent on the actual data records, such as what is to be dis-
played at startup.

To view the code, from CodeWarrior; open MemoPad.c.

The information that we wish to save is currently stored in some of
the application’s global variables.

First, physically separate the global variables we wish to save from
the others in the file. This clarifies which variables are being saved
and which aren't being saved and makes it easier to know where to
put a new variable when you later add variables. A new structure,
MemoPadPreferenceType, is defined to contain only the saved vari-
ables.

The StopApplication routine is enhanced to save application vari-
ables to the Preferences database just before the application stops.
All applications store their persistent settings as a single, applica-
tion specific resource within that database.

There is system support for this which takes a block of memory and
writes it to the database. Therefore, we copy all the variables we
want preserved to the MemoPadPreferencesType structure and then
pass the structure to PrefSetAppPreferences to save it in the data-
base.

StartApplication needs to read the saved variables when the appli-
cation starts. PrefGetAppPreferences is called to read them from the
Preferences database into the MemoPadPreferenceType structure. A
verification of the saved record number is done to ensure that it is
still available in the database. If not, the default values for the saved
variables are used.
132 Palm OS Tutorial

Saving Program Settings Between Executions
15.2 Building and Exercising the Application
15.2 Building and Exercising the Application
With resources and code in place for Memo Pad 15, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

Testing the saving and restoring of application preferences is a little
tricky because of when the settings are written to the Preferences
database.

The application’s database can be saved by the Pilot Simulator
menu command Save Card. This is not sufficient for Preferences be-
cause the settings are written out by the application’s StopApplica-
tion routine only when the Emulator itself closes.

To save data after the StopApplication routine use the Simulator's
File:Save Before Quitting menu command. This command writes
the memory card image after PilotMain returns and before the Sim-
ulator closes.

With the application up and running, exercise the features added in
this phase; follow these steps:

1. Tap the New button on the main form to cause the edit form
to be displayed. Enter a few words into the text field.

2. Tap the category name trigger to display the list of categories.
3. Tap the “Business” entry to set the category for the entry.
4. Tap the Done button to dismiss the edit form and display the

main form.
5. Tap the category name trigger and select Business.
6. Tap the Simulator’s File:Save Before Quitting menu com-

mand.
7. Quit the Simulator.
8. Restart the Simulator for MemoPad. Notice that the category

setting in the main form has been restored to Business.
Palm OS Tutorial 133

Saving Program Settings Between Executions
15.2 Building and Exercising the Application
9. Create several more records, at least 12. Scroll to the bottom
of the list.

10.Tap the Simulator’s File:Save Before Quitting menu com-
mand.

11.Quit the Simulator.
12.Restart the Simulator for MemoPad. Notice that the scroll

position of the main form has been restored to the bottom of
the list.

13.Quit the application; choose the Simulator File>Quit item.
134 Palm OS Tutorial

Phase 16

Flashy Features

Overview
In Phase 16, you add a few extra features to spice up the application.
The edit view title is improved to include “n of n records” to show
the position of the current record in the list of records. The edit view
also includes buttons to change the display font and now automati-
cally sets the Graffiti shift state when a new memo is created. See
Figure 16-1.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 15, then copy them from
the MemoPad 15:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 16:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase
15, copy it from MemoPad 15.

Figure 16.1 Phase 16 Memo Pad Edit form with improved title and font
selection.
Palm OS Tutorial 135

Flashy Features
16.1 Adding UI Elements to the Edit Form
16.1 Adding UI Elements to the Edit Form
In this section you will use ResEdit to create all of the UI resources
for the improved title and font selection buttons of the edit form.

16.1.1 Adding Resources for the Edit View Title
This section shows you how to create a dynamic title for the edit
form.

To begin, from ResEdit, open the resource file for the main form:

1. Open the Working Folder:Rsc folder.
2. Open the resource file for the edit form.

Add the string that will serve as a template to be filled in for the edit
form title; follow these steps:

1. Create a new tSTR resource (CMD-K).
2. Set The String to “Memo # of #” and leave Data empty.
3. Set the resource Info (CMD-I).
4. Set the ID to 1000 and the name to “Edit View Title Template

String”.
5. Close all the windows down to the type picker.
6. Save and close the resource file.

NOTE: It is common for a developer to consolidate all the string re-
sources (tSTR), that are used in an application in a single file, to
make them easier to find.

16.1.2 Modifying the Text Field Resource
This section shows you how to resize the edit form’s field resource,
to accommodate the larger font size that will be introduced later in
this phase.

To begin, from ResEdit, open the resource file for the edit form:

1. Open the Working Folder:Rsc folder.
136 Palm OS Tutorial

Flashy Features
16.1 Adding UI Elements to the Edit Form
2. Open the MemoPadEdit.rsrc type picker.

16.1.2.1 Shrinking the Field Resource

To reduce the vertical size of the field resource such that it will ac-
commodate the large font, follow these steps:

1. Open the tFLD resource picker.
2. Open the Edit Field edit window.
3. Change the Height field from 130 to 127.
4. Close all windows down to the type picker.
5. Save and close the resource file.

16.1.3 Adding Resources for the Edit View
Font Selection
This section shows you how to create font controls on the edit form.

To begin, from ResEdit, open the resource file for the edit form:

1. Open the Working Folder:Rsc folder.
2. Open the MemoPadEdit.rsrc type picker.

16.1.3.1 Creating the Font Push Buttons

Add two push buttons to select the font; follow these steps:

1. Create a new tPBN resource (CMD-K).
2. Set the Push Button ID to 1211.
3. Specify position and size as follows: 95, 147, 14, and 12.
4. Set Group to 1.
5. Set Font to 0 (zero) and the Label to “A”.
6. Set the resource Info (CMD-I).
7. Set the ID to 1211 and the name to “Small Font”.
8. Close all the windows down to the type picker.
9. Create a new tPBN resource (CMD-K).
10.Set the Push Button ID to 1212.
11.Specify position and size as follows: 110, 147, 14, and 12.
12.Set Group to 1.
13.Set Font to 2 and the Label to “A”.
Palm OS Tutorial 137

Flashy Features
16.1 Adding UI Elements to the Edit Form
14.Set the resource Info (CMD-I).
15.Set the ID to 1212 and the name to “Large Font”.
16.Close all the windows down to the type picker.

16.1.3.2 Adding the Font Push Buttons to the Edit Form

Add the font selection UI to the edit form; follow these steps:

1. Open the tFRM resource.
2. Open the Memo Pad Edit form (ID 1200)
3. Click the item labeled “11) ******” and insert a new field

(CMD-K).
4. For the small-font push button; set ID to 1211 and Type to

tPBN.
5. Click the item labeled “6) ******” and insert a new field

(CMD-K).
6. For the large-font push button; set ID to 1212 and Type to

tPBN.
7. Close all the windows down to the type picker.
8. Save and close the resource file.

16.1.4 Examining the Code

16.1.4.1 Adding #define Macros for New Resources

The programmer has added #define macros for the large and small
font buttons and for the title template string to MemoPadRsc.h.

16.1.4.2 Adding Event Handlers

To view the code, from CodeWarrior; open MemoPad.c.

16.1.4.3 Handling the Dynamic Title for the Edit Form

The EditViewSetTitle routine is added to format and set the title for
the edit form. This will set the title to indicate the position of the
record within the current category (which may be All). We use a
template string to do this.

The template contains two ‘#’ chars. The first one is replaced by the
record's position and the second by the number of records in the cat-
138 Palm OS Tutorial

Flashy Features
16.1 Adding UI Elements to the Edit Form
egory. Using a template string helps when the application needs to
be localized for another language.

Someone can now use ResEdit to change the text of the title com-
pletely for a new language but still have the numbers show up posi-
tioned correctly, without changing any code! Even more thorough
would be to use two different replacement chars, e.g. ‘#’ and ‘%’ to
allow reordering of the arguments within the template string.

Memory space for the new title is allocated on the dynamic heap
and must be freed when the form is closed (frmCloseEvent in Edit-
ViewHandleEvent). This is preferable to leaving extra padding in
the template title string because that complicates localization.

EditViewSetTitle now determines the numbers for the edit view ti-
tle. The position is available with DmPositionInCategory. The count
is determined by calling DmNumRecordsInCategory. The direct
and simple approach is to get the count whenever the edit view is
entered. However, if there are a large number of records in many
categories this could be lengthy.

A better alternative is to call DmNumRecordsInCategory whenever
the category selection changes, and then modify the number as we
add and remove records. This second approach is used in the appli-
cation.

We keep count in the new global variable MemosInCategory. A new
define value MemosInCategoryUnknown is used to indicate that
the count in MemosInCategory is not valid and should be obtained
by EditViewSetTitle when the title needs to be displayed. When
MemosInCategory contains a valid count it is modified directly as
records are added and removed.

16.1.4.4 Handling the Font Selection for the Edit Form

To handle the font buttons a new test is added to EditViewHan-
dleEvent for a ctlSelectEvent from either of the font push buttons.

The new routine EditViewChangeFont is called with the control ID
of the push button. EditViewChangeFont sets the field's font by call-
ing FldSetFont.

Changing the font can cause the number of lines in the field to
change because of the different sizes of the fonts. So EditViewUp-
dateScrollers is called to update the scrollers for the field.
Palm OS Tutorial 139

Flashy Features
16.2 Building and Exercising the Application
EditViewChangeFont remembers the font in the new global variable
EditViewFont. This allows the application to remember the font set-
ting after the edit view is closed and restore it the next time the edit
view is displayed.

EditViewHandleEvent has been changed for frmOpenEvent and
frmGotoEvent to set the state of the font selection push buttons to
match the value in EditViewFont. The actual font for the field is set
in EditViewRetrieveData after the text field is loaded with the
record data.

16.1.4.5 Handling the Automatic Set of the Graffiti Shift State
When a New Memo is Created

Setting the Graffiti shift state is sometimes convenient for the user.
We set it to be in temporary up shift state each time a new memo is
created by adding a call to GrfSetState in the CreateRecord routine.

16.2 Building and Exercising the Application
With resources and code in place for Memo Pad 16, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

With the application up and running, exercise the features added in
this phase; follow these steps:

1. Tap the New button on the main form to cause the edit form
to be displayed.
Note that the title of the view now includes the number and
count of memos. Also note, that the Graffiti shift indicator
shows Graffiti to be in temporary up shift state. Enter a few
words into the text field.

2. Tap the font selection push button for the larger font. Note
the change in display of the field’s text.
140 Palm OS Tutorial

Flashy Features
16.2 Building and Exercising the Application
3. Tap the Done button to dismiss the edit form and display the
main form.

4. Tap a record in the list to display it in the edit form. Notice
that the field is displayed with the larger font and that the
corresponding font selection button is selected.

5. Quit the application; choose the Emulator File>Quit item.
Palm OS Tutorial 141

Flashy Features
16.2 Building and Exercising the Application
142 Palm OS Tutorial

Phase 17

Working With the Desktop

Overview
In Phase 17, you extend the application to work well with the desk-
top computer. Most of the work of synchronization is handled auto-
matically by the system and requires nothing extra of an
application.

However, an application’s database can be modified by the synchro-
nization process, and the app must be able to handle such changes
the next time it is launched. In addition, applications should sup-
port the deletion of records on the desktop once they are removed
from the Palm OS device. There are also application launch com-
mands to support when working with the desktop.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 16, then copy them from
the MemoPad 16:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 17:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase
16, copy it from MemoPad 16.

No new resources are necessary for this phase.

17.1 Integrating with HotSync
All of the changes required for this phase are in the code; no new re-
sources. Look at the code changes carefully. The tight integration of
the desktop HotSync Manager and device-resident Palm OS appli-
cations is a key feature of Palm OS and should be taken advantage
of as much as possible.
Palm OS Tutorial 143

Working With the Desktop
Examining the Code 17.1.1
Note that the application itself is completely isolated from the syn-
chronization logic and the communications details. The extent of the
application’s interaction with the desktop is the handling of applica-
tion launch codes (syncNotify and initDatabase), and the mainte-
nance of the record attribute flags in the standard database records;
if you handle both of these areas, the system and the desktop soft-
ware (your conduit) handle the rest.

Examining the Code 17.1.1

17.1.1 Adding Event Handlers
To view the code, from CodeWarrior; open MemoPad.c.

17.1.1.1 Handling Delete for the Desktop

As an alternative to simply deleting records locally, Palm OS appli-
cations ensure that records deleted from the Palm OS device will be
deleted on the desktop as well. This is an important part of synchro-
nization with the desktop.

Internally (within the Palm OS databases), this is accomplished by
deleting only the body of a record and leaving a stub in the database
index. This stub contains the record's unique ID and some attribute
flags. Desktop conduits use this information to delete, and possibly
archive, the record from the desktop files. The stub will finally be re-
moved as part of the conduit's cleanup procedure.

EditViewSaveData has been revised to use this new method by re-
placing DmRemoveRecord with DmDeleteRecord. This routine sets
a deleted flag in the record attributes and frees the rest of the
record’s data.

These ‘deleted’ stub records will be ignored by routines such as Dm-
SeekRecordInCategory and DmQueryRecord.

As an alternative to simply deleting records, Palm OS applications
typically allow records to be deleted and archived on the desktop
for later reference. This reduces the data on the Palm OS device, to
those records currently used, while removed records are still acces-
sible on the desktop when they’re occasionally needed. (Ideally, ap-
plications should provide both functions and let the user determine
144 Palm OS Tutorial

Working With the Desktop
Examining the Code 17.1.1
whether or not to archive a deleted record, as Palm OS device’s built
in Memo application does.) DmArchiveRecord would be used to set
an archive flag in the record to achieve this purpose.

17.1.1.2 Handling Synchronization Flags

During a synchronization all records that have been marked dirty
(including new records) are retrieved and stored on the desktop. At
the end of the synchronization these records are reset to not dirty.
The dirty flag allows the synchronization process to quickly skip the
unchanged records.

In some extreme cases the synchronization process must perform a
slow sync process. In a slow sync, the desktop retrieves every
record and compares it with its own records to determine changes
since the last sync. Careful management of the dirty flags avoids
this slower sync. Note the setting of the dirty flag in CreateRecord,
DetailsApply, EditViewSelectCategory and EditViewSaveData.

Another flag to set when working with the desktop is the dmHdrAt-
trBackup flag in the database's header. StartApplication has been re-
vised to set this flag when the database is created. This flag causes
the database to be backed up to the desktop if there is no conduit
specifically assigned to synchronize the database. This can be useful
for Palm OS device data for which a developer does not want to cre-
ate a conduit, like the high scores to a game. The Palm OS Desktop
software can be used to restore the database back to the Palm OS de-
vice if necessary.

17.1.1.3 Handling Synchronization Related Launch Codes and
More

During the synchronization process, when all records have been
transferred between a Palm OS database and the desktop conduit,
the application that created (owns) the database is sent a syncNotify
launch command. This is a time for the application to perform any
work needed to handle changes to its database. One common action
is to resort the database as is done by the Palm OS device’s built in
Address Book. Another example, is that the Palm OS device’s Date-
book reschedules the pending alarms. This MemoPad application
has no such work to perform.
Palm OS Tutorial 145

Working With the Desktop
17.2 Building and Exercising the Application
The initDatabase launch command can come to an application to
cause it to initialize its own database. This is especially useful for
getting the database’s appInfo block created with proper default
data.

Other side effects of synchronization must be also be handled. In
StartApplication the application’s preferences must be checked
more thoroughly to ensure that the saved values for current cate-
gory, current record and scroll location are all still valid. A synchro-
nization may have occurred and changed the database since the
preferences were saved.

StartApplication also now handles the case where the entire data-
base has been restored from the desktop without a valid appInfo
block.

17.2 Building and Exercising the Application
With resources and code in place for Memo Pad 17, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.

Verifying the features added in this phase is beyond the scope of
this tutorial as it requires advanced setup and testing facilities.
Some aspects of this phase, in particular the deleting of records, can
be viewed with the Simulator’s console window which is discussed
in the next phase
146 Palm OS Tutorial

Phase 18

Adding Shell Commands

Overview
In Phase 18, you add application specific “shell” commands and
make them available in the Simulator’s Console window. Such com-
mands are generally used for testing and debugging purposes such
as to inspect and change the program's state interactively during
run time. See Figure 18-1.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 17, then copy them from
the MemoPad 17:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, and MemoPadRsc.h from
the MemoPad 18:Src folder to Working Folder:Src.

3. If MemoPad.µ does not exist in Working Folder from Phase
17, copy it from MemoPad 17.
Palm OS Tutorial 147

Adding Shell Commands
18.1 Adding Console Commands
Figure 18.1 Phase 18 Memo Pad Console with New Shell Command.

No new resources are necessary for this phase.

18.1 Adding Console Commands
A custom console command can be an invaluable tool for testing or
debugging your application in an efficient way. Common testing
uses include populating a database with data or simulating the ef-
fects of a HotSync.

Debugging uses include customized displays of applications data or
customized editing of data “behind the scenes.” Spending time cre-
ating custom console commands will usually save many times as
much debugging and testing time.

18.1.1 The Simulator Console Window
The Pilot Simulator has a Console window in which many com-
mands are available. The behavior of the console window is similar
to the MPW console or the MSDOS command line. These Simulator
commands, called shell commands, have many uses.
148 Palm OS Tutorial

Adding Shell Commands
18.1 Adding Console Commands
Generally, they are used to provide a view into the Palm OS system
that exists within the Simulator application. For example, memory
cards and their databases can be inspected or changed; system Pref-
erence settings like sound can be changed, and some commands for
the Simulator are provided like saving a log of the console window.

To use the commands, follow these steps:

1. Run the Pilot Simulator and select the Window>Console...
menu item.

2. To see which databases are opened, type ‘opened’ and com-
mand-return (or press the enter key). Command-return
needs to be typed whenever you want a line executed. The
return key by itself simply inserts a new line.
The opened command lists the databases along with their ac-
cess pointer under the heading accessP. The access pointer is
how Palm OS refers to the database.

3. List the contents of the MemoPad database (assuming you
have created some records) by typing “listrecords” followed
by the MemoPad database's access pointer. All the memos
should be displayed

While the Simulator’s built in shell commands allow you to see the
contents of databases, the process isn't an ideal one. It would be nice
if the listrecords command would know about the MemoPad's data-
base and be smart enough to find it instead of requiring an access
pointer.

In addition, the presentation of the data isn't ideal. One really can't
tell if the record is dirty or hidden. Also, notice that any multi-line
records are listed only on one row.

The listrecords command is even less useful when the records are
composed of other, non ASCII data. What is needed is a command
tailored to how our application formats a record.

18.1.2 Creating a New Console Command
The Pilot Simulator has a hook to which unknown shell commands
are passed. In the Simulator section of the MemoPad project file, is
an entry for ShellCmdApp.cp. Open it up and look at it. It contains a
dummy handler for unknown commands, ShlDoAppCmd, and a
simple example of a shell command, DoAppCommand.
Palm OS Tutorial 149

Adding Shell Commands
18.1 Adding Console Commands
You will replace this file with one created specifically for the Memo-
Pad application. You will have your own ShlDoAppCmd routine
plus new routines to process MemoPad shell commands.

You will want to build our application with a local file (in the Me-
moPad folder), to handle your application-specific shell commands,
rather than the generic ShellCmdApp.cp file.

To begin, from the MemoPad project file open the ShellCmdApp.cp:

1. Expand the Simulator section in the project files window by
tapping the triangle in the left column. Tap the section name
“Simulator” to select it.

2. Open the ShellCmdApp.cp file and select and copy all of the
text in the file.

3. Create a new window by selecting the File:New menu item.
Paste in the text from the clipboard.

4. Save the new file by selecting File:Save As into the Working
Folder:Src folder with the file name ShellCmdMemoPad.cp.

5. Add the new file to the MemoPad project by selecting the
Project:Add Window menu item. The entry for the new
project file will be placed in the active section of the project
window, Simulator. You can move the entry to another sec-
tion by clicking and dragging on the file name.

6. Remove the entry for ShellCmdApp.cp from the project file
by selecting the file in the project window and then selecting
the Project:Remove Files menu item. Now, the project is
using the local file for shell commands for the MemoPad ap-
plication.

At this point you can add whatever shell commands you want to
ShellCmdMemoPad.cp. To get the completed version of this file
copy ShellCmdMemoPad.cp from the MemoPad 18:Src folder to
Working Folder:Src. To view the code, from CodeWarrior; open
ShellCmdMemoPad.cp.

A command to display the Memo Pad's records is what you want
most. Working from the ShlDoAppCmd, you create the routine
DoMemoPadGetAll. It takes one optional console window argu-
ment, the access pointer to the memo pad database.

Next, you create a routine called PrintMemoPadRecord that prints a
single memo pad record given the database and an index number. It
prints the unique id, the various attributes, and the memo itself. We
150 Palm OS Tutorial

Adding Shell Commands
18.2 Building and Exercising the Application
have DoMemoPadGetAll loop through all the records calling Print-
MemoPadRecord for each one.

Lastly, finding the memo pad's access pointer is tedious, so create
the routine FindOpenedMemoPadDatabase. It searches through
every database for one created by the memo pad application and of
a type that is used by the database. The type match is important so
that the application itself, a database of type “appl”, isn't matched
instead of the data database. DoMemoPadGetAll calls FindOpened-
MemoPadDatabase when the user doesn't specify a database access
pointer to use. Finish DoMemoPadGetAll by filling in the help for
the command.

Now that DoMemoPadGetAll is finished, add it to the list in Shl-
DoAppCmd.

The list has three columns:
• The long name of the command.
• The abbreviated name for the same command.
• The routine to run when the command is entered in the con-

sole window.

As more custom commands for the MemoPad are created they will
be added to this list and made available to the Console window.

When the memo pad is run with data, type “MemoPadGetAll”, or
“mpga”, to see the contents of the database displayed in an easy to
read presentation!

18.2 Building and Exercising the Application
With resources and code in place for Memo Pad 18, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.
Palm OS Tutorial 151

Adding Shell Commands
18.2 Building and Exercising the Application
With the application up and running, exercise the features added in
this phase; follow these steps:

1. Tap the New button on the main form to cause the edit form
to be displayed. Enter a few words into the text field.

2. Create a few more records and make at least one of the pri-
vate via the Details dialog.

3. Delete one of the records by using the Page>Delete Page
menu command from the MemoPad’s edit view.

4. Select the Simulator’s Window:Console... menu item to open
the Console window.

5. Enter the new shell command “MemoPadGetAll”, or “mpga”
and press the enter key or command-return. A formatted list
of the records in the database will be displayed. Note that the
attributes indicate the private and deleted (archived) records.

6. Quit the application; choose the Simulator File>Quit item.
152 Palm OS Tutorial

Phase 19

Localizing For Other
Countries

Overview
In Phase 19, you revise the process of building the application to
allow the application to be localized for countries that use the
French or German language. All of the displayed text is contained in
the application’s resource files. This text is translated into French
and German and stored in language specific copies of the resource
files. The build of the application is directed to choose a set of lan-
guages.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 18, then copy them from
the MemoPad 18:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, MemoPadRsc.h, and
ShellCmdMemoPad.cp from the MemoPad 19:Src folder to
Working Folder:Src.

3. Copy the folder Rsc:French from the MemoPad 19:Rsc folder
to Working Folder:Rsc.

4. Copy AppBuildRules.h from the MemoPad 19 folder to
Working Folder.

5. If MemoPad.µ does not exist in Working Folder from Phase
18, copy it from MemoPad 18.
Palm OS Tutorial 153

Localizing For Other Countries
19.1 Localizing Your Application
Figure 19.1 Phase 19 Memo Pad with French Localization.

No resource changes are necessary for this phase.

19.1 Localizing Your Application
The Palm OS SDK build environment contains the facility for build-
ing and maintaining your application for several languages simulta-
neously.

At this point in your development, you will profit greatly from the
clean separation of the localizable and the non-localizable portions
of your program that is afforded by the use of separate resource
files. See the Chapter 4, “Designing, Testing, and Localization,” of
the “Palm OS Cookbook” for more information.

Careful observation of the system-wide preference settings for
dates, times, numbers, etc. will also help give your application a
polished look when it is used in other languages.

19.1.1 Localization Techniques
Palm OS device is an international device. Designed to operate in
many countries around the world, it is available in different lan-
guages and it can be customized for local conventions. Making
Palm OS applications operate internationally with the Palm OS de-
vice is not difficult.
154 Palm OS Tutorial

Localizing For Other Countries
19.1 Localizing Your Application
There are two types of localization efforts that may be done. The
first is to localize the resources used by the application. Text should
be translated into the desired language using either ResEdit or a
similar resource editor. Sometimes the position or size of user inter-
face components needs to be adjusted due to the length of translated
strings.

Ideally the text is converted, possibly repositioned and no code
changes are required to obtain a localized application. This can be
achieved if localization is anticipated in the design and implementa-
tion of the application code.

A good example of such design is the MemoEdit title string. The
template for the title string is “Memo # of #”. A translator can con-
vert the string and position the ‘#’ characters where they belong for
the new language. A change to the application code has been
avoided.

It is a Palm OS development convention to store the resource files in
a sub folder of Rsc which is named for the language. A French ver-
sion of the application’s resources appears in a French folder within
the Rsc folder.

The second type of localization effort involves changing the code
based on the country define. The same defines used in AppBuild-
Rules.h can be used to conditionally compile the application's code.

An alternative to conditionally compiling the code is to check the
country setting in the system preferences (defined in Preferences.h).
This second method is more flexible but requires more code space.

19.1.2 Localization of MemoPad
To indicate to the Pilot Simulator that a different language is being
used a local version of AppBuildRules.h is used. The AppBuild-
Rules.h in the Incs folder is copied to the application folder.

Next, defines indicating the language and country settings are
added to the local copy of AppBuildRules.h. The appropriate de-
fines to be used are listed in Incs:BuildRules.h.

In addition, the MemoPadRsc.c file is modified to specify different
directories for the application resource files based on the language
define.
Palm OS Tutorial 155

Localizing For Other Countries
19.2 Building and Exercising the Application
19.1.2.1 Local Version of AppBuildRules.h

To view the code, from CodeWarrior; open AppBuildRules.h. At the
end of the file two defines have been added to set the language to
French and the country to France.

These defines will be used to direct the build process and to direct
conditional compilation of the source code. We want the project to
find the local copy of AppBuildRules.h so select the CodeWarrior
menu command Project:Reset File Paths.

19.1.2.2 Localized Resources

The Rsc:French folder contains a copy of the English version of Me-
moPad’s resources. Several example text strings in these resources
have been translated to French.

The MemoPadRsc.c file has been modified to determine the setting
of the language define and conditionally include the application re-
sources from either Rsc, Rsc:French or Rsc:German folder.

There are no code changes to the MemoPad application to support a
French version.

Notice that the application resources are in French but the system
resources, such as Find and CategoryEdit, are not. To have French
system resources, copy the sys.tres file in Libraries:PalmOS:French
over the version in Libraries:PalmOS.

Notice there is a German version as well. Restart the Simulator to
use the translated system resources. You can restore the English
sys.tres file from the Libraries:PalmOS:English folder.

19.2 Building and Exercising the Application
With resources and code in place for Memo Pad 19, build the project
and exercise it in the Pilot Simulator; follow these steps:

1. With CodeWarrior running, check the Project menu to make
sure that the debugger is disabled before running the appli-
cation. It should show the item Enable Debugger.

2. Build the application (CMD-M).
3. Launch the application (CMD-R). The Pilot Simulator starts

and displays the Pilot with your memo pad application in it.
156 Palm OS Tutorial

Localizing For Other Countries
19.2 Building and Exercising the Application
With the application up and running, exercise the features added in
this phase; follow these steps:

1. Note that the title of the main form and the New button have
been localized.

2. Tap the New button on the main form to cause the edit form
to be displayed. Note that the title and the Done and Details
buttons have been localized.

3. Tap the Details button to display the details dialog. Note that
the labels and buttons have been localized.

4. Quit the application; choose the Simulator File>Quit item.
Palm OS Tutorial 157

Localizing For Other Countries
19.2 Building and Exercising the Application
158 Palm OS Tutorial

Phase 20

Running the Application on
Pilot

Overview
In Phase 20, you build the MemoPad application for execution on
Pilot. This involves creation of a Makefile and using MPW to com-
pile a Pilot executable. The Pilot Debugger is used to transfer the ex-
ecutable to the Pilot where it can be run.

To work this phase, follow these steps:

1. If MemoPadMain.rsrc, MemoPadInfo.rsrc, Memo-
PadEdit.rsrc and MemoPadDetails.rsrc do not already exist
in Working Folder:Rsc from Phase 19, then copy them from
the MemoPad 19:Rsc folder.

2. Copy MemoPad.c, MemoPadRsc.c, MemoPadRsc.h and Me-
moPad.r from the MemoPad 20:Src folder to Working
Folder:Src.

3. Copy Makefile from the MemoPad 20 folder to Working
Folder.

4. If MemoPad.µ does not exist in Working Folder from Phase
19, copy it from MemoPad 19.

No new resources are necessary for this phase.

20.1 Building an Executable for Pilot
Applications are built for the Palm OS device by executing a make-
file from the MPW command line. This process will utilize the same
core of files that we used to build the Simulator application. We will
substitute a makefile for the CodeWarrior project file, and an <app-
name>.r file for the <appname>Rsc.c file.

The makefile and .r file used for this phase make excellent starting
points for your own future projects.
Palm OS Tutorial 159

Running the Application on Pilot
20.1 Building an Executable for Pilot
20.1.1 Creating MemoPad.r
We begin by creating a MemoPad.r file for the application.
To view the code, from CodeWarrior; open Src:MemoPad.r.

NOTE: This file is not part of the project since it is not needed
when running under the simulator.

This file describes to the Make process the resources used by the ap-
plication when it is run on Pilot. This file is used in place of the Me-
moPadRsc.c file which is used when the application is built for the
Simulator.

In the middle of the MemoPad.r file is a list which includes the user
interface resources used by MemoPad. Prior to the list the code and
data resources are described for the MemoPad.

The remaining settings are good general defaults to use for device
applications.

20.1.2 Creating the Makefile and Building
MemoPad for Pilot
Next, we create the Makefile; follow these steps:

1. To view the code, from CodeWarrior; open Makefile.

NOTE: This file is not part of the project since it is not part of the
Simulator application.

2. Each .c file, other than your <appname>Rsc.c file, needs to be
added to two places:
a. First in the Compiles section, compilation instructions

need to be added to this section for each .c file. The Me-
moPad application has only one file - MemoPad.c.

b. Second, each resulting object file must be listed in the Ob-
jects section.

3. The Final Link section in the Makefile must be setup for the
application.
This section includes references to some settings in the Me-
moPad.r file. It also sets the application’s creator identifier. It
160 Palm OS Tutorial

Running the Application on Pilot
20.1 Building an Executable for Pilot
should be ‘Memo’ to match the MemoPadAppType that is
defined in MemoPad.c.

With both the Makefile and MemoPad.r filled out, we’re ready to
build the application; follow these steps:

1. Start up MPW.

NOTE: Your application should not use functions from standard
desktop C libraries. These will significantly slow down and enlarge
your program. Many of these will not work at all on the device. Use
the functions provided by the Palm OS managers instead.

2. In the Directory menu use Set Directory to set the directory to
the Working Folder folder (where the Makefile resides).

3. Build the executable using the Build menu's build command.
A successful make copies the executable to the Pilot Debug-
ger directory.

It is also possible to make versions for other countries and in differ-
ent languages. You do this by changing the COUNTRY and LAN-
GUAGE options in the Makefile's C_OPTIONS section. The
appropriate numbers are listed in Incs:BuildRules.h.

20.1.3 Sending the MemoPad Application to
Pilot
To send the MemoPad application to Pilot; follow these steps:

1. Start the Pilot Debugger on the Mac.
2. Select the Console window (on the right) and drag it into full

view. Make sure it has the focus.

NOTE: There are two principal windows in the Pilot Debugger; the
Debugger window and the Console window. For our purposes, all
work will be done in the Console window.

3. Place a Pilot in a cradle connected to the serial port of the
Mac.

4. Launch the Preference application on the Pilot.
Palm OS Tutorial 161

Running the Application on Pilot
20.1 Building an Executable for Pilot
5. The first time this is done after a reset of the device, the Con-
sole window will show the message ‘Ready...’

6. Write the shortcut symbol, a period (two dots), and then a ‘2’.
Make sure the two is written in the number side of the Graf-
fiti box. This sequence tells the device to listen on the serial
connection to the Pilot Debugger on the Mac.

7. In the Console window type ‘dir 0’ and press the Enter key
(NOT the Return key).
You should see a list of the contents of the Pilot's memory
card.
If not, then the Pilot Debugger is not successfully communi-
cating with the device. If necessary, the shortcut dot dot 2 se-
quence should be repeated.

8. To send the MemoPad application to the Pilot type ‘import 0
Memopad.prc’ in the Pilot Debugger’s Console window.
The ‘0’ (zero) causes the application to be sent to the first
memory card. Memopad.prc is the name of the executable to
send. It was placed in the Debugger's directory by the make-
file.
When the import is complete, the MemoPad application will
show up in the device's launcher window.

9. When you send other versions of the MemoPad to the Pilot,
any existing versions must be removed first. The Pilot De-
bugger’s Console window command ‘del 0 MemoPad’ ac-
complishes the removal.

10.When you are done using the Pilot Debugger it is necessary
to reset the Pilot. (The reset hole is on the back of the device.)

NOTE: Until this is done the serial port of the Pilot is held by the
remote debug nub waiting for more commands from Pilot Debug-
ger. This means that HotSync will fail and that the power is contin-
ually fed to the serial port from the batteries.

You are now ready to compile and try out any Pilot application you
want to create!
162 Palm OS Tutorial

Pilot Resource
Cookbook
This resource cookbook gives you a place to look up the implemen-
tation of any of Pilot’s resources used in the tutorial. Resources are
listed in alphabetic order. For more detailed information, see Chap-
ter 3, “Palm OS User Interface Resources,” of “Developing Palm OS
Applications, Part I.”

Applications may use any resource IDs less than 10,000. The system
reserves resource IDs 10,000 and greater. Before setting the at-
tributes in any of these resources, you must have already:
• Started ResEdit.
• Opened a .rsrc file.
• Created a new resource, i.e., chosen Resource>Create New

Resource (CMD-K).
• Entered the resource type (“tFRM” for a form resource) in the

Select New Type dialog and clicked OK.

ICON

ICON is the image that appears in the launcher. Only the top 20
lines of the 32 available lines are used. This is a Macintosh resource,
not a Palm OS resource.

MBAR

MBAR creates a menu bar, a container used to group menus (see the
MENU resource item). This is a Macintosh resource, not a Palm OS
resource.

• # of menus. ResEdit increments this item as you add menus
to the menu bar.

• 1) ****. Each of these numerical entries represents a menu
item.

Here’s how to add a menu item:

1. In the editor window, click the number item like “1) ******”
(or the next open number in the series).

2. Choose Resource>Insert New Field(s) (CMD-K).
Palm OS Tutorial 163

Pilot Resource Cookbook
3. Set the menu resource ID (Menu res ID) as appropriate to
your resource numbering scheme. Eventually, you add the
resource ID here for each menu belonging to the particular
menu bar.

4. Set resource Info; choose Resource>Get Resource Info (CMD-
I).

5. In the Info window, set the ID and enter a name for the menu.

MENU

MENU creates a menu, its items, and subitems. This is a Macintosh
resource, not a Palm OS resource.
• Enabled. Check this box to enable this menu.
• Title. When you first open a menu resource, the default title

is for a menu, not for a menu item. Once you’ve entered a
menu name (like “File,”), you enter its items (“New,”
“Open,” and so on). Note: For the first item, type a name. The
Apple item and subitems do not apply to Pilot.
Once you enter a menu title, a Text field appears. Type the
desired menu item name in this field.

• Color. This item does not apply to Pilot.
• Cmd-Key. This corresponds to the command stroke combina-

tion on the Pilot. Type the command letter in this field and it
appears (with the propeller symbol) on the same line with
the item name.

• Mark. This does not apply to Pilot.
• Menu Ids. A menu ID must be set for each menu item so

your program can tell which item a user selects. Use the
menu command Menu>Edit Menu to pick an ID for the first
item in the menu. Each subsequent item will use an ID one
higher than the prior. Note that separators are also assigned a
menu ID. These menu IDs should match those defined in the
program’s resource header file.

PICT

PICT is a resource for including PICT-format graphical files in Pilot
applications. To use it, you must copy the desired graphic onto the
system clipboard. After opening the PICT resource, paste in the
graphic from the clipboard. This is a Macintosh resource, not a Palm
OS resource.
164 Palm OS Tutorial

Pilot Resource Cookbook
To set resource info for your PICT resource; follow these steps:

1. Set resource Info; choose Resource>Get Resource Info (CMD-
I).

2. In the Info window, set the ID and the name.

tAIN

tAIN is the application icon name resource. Provides a name for the
application in the launcher.
• App Icon Name. The name of the application. Should be

short and not conflict with other applications on the
launcher.

Talt

Talt is the alert dialog resource. Note: Unlike other Palm OS re-
sources, Talt begins with a capital “T.”
• Alert Type. The alert type determines which of four possible

icons is displayed in the alert and the sounds that it plays
when the alert is drawn. See the Alert Type table (Table 2) at
the end of the cookbook for a description of the four different
options.

• Help Res ID. The resource ID of a string resource (tSTR) that
is the help text for the alert dialog box.

• # Buttons. The number of buttons the alert contains.
• Default Button. The ID defining which button activates,

when the user switches to another application.
• Title. The title displayed on the alert dialog.
• Message. The message displayed on the alert dialog.
• “1) ******”. These fields contain the text of the buttons dis-

played by the alert. There is an entry in the resource for each
button. The placeholder for the first entry is indicated by the
label “1) *****”.

Here’s how to add a button to the alert dialog:

1. In the editor window, click the number item like “1) ******”
(or the next open number in the series).

2. Choose Resource>Insert New Field(s) (CMD-K).
3. Enter the button name.
Palm OS Tutorial 165

Pilot Resource Cookbook
4. Set resource Info; choose Resource>Get Resource Info (CMD-
I).

5. In the Info window, set the ID and enter a name for the but-
ton.

tBTN

tBTN is the button resource.
• Button ID. The ID number should reflect the number of the

form containing the button.
• Left. The number of pixels to the left edge of the container re-

source.
• Top. The number of pixels to the top of the container re-

source.
• Width. The width of the button in pixels.
• Height. The height of the button in pixels.
• Usable. True sets the button to be active, visible, and a part of

the interface. A non-usable object is not part of the interface
and is not drawn. However, you can programmatically reset
non-usable to usable.

• Left Anchor. This attribute controls how the button resizes it-
self when its text label is changed. If the attribute is true, then
the left bound of the button is fixed, if false the right bound is
fixed.

• Frame. True gives the button a frame.
• Non-bold. True gives the button a single pixel width frame.

False creates a bold frame.
• Font. This number sets the button’s Label font. See the Font

ID table (Table 1) at the end of this cookbook.
• Label. The caption that appears on the button.

tCBX

tCBX is the check box resource.
• Check Box ID. This is the resource ID for the particular check

box (relative to its container resource).
• Left. The number of pixels to the left edge of the container re-

source.
• Top. The number of pixels to the top of the container re-

source.
166 Palm OS Tutorial

Pilot Resource Cookbook
• Width. The width of the check box in pixels.
• Height. The height of the check box in pixels.
• Usable. True sets the check box to be checkable and visible.

A non-usable object is not part of the interface and is not
drawn. However, you can programmatically reset non-usable
to usable.

• Selected. True means checked and false not checked.
• Group. The group number for the check box. Grouped check

boxes are mutually exclusive. Setting the group is necessary
to support this mutual behavior. Code is needed to actually
enforce the behavior.

• Font. Choose from among fonts 0 through 2. See the Font ID
table (Table 1) at the end of the cookbook.

• Label. The text displayed in the check box.

tFBM

tFBM is the form bitmap resource. These bitmaps are used in Alert
dialogs.
• X Position. The number of pixels to the left edge of the con-

tainer resource.
• y Position. The number of pixels to the top of the container

resource.
• Bitmap Res ID. Set this to the ID of a PICT resource to use.
• Usable. True sets the bitmap to be visible. A non-usable ob-

ject is not part of the interface and is not drawn. However,
you can programmatically reset non-usable to usable.

To set resource info for your form bitmap resource; follow these
steps:

1. Set resource Info; choose Resource>Get Resource Info (CMD-
I).

2. In the Info window, set the ID and the name.

tFLD

tFLD is the field resource. It can display one or more lines of text.
• Field ID. This is the resource ID for the particular field (rela-

tive to its container resource).
Palm OS Tutorial 167

Pilot Resource Cookbook
• Left. The number of pixels to the left edge of the container re-
source.

• Top. The number of pixels to the top of the container re-
source.

• Width. The width of the field in pixels.
• Height. The height of the field in pixels.
• Usable. True makes the field visible. A non-usable object is

not part of the interface and is not drawn. However, you can
programmatically reset non-usable to usable.

• Editable. True means the field is editable. A non-editable
field won’t accept text.

• Single Line. True means the field is not horizontally scrolla-
ble, won’t accept tab or carriage return characters. Only a sin-
gle line is displayed.

• Dynamic Size. True means that field height is expanded or
contracted as characters are added or removed (dynamic siz-
ing). Set this to False if Single Line is True.

• Left Justified. True sets text to left margin. Supported only
when Single Line is True.

• Max Chars. Specifies the maximum number characters al-
lowed in the field. (32767 is the maximum.)

• Font ID. Choose from among fonts 0 through 2. See the Font
ID table (Table 1) at the end of the cookbook.

tFRM

tFRM is the form resource. A form acts as a container for other re-
sources.
• Left. The number of pixels to the left edge of the Pilot display.
• Top. The number of pixels to the top of the Pilot display.
• Width. The width of the form in pixels.
• Height. The height of the form in pixels.

Ignore “invalid rectangle” messages. ResEdit does not like bounds
where the fourth parameter is less than the second.

– Set button. Ignore this; it does not apply to Pilot.
• Useable. Not currently supported.
168 Palm OS Tutorial

Pilot Resource Cookbook
• Modal. True processes pen events in the current form only.
Other parts of the interface become inaccessible. Generally,
this option is used with dialog boxes.

• Save behind. True saves pixels behind the form and restores
them, when the form goes away. Generally, this option is
used with dialog boxes.

• Number of Objects. A counter that ResEdit increments as
objects are added to the form.

• Form. Each form must have its own ID number. Recommen-
dation: Start at 1000 and increment by 100.

• Help Rsc. The number of a tSTR resource to use for this form.
A non zero value places an information icon at the top right
of the form. When the icon is pressed a dialog appears dis-
playing the string. This feature should be used in dialogs
only.

• Menu Rsc. The number of a MBAR resource to use for this
form.

• Default Button ID. The number of a button to assume is
pressed when the form is forced to go away (by switching to
another application).

tGDT

tGDT is the gadget resource. It indicates that a particular region of
the form is handled by the application. This is how applications
make custom ui components.
• Gadget ID. This is the resource ID for the gadget.
• Left. The number of pixels to the left edge of the container re-

source.
• Top. The number of pixels to the top of the container re-

source.
• Width. The width of the gadget in pixels.
• Height. The height of the gadget in pixels.
• Usable. True makes the gadget visible. A non-usable object is

not part of the interface and is not drawn. However, you can
programmatically reset non-usable to usable.
Palm OS Tutorial 169

Pilot Resource Cookbook
tGSI

tGSI specifies where to display the Graffiti shift state indicator.
These bitmaps are used in Alert dialogs.
• x pos. The number of pixels to the left edge of the container

resource.
• y pos. The number of pixels to the top of the container re-

source.

States include punctuation, symbol, uppercase shift, and uppercase
lock.

tLBL

tLBL is the label resource.
• Label ID. This is the resource ID for the particular label (rela-

tive to its container resource).
• Left. The number of pixels to the left edge of the container re-

source.
• Top. The number of pixels to the top of the container re-

source.
• Usable. True sets the form to be visible and false not visible.

A non-usable object is not part of the interface and is not
drawn. However, you can programmatically reset non-usable
to usable.

• Font ID. See the Font ID table (Table 1) at the end of the cook-
book.

• Text. String displayed in the label.

tLST

tLST is the list resource.
• List ID. This is the resource ID for the particular list (relative

to its container resource).
• Left. The number of pixels to the left edge of the container re-

source.
• Top. The number of pixels to the top of the container re-

source.
• Width. The width of a list item in pixels.
• Usable. True sets the form to be visible and false not visible.

A non-usable object is not part of the interface and is not
170 Palm OS Tutorial

Pilot Resource Cookbook
drawn. However, you can programmatically reset non-usable
to usable.

• Font. Choose from among fonts 0 through 2. See the Font ID
table (Table 1) at the end of the cookbook.

• Visible Items. Height of list (in number of visible items). If
you enter zero, the number of items (Items) is used.

• Items. The number of items (choices), incremented by the
system as you add them. See below for how to add an item to
the list.

To add a list item:

1. In the editor window, click the number item like “1) ******”
(or the next open number in the series).

2. Choose Resource>Insert New Field(s) (CMD-K).
3. Enter the name of the desired list item in the Text field.

tPBN

tPBN is the push button resource. Push buttons usually indicate ex-
clusive options.
• Push Button ID. The ID number should reflect the number of

the form containing the push button. For example, if the re-
source is 1000, the Push Button ID can be anywhere between
1001 and 1099.

• Left. The number of pixels to the left edge of the container re-
source.

• Top. The number of pixels to the top of the container re-
source.

• Width. The width of the push button in pixels.
• Height. The height of the push button in pixels.
• Usable. True sets the push button to be active, visible, and a

part of the interface. A non-usable object is not part of the in-
terface and is not drawn. However, you can programmati-
cally reset non-usable to usable.

• Group. The group number for the push button. Grouped
push buttons are mutually exclusive.

• Font. This number sets the push button’s Label font. See the
Font ID table (Table 1) at the end of this cookbook.
171 Palm OS Tutorial

Pilot Resource Cookbook
• Label. The caption that appears on the push button.

tPUL

tPUL is the pop up list resource. These are used to associate a pop
up trigger with a list to pop up.
• Control ID. The ID number of the popup trigger.
• List ID. The ID number of the list.

tPUT

tPUT is the pop up trigger resource. These are used to pop up a list
for the user to select from.
• Trigger ID. The ID number should reflect the number of the

form containing the trigger. For example, if the resource is
1000, the Trigger ID should be anywhere between 1001 and
1099.

• Left. The number of pixels to the left edge of the container re-
source.

• Top. The number of pixels to the top of the container re-
source.

• Width. The width of the trigger in pixels.
• Height. The height of the trigger in pixels.
• Usable. True sets the trigger to be active, visible, and a part of

the interface. A non-usable object is not part of the interface
and is not drawn. However, you can programmatically reset
non-usable to usable.

• Left Anchor. True fixes the left bound of the trigger, when the
size of the label changes.

• Frame. True gives the trigger a frame.
• Non-bold. True gives the button a plain frame. False creates a

bold frame.
• Font. This number sets the trigger’s Label font. See the Font

ID table (Table 1) at the end of this cookbook.
• Label. The caption that appears on the trigger.

tREP

tREP is the repeat button resource. These are identical to buttons ex-
cept they repeatedly send events while they are pushed.
172 Palm OS Tutorial

Pilot Resource Cookbook
• Button ID. The ID number should reflect the number of the
form containing the repeat button. For example, if the re-
source is 1000, the Button ID can be anywhere between 1001
and 1099.

• Left. The number of pixels to the left edge of the container re-
source.

• Top. The number of pixels to the top of the container re-
source.

• Width. The width of the repeat button in pixels.
• Height. The height of the repeat button in pixels.
• usable. True sets the repeat button to be active, visible, and a

part of the interface. A non-usable object is not part of the in-
terface and is not drawn. However, you can programmati-
cally reset non-usable to usable.

• Left Anchor. True fixes the left bound of the repeat button,
when the size of the label changes.

• Frame. True gives the repeat button a frame.
• Non-bold frame. True gives the repeat button a plain frame.

False creates a bold frame.
• Font. This number sets the repeat button’s Label font. See the

Font ID table (Table 1) at the end of this cookbook.
• Label. The caption that appears on the repeat button.

tSEL

tSEL is the selector resource. These indicate that a dialog will appear
to edit the contents of the selector.
• Selector Trigger ID. The ID number should reflect the num-

ber of the form containing the selector trigger. For example, if
the resource is 1000, the Selector Trigger ID can be anywhere
between 1001 and 1099.

• Left. The number of pixels to the left edge of the container re-
source.

• Top. The number of pixels to the top of the container re-
source.

• Width. The width of the selector trigger in pixels.
• Height. The height of the selector trigger in pixels.
• Usable. True sets the selector trigger to be active, visible, and

a part of the interface. A non-usable object is not part of the
Palm OS Tutorial 173

Pilot Resource Cookbook
interface and is not drawn. However, you can programmati-
cally reset non-usable to usable.

• Left Anchor. True fixes the left bound of the selector trigger,
when the size of the label changes.

• Font. This number sets the selector trigger’s Label font. See
the Font ID table (Table 1) at the end of this cookbook.

• Label. The caption that appears on the selector trigger.

tSTR

tSTR is the string resource.
• The String. A text string (in decimal ASCII).
• Data $. A text string in (hexadecimal ASCII).

NOTE: The string resource uses either field. If you enter data in
both, they are concatenated.

To set resource info for your string resource; follow these steps:

1. Set resource Info; choose Resource>Get Resource Info (CMD-
I).

2. In the Info window, set the ID and the name.

tTBL

tTBL is the table resource.

Table ID. This is the resource ID for the table.
• Left. The number of pixels to the left edge of the container re-

source.
• Top. The number of pixels to the top of the container re-

source.
• Width. The width of the table in pixels.
• Height. The height of the table in pixels.
• Editable. True means the table is editable. A non-editable

table won’t accept text.
• Rows. The number of rows in the table.
• Columns. The number of columns in the table, incremented

by the system as you add them. See below for how to add a
column to the table.
174 Palm OS Tutorial

Pilot Resource Cookbook
To add a table column:

1. In the editor window, click the number item like “1) ******”
(or the next open number in the series).

2. Choose Resource>Insert New Field(s) (CMD-K).
3. Enter the width of the column in pixels.

tTTL

tTTL is the title resource. A title assigns a visible title to another re-
source.

Title. The title string.

After typing in a title, you need to assign an ID number and a name
to this resource. To set resource Info; choose Resource>Get Re-
source Info (CMD-I) for the Macintosh.

tver

tver is the version string resource. Provides a version for the appli-
cation.

VersionString. The version of the application.

Figure 20.1 Font ID’s

FontID Name

0 9 pt plain font

1 9 pt bold font

2 12 pt plain font

3 Symbol font

4 Check box font
Palm OS Tutorial 175

Pilot Resource Cookbook
Table 20.1 Alert Type

5 Symbol font

6 Calculator font

Alert Number Type

0 informationAlert

1 confirmationAlert

2 warningAlert

3 errorAlert

FontID Name
176 Palm OS Tutorial

	Table of Contents
	Introduction
	Overview
	0.1 System Requirements
	0.1.1 Hardware Requirements
	0.1.2 Software Requirements

	0.2 Installation: The Folder Structure
	0.3 Navigating Tutorial Phases

	Creating Memo Pad Form and Button
	Overview
	1.1 Creating a Desktop Project Folder
	1.2 Building a ResEdit Resource File
	1.2.1 Creating the MemoPad Form, Title, and Button...
	1.2.1.1 Creating the Main Form Resource
	1.2.1.2 Setting a Name for the Form
	1.2.1.3 Creating the MemoPad Title Resource
	1.2.1.4 Creating the MemoPad Button

	1.2.2 Notes on Resource Numbering
	1.2.3 Attaching Resources to a Form

	1.3 Modifying a CodeWarrior Project
	1.3.1 Adding Files to the Project
	1.3.2 Assigning an Application Name

	1.4 Setting File Access Paths
	1.5 Examining the Code
	1.5.1 Examining MemoPad.c
	1.5.1.1 The PilotMain Function
	1.5.1.2 The StartApplication Function
	1.5.1.3 The EventLoop Function
	1.5.1.4 The SysHandleEvent Function
	1.5.1.5 The MainFormHandleEvent Function
	1.5.1.6 The FrmHandleEvent Function

	1.5.2 Examining MemoPadRsc.c
	1.5.3 Examining MemoPadRsc.h

	1.6 Building and Exercising the Project Applicatio...

	Adding a Menu and a Simple Dialog
	Overview
	2.1 Adding a Main Menu with a Get Info Item
	2.1.1 Adding Resources for a Get Info Menu Item
	2.1.1.1 Creating the Menu Bar
	2.1.1.2 Creating a Menu
	2.1.1.3 Creating a Menu Item

	2.1.2 Examining the Code
	2.1.2.1 Adding #define Macros for New Resources
	2.1.2.2 Adding a Menu Event Handler

	2.1.3 Adding a Get Info Form with an OK Button
	2.1.3.1 Creating a Resources Document for the Get ...
	2.1.3.2 Creating a New Form
	2.1.3.3 Creating a Title Resource
	2.1.3.4 Creating a Button Resource
	2.1.3.5 Creating a Label Resource
	2.1.3.6 Creating a Second Label Resource
	2.1.3.7 Creating a String Resource
	2.1.3.8 Creating a Form Bitmap Resource
	2.1.3.9 Creating a PICT Resource
	2.1.3.10 Adding Resources to a Form

	2.1.4 Examining the Code
	2.1.4.1 Adding a #define Macro for the InfoForm Re...
	2.1.4.2 Adding a Handler for the Info Dialog with ...

	2.2 Building and Exercising the Application

	Adding a Button, an Edit Form, and Navigation
	Overview
	3.1 Adding a New Button to the Main Form
	3.1.1 Creating a “New” Button
	3.1.2 Adding the New Button Resource to the Main F...
	3.1.3 Examining the Code
	3.1.3.1 Adding a #define Macro for the “New” Butto...
	3.1.3.2 Adding Event-Handler Code for New Button

	3.2 Creating an Edit Form with a Title and a Done ...
	3.2.1 Creating the Edit Form and Its Resources
	3.2.1.1 Borrowing from MemoPad 01
	3.2.1.2 Creating the Edit Form
	3.2.1.3 Creating the Edit Form Title
	3.2.1.4 Creating the Done Button

	3.2.2 Examining the Code
	3.2.2.1 Adding #define Macros for New Resources
	3.2.2.2 Adding Edit Form Handling to the Code
	3.2.2.3 Other Changes to the Application Code

	3.3 Building and Exercising the Application
	3.4 Using the Event Trace Window

	Adding a Text Field and Menu Commands
	Overview
	4.1 Adding a Large Text Field to the Edit Form
	4.2 Adding a Resource for the Graffiti Shift UI
	4.2.1 Adding the Field and Graffiti UI Resources t...
	4.2.2 Examining the Code
	4.2.2.1 Adding #define Macros for New Resources
	4.2.2.2 Revising a Handler for the Text Field

	4.3 Adding Resources for the Edit Menu and Options...
	4.3.1 Copying Resources from Main to modify them f...
	4.3.2 Adding Commands to the Edit Menu
	4.3.3 Setting Edit Menu IDs
	4.3.4 Adding Commands to the Options Menu
	4.3.5 Adding the Edit Menu to the Menu Bar
	4.3.6 Examining the Code for the New Edit Menu and...
	4.3.6.1 Adding #define Macros for New Resources
	4.3.6.2 Adding an Event Handler for the Edit Menu
	4.3.6.3 Adding a Menu Item Handler for the Edit Fo...
	4.3.6.4 Adding Handlers for Menu Commands

	4.4 Building and Exercising the Application

	Storing and Retrieving Text in a Database
	Overview
	5.1 Adding Text Storage in a Database Record
	5.1.1 Database Basics
	5.1.2 Database Create, Open, And Close Functions

	5.2 Revising the Handler for the Done Button
	5.2.1 EditFormHandleEvent
	5.2.2 EditSaveData

	5.3 Adding an Edit Button to the Main Form
	5.3.1 Creating the Edit Button Resource
	5.3.2 Adding the Edit Button to the Main Form
	5.2.3 Examining the Code
	5.2.3.1 Adding a #define Macro for the Edit Button...
	5.2.3.2 Adding a Handler for the Edit Button
	5.2.3.3 Revising the Handler for the New Button

	5.3 Adding Retrieval of Text from a Database Recor...
	5.3.1 Revising the Edit Form Handler

	5.4 Building and Exercising the Application

	Editing a Data Record in Place
	Overview
	6.1 About Edit-in-Place
	6.2 Adding a Handler for Edit in Place

	Adding a List to Display and Select a Record
	Overview
	7.1 Adding Record Display List to the Main Form
	7.1.1 Adding a List Resource
	7.1.2 Removing Buttons
	7.1.3 Adding a List Resource
	7.1.4 Revising Code for a List of Records
	7.1.4.1 Revising #define Macros
	7.1.4.2 Revising the Handler to Set up a List of R...
	7.1.4.3 Revising a Main Form Handler to Free the L...
	7.1.4.4 Removing the Handler for the Exit and Edit...
	7.1.4.5 Adding a Handler to Set the CurrentRecord ...

	7.2 Adding Multiple Records to the Database
	7.3 Building and Exercising the Application

	Adding Display List Items as Required
	Overview
	8.1 The Display-As-Required Approach
	8.2 Examining the Code
	8.3 Building and Exercising the Application

	Adding a Page Menu to the Edit Form
	Overview
	9.1 Adding a Page Menu
	9.1.1 Adding Menu Items for New Page and Delete Pa...
	9.1.2 Adding a Resource for a Delete Memo Alert
	9.1.3 Examining the Code
	9.1.3.1 Adding #define Macros for New Resources
	9.1.3.2 Adding Handlers for the New Commands
	9.1.3.3 How the New Page Menu Command Works
	9.1.3.4 How the Delete Page Menu Command Works

	9.2 Building and Exercising the Application

	Adding a Details Dialog and the Secret Record Attr...
	Overview
	10.1 Adding a Details Dialog to the Edit Form
	10.1.1 Adding a Resource for Details Button on Mai...
	10.1.2 Creating a Details Resource File
	10.1.2.1 Creating a Details Form
	10.1.2.2 Creating a Details Title
	10.1.2.3 Creating Buttons for Details Form
	10.1.2.4 Creating a Label for the Secret Checkbox
	10.1.2.5 Creating a Help String
	10.1.2.6 Creating a Secret Checkbox
	10.1.2.7 Putting Resources into the Details Form

	10.1.3 Examining the Code
	10.1.3.1 Adding #define Macros for New Resources
	10.1.3.2 Adding Event Handlers
	10.1.3.3 Adding an Event Handler for the Details B...
	10.1.3.4 Adding an Event Handler for the Details D...

	10.2 Building and Exercising the Application

	Adding Categories
	Overview
	11.1 Adding Category UI to the Forms
	11.1.1 Adding Category UI to the Main Form
	11.1.1.1 Adding the Category Popup Trigger
	11.1.1.2 Adding the Category List
	11.1.1.3 Connecting the Popup Trigger to the List
	11.1.1.4 Attaching the Category UI to the Main For...

	11.1.2 Adding Category UI to the Edit Form
	11.1.2.1 Creating the Category Popup Trigger
	11.1.2.2 Creating the Category List
	11.1.2.3 Connect the List to the Popup Trigger
	11.1.2.4 Adding the Category UI to the Edit Form

	11.1.3 Adding Category UI to the Details Dialog
	11.1.3.1 Creating the Category Popup Trigger
	11.1.3.2 Creating the Category List
	11.1.3.3 Connect the List to the Popup Trigger
	11.1.3.4 Creating a Label for the Popup Trigger
	11.1.3.5 Attaching the Category UI to the Details ...

	11.1.4 Examining the Code
	11.1.4.1 Adding #define Macros for New Resources
	11.1.4.2 Adding Event Handlers
	11.1.4.3 Handling Categories for the Main Form
	11.1.4.4 Handling Categories for the Edit Form
	11.1.4.5 Handling Categories for the Details Form

	11.2 Building and Exercising the Application

	Using a Table to Display the Database
	Overview
	12.1 Adding Table UI to the Main Form
	12.1.1 Removing the Record List UI from the Main F...
	12.1.2 Adding the Table UI to the Main Form
	12.1.3 Examining the Code
	12.1.3.1 Adding #define Macros for New Resources
	12.1.3.2 Adding Event Handlers
	12.1.3.3 Handling the Table in the Main Form

	12.2 Building and Exercising the Application

	Adding Scrolling to the Main and Edit Forms
	Overview
	13.1 Adding Scrolling to the Forms
	13.1.1 Adding Scroll Arrows to the Main Form
	13.1.1.1 Creating the Scroll Arrows
	13.1.1.2 Attaching the Scroll Arrows UI to the Mai...

	13.1.2 Adding Scroll Arrows to the Edit Form
	13.1.2.1 Creating the Up and Down Scroll Arrows
	13.1.2.2 Attaching the Scroll Arrows UI to the Edi...

	13.1.3 Examining the Code
	13.1.3.1 Adding #define Macros for New Resources
	13.1.3.2 Handling Scrolling Arrows for the Main Fo...
	13.1.3.3 Handling Scroll Arrows for the Edit Form

	13.2 Building and Exercising the Application

	Adding System Find Support
	Overview
	14.1 Adding System Find
	14.1.1 Adding a Find Header String
	14.1.2 Examining the Code
	14.1.2.1 Adding #define Macros for New Resources
	14.1.2.2 Adding Event Handlers
	14.1.2.3 Handling the Search Command
	14.1.2.4 Handling the Goto Command

	14.2 Building and Exercising the Application

	Saving Program Settings Between Executions
	Overview
	15.1 Saving the Program’s State
	15.1.1 Examining the Code
	15.1.1.1 Adding Event Handlers

	15.2 Building and Exercising the Application

	Flashy Features
	Overview
	16.1 Adding UI Elements to the Edit Form
	16.1.1 Adding Resources for the Edit View Title
	16.1.2 Modifying the Text Field Resource
	16.1.2.1 Shrinking the Field Resource

	16.1.3 Adding Resources for the Edit View Font Sel...
	16.1.3.1 Creating the Font Push Buttons
	16.1.3.2 Adding the Font Push Buttons to the Edit ...

	16.1.4 Examining the Code
	16.1.4.1 Adding #define Macros for New Resources
	16.1.4.2 Adding Event Handlers
	16.1.4.3 Handling the Dynamic Title for the Edit F...
	16.1.4.4 Handling the Font Selection for the Edit ...
	16.1.4.5 Handling the Automatic Set of the Graffit...

	16.2 Building and Exercising the Application

	Working With the Desktop
	Overview
	17.1 Integrating with HotSync
	Examining the Code 17.1.1
	17.1.1 Adding Event Handlers
	17.1.1.1 Handling Delete for the Desktop
	17.1.1.2 Handling Synchronization Flags
	17.1.1.3 Handling Synchronization Related Launch C...

	17.2 Building and Exercising the Application

	Adding Shell Commands
	Overview
	18.1 Adding Console Commands
	18.1.1 The Simulator Console Window
	18.1.2 Creating a New Console Command

	18.2 Building and Exercising the Application

	Localizing For Other Countries
	Overview
	19.1 Localizing Your Application
	19.1.1 Localization Techniques
	19.1.2 Localization of MemoPad
	19.1.2.1 Local Version of AppBuildRules.h
	19.1.2.2 Localized Resources

	19.2 Building and Exercising the Application

	Running the Application on Pilot
	Overview
	20.1 Building an Executable for Pilot
	20.1.1 Creating MemoPad.r
	20.1.2 Creating the Makefile and Building MemoPad ...
	20.1.3 Sending the MemoPad Application to Pilot

	Pilot Resource Cookbook
	ICON
	MBAR
	MENU
	PICT
	tAIN
	Talt
	tBTN
	tCBX
	tFBM
	tFLD
	tFRM
	tGDT
	tGSI
	tLBL
	tLST
	tPBN
	tPUL
	tPUT
	tREP
	tSEL
	tSTR
	tTBL
	tTTL
	tver

