it

PALM .
COMPUTING
PLATFORM

Developing Palm OS 3.0
Applications

Part IlI: System Management

Navigate this online document as follows:

To see bookmarks, Command-7 (Mac OS)

type: Ctrl-7 (Windows)
To navigate, any blue hypertext link
click on: any Table of Contents entry

any Index entry
arrows in the toolbar

Y A 7 7 777777777777 4

Developing Palm OS
3.0 Applications

Part Il: System
Management

Copyright © 1996 - 1998, 3Com Corporation or its subsidiaries (“3Com?”). All rights reserved. This docu-
mentation may be printed and copied solely for use in developing products for the Palm Computing plat-
form. In addition, two (2) copies of this documentation may be made for archival and backup purposes.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or
by any means or used to make any derivative work (such as translation, transformation or adaptation)
without express written consent from 3Com.

3Com reserves the right to revise this documentation and to make changes in content from time to time
without obligation on the part of 3Com to provide notification of such revision or changes. 3COM MAKES
NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR
THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMENTATION IS PROVIDED
ON AN “AS IS” BASIS. 3COM MAKES NO WARRANTIES, TERMS OR CONDITIONS, EXPRESS OR IM-
PLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY OR OTHERWISE, INCLUDING
WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, 3COM ALSO EXCLUDES FOR ITSELF AND ITS SUPPLI-
ERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR
DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF ANY
KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION OR
DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF 3COM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

3Com, the 3Com logo, HotSync, Palm Computing, and Graffiti are registered trademarks, and Palm IIl,
Palm OS, and the Palm Computing Platform logo are trademarks of 3Com Corporation or its subsidiaries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brand and product
names may be registered trademarks or trademarks of their respective holders.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISK, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISK ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISK.

Contact Information:

Metrowerks U.S.A. and international Metrowerks Corporation
2201 Donley Drive, Suite 310
Austin, TX 78758

US.A.

Metrowerks Inc.

1500 du College, Suite 300
Ville St-Laurent, QC
Canada H4L 5G6

Metrowerks Mail order Voice: 1-800-377-5416
Fax: 1-512-873-4901

U.S.A.: 1-800-881-7256
elsewhere: 1-801-431-1536

http://ww. met r oner ks. com

Metrowerks Canada

3Com (Palm Computing Subsidiary) Canada: 800-891-6342

Mail Order
Metrowerks World Wide Web

Palm Computing World Wide Web
Registration information
Technical support

Sales, marketing, & licensing
CompuServe

http://ww. pal m com
regi st er @ret r oner ks. com
support @ret r ower ks. com
sal es@ret r ower ks. com

go Met r owner ks

Table of Contents

AboutThis Document. 13
Palm OS SDK Documentation 13
What This Guide Contains. 14
ConventionsUsed in ThisGuide15

1 Using Palm OS System Managers 17
The Alarm Manager. 18

Alarm Manager Overview. 18
Using the Alarm Manager. 20
Alarm Manager Function Summary 20
The Error Manager A |
Displaying DevelopmentErrors e |
Using the Error Manager Macros. . . . e e e 22
Understanding the Try-and-Catch Mechanlsm. ... 23
Using the Try and Catch Mechanism 24
Error Manager Function Summary 25
The Feature Manager25
The System Version Feature 26
Application-Defined Features 26
Using the Feature Manager 27
Feature Manager Function Summary 27
File Streaming Application Program Interface 28
Using the File Streaming API 28
File Streaming Data Structures 29
File Streaming Function Summary 35
The Sound Manager.235
Using the Sound Manager. e Y
Sound Preferences Compatlbllltylnformatlon - 2
Sound Manager Data Structures 46
Sound Manager Function Summary 52
The String Manager. X
String Manager Function Summary .« . .+ 53
The System Manager5
SystemBootandReset5

Developing Palm OS 3.0 Applications, Part Il v

Table of Contents

Power Management

The Microkernel .

Application Support . .

System Manager Function Summary
The System Event Manager . .

Event Translation: Pen Strokes to Key Events.

Pen Queue Management

Key Queue Management .

Auto-Off Control . o

System Event Manager Functlon Summary
The Time Manager . . .

Using Real-Time Clock Functlons

Using System Ticks Functions .

Time Manager Structures . .

Time Manager Function Summary .
Application Launcher .

2 Palm OS System Functions.

Alarm Manager API. Ce e
AlmGetAlarm .

AlmSetAlarm .
Functions for System Use Only

Error Manager Functions
ErrDisplay
EerlspIayFlleLlneI\/Isg
ErrFatalDisplaylf.
ErrNonFatalDisplayif.
ErrThrow . .

Event Manager Functlons .
EvtAddEventToQueue . .
EvtAddUniqueEventToQueue .
EvtCopyEvent .
EvtDequeuePenPoint .
EvtDequeuePenStrokelnfo.
EvtEnableGraffiti.
EvtEnqueueKey .

. 55
Y
. 58
. 63
. 63
. 64
. 65
. 66
. 67
. 67
. 68
. 68
. 68
. 69
. 70
. 70

. 13
. 13
. 14
.15
. 16
. 16
.07
. 18
. 19
. 80
. 80
. 80
. 81
. 81
. 82
. 83
. 83
. 84

vi Developing Palm OS 3.0 Applications, Part I

Table of Contents

EvtEventAvail285
EvtFlushKeyQueue.85
EvtFlushNextPenStroke. 86
EvtFlushPenQueue. 86
EvtGetEvent. o .o o ... 87
EvtGetPen. 87
EvtGetPenBtnList 88
EvtKeyQueueEmpty 88
EvtKeyQueueSize89
EvtPenQueueSize 89
EvtProcessSoftKeyStroke9
EvtResetAutoOffTimer 9
EvtSysEventAvail 9
EvtWakeup X §
FunctlonsforSystemUseOnIy. 4
Feature Manager Functions 93
FtrGet 9
FtrGetByIndex. %
FtrSet.09
FtrUnregister [
FunctlonsforSystemUseOnIy. [¢
Find Functions097
FindDrawHeader097
FindGetLineBounds 9
FindSaveMatch 98
FindStrinStr oo o000 09
Float Manager Functions 0 A
UsmgFloatlngPomtArlthmetlc . L0 X A
Using 1.0 Floating-Point Functionality101
FplAdd102
FplAToF.102
FplBaselOInfo10
FpIDiv104
FplFloatToLong1l04
FplFloatToULong105
FplFree105

Developing Palm OS 3.0 Applications, Part Il vii

Table of Contents

Miscellaneous System Fu

FplFTOA

Fplinit .
FplLongToFloat .
FpIMul . Co
FpIlSub

Crcl6CalcBlock
MdmDial .
MdmHangUp .
PhoneNumberLookup
ResLoadForm .
ResLoadMenu .

System Preferences Functions

PrefGetAppPreferences .

PrefGetAppPreferencesV10 .

PrefGetPreference
PrefGetPreferences .
PrefOpenPreferenceDBV10
PrefSetAppPreferences .
PrefSetAppPreferencesV10
PrefSetPreference.
PrefSetPreferences .

Password Functions.

PwdEXists .
PwdRemove.
PwdSet . .
PwdVerify. . . .

String Manager Functions .

StrATol . oo
StrCaselessCompare .
StrCat.

StrChr

StrCompare .

StrCopy . :
StrDelocalizeNumber .
StriToA .

nctions .

. 106
. 106
. 107
. 107
. 108
. 109
. 109
. 110
111
111
. 112
112
. 113
. 113
. 114
. 115
. 116
. 116
117
. 118
. 119
. 119
. 120
. 120
. 120
121
121
122
122
. 122
.123
. 123
124
124
125
125

viii Developing Palm OS 3.0 Applications, Part I

Table of Contents

StriToH.126
StrLen 126
StrLocalizeNumber.127
StrNCaselessCompare127
StrNCat.128
StrNCompare129
StrNCopy 129
StrPrintF130
StrStr. o . . oo oo oo oo s 130
StrToLower131
StrVPrintF. o000 L0000 131
File Streaming Functions.133
FileClearerr 133
FileClose 133
FileControl 134
FileDelete 136
FileDmRead 136
FileEOF 138
FileError 139
FileFlush 139
FileGetlLastError 140
FileOpen 140
FileRead 143
FileRewind 144
FileSeek 145
FileTell 146
FileTruncate 147
FileWrite 147
Functions For SystemUseOnly148
File Streaming ErrorCodes149
Sound Manager Functions150
SndCreateMidiL.ist 150
SndDoCmd 151
SndGetDefaultvolume152
SndPlaySMF 152
SndPlaySystemSound.155
Functions for System UseOnly.155

Developing Palm OS 3.0 Applications, Part Il ix

Table of Contents

System Functions.156
SysAppLaunch156
SysAppLauncherDialog.157
SysBatterylnfo 158
SysBatteryInfoV20 159
SysBinarySearch160
SysBroadcastActionCode162
SysCopyStringResource.162
SysCreateDataBaseList163
SysCreatePanelList.l64
SysCurAppDatabasel64
SysErrString.165
SysFatalAlert165
SysFormPointerArrayToStrings166
SysGetOSVersionString 166
SysGetRomToken 167
SysGetStackInfo 168
SysGraffitiReferenceDialog168
SysGremlins 169
SysHandleEvent170
SyslnsertionSort170
Sysinstall172
SysKeyboardDialog173
SysKeyboardDialogv10.173
SysLibFind174
SysLibLoad175
SysQSort176
SysRandom LA
SysReset
SysSetAutoOffTime.178
SysStringByIndex178
SysTaskDelay179
SysTicksPerSecond179
SysUIAppSwitch.179
Functions for System UseOnly.180

X Developing Palm OS 3.0 Applications, Part I

Table of Contents

Time Manager Functions189
DateAdjust189
DateDaysToDate189
DateSecondsToDate19
DateToAscii19
DateToDays191
DateToDOWDMFormat.19
DayOfMonth19
DayOfWeek19
DaysinMonth193
TimAdjust.193
TimDateTimeToSeconds.19
TimGetSeconds19%
TimGetTicks.194
TimSecondsToDateTime.19
TimSetSeconds.19%
TimeToAscii T R [
FunctlonsforSystemUseOnIy K [¢

Developing Palm OS 3.0 Applications, Part Il xi

Table of Contents

xii Developing Palm OS 3.0 Applications, Part I

= About This Document

Developing Palm OS 3.0 Applications, Part 11, is part of the Palm OS
Software Development Kit (SDK). This introduction provides an
overview of the SDK documentation, discusses what materials are
included in this document, and what conventions are used.

Palm OS SDK Documentation

The following documents are part of the SDK:

Document Description

Palm OS 3.0 Tutorial A number of Phases step developers through using the dif-
ferent parts of the system. Example applications for each
phase are included in the SDK.

Developing Palm OS A programmer’s guide and reference document that dis-
3.0 Applications. cusses all important aspects of developing an application.
Part I: Interface Man-

agement

Developing Palm OS A programmer’s guide and reference document for all sys-
3.0 Applications. tem managers, such as the string manager or the system
Part 1. System Man- event manager. See What This Guide Contains for details.
agement.

Developing Palm OS 3.0 Applications, Part Il 13

About This Document
What This Guide Contains

Document Description

Developing Palm OS Programmer’s guide and reference document for:

3.0 Applications, < Memory management; both the database manager and

Part I1l. Memory and the memory manager.

Communications Man- o])

agement - I‘r::ZtF')ng OS communications library for serial commu-
ication.

= The Palm OS network library, which provides basic net-
work services.

= The exchange manager and IR library, which provide in-
frared communication capabilities.

Palm OS 3.0 Cookbook. Provides a variety of design guidelines, including localiza-
tion, Ul design, and optimization. Information about using
CodeWarrior for Palm OS to create projects and executables.

What This Guide Contains

This section provides an overview of the chapters in this guide.

= Chapter 1, “Using Palm OS System Managers,” discusses the
managers that provide system functionality, including the sys-
tem event manager, time manager, and error manager.

= Chapter 2, “Palm OS System Functions,” provides reference-
style information for each API function that allows applica-
tions to interact with the system.

14 Developing Palm OS 3.0 Applications, Part I

About This Document
Conventions Used in This Guide

Conventions Used in This Guide

This guide uses the following typographical conventions:

This style... Is used for...

fixed width font Code elements such as function,
structure, field, bitfield.

fixed width underline Emphasis (for code elements).

bold Emphasis (for other elements).
blue and underlined Hot links.

black and underlined 3.0 function names (headings only)
red and underlined 3.0 function names (in Table of

Contents only)

Developing Palm OS 3.0 Applications, Part Il 15

About This Document
Conventions Used in This Guide

16 Developing Palm OS 3.0 Applications, Part I

-o0—
-—o—
—-oo—
.
.

™

Using Palm OS
System Managers

In contrast to desktop computer operating systems, Palm OS con-
sists of only one library. This library, however, contains several man-
agers, which are groups of functions that work together to imple-
ment certain functionality. As a rule, all functions that belong to one
manager use the same three-letter prefix and work together to im-
plement a certain aspect of functionality.

In this chapter, you learn about all Palm OS managers that aren’t di-
rectly responsible for interface management or memory manage-
ment. As you investigate the managers more closely you’ll find that
some of them are mostly services provided by the system, while
others contain a large number of API calls.

This chapter presents the managers in the following order:

= The Alarm Manager provides support for setting real-time
alarms to perform some periodic activity or display a reminder.

= The Error Manager can be used by applications or system soft-
ware for displaying unexpected runtime errors, such as those
that typically show up during program development.

Final production versions of applications or system software are
not expected to use error manager.

= The Feature Manager provides information about the system
software version and the optional system features and third-
party extensions that are installed. An application can also use
the feature manager to keep track of its own data.

= The Sound Manager lets applications and system modules con-
trol sound manager settings and play custom and predefined
system sounds.

Developing Palm OS 3.0 Applications, Part Il 17

Using Palm OS System Managers
The Alarm Manager

= The String Manager is a set of string manipulation functions
available to applications. Use these routines instead of the
standard C routines.

= The System Manager is responsible for the basic operation of
the system, including booting and resetting the system,
managing power, managing the microkernel, and
supporting applications.

= The System Event Manager provides an interface to the low-
level pen and key event queues, translates taps on silk-screened
icons into key events, sends pen strokes in the Graffiti area to the
Graffiti recognizer, and puts the system into low-power doze
mode when there is no user activity.

= The Time Manager provides real-time clock functions and sys-
tem tick functions.

The Alarm Manager

The Palm OS alarm manager provides support for setting real-time

alarms, for performing some periodic activity, or for displaying a re-
minder. This section helps you use the alarm manager by discussing
these topics:

« Alarm Manager Overview

e Using the Alarm Manager

« Alarm Manager Function Summary

Alarm Manager Overview
The alarm manager:
= Works closely with the time manager to handle real-time alarms.

= Sends launch codes to applications that set a specific time alarm
to inform the application the alarm is due.

= Handles alarms by application in a two cycle operation
— First, it notifies each application that the alarm has occurred.
— Second, it allows each application to display some UI.
= Allows only one alarm to be set per application
However, the alarm manager

18 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The Alarm Manager

= Doesn’t provide reminder dialog boxes.
= Doesn’t play the alarm sound.

The following section looks in some detail at how the alarm manag-
er and applications interact when processing an alarm.

Alarm Queue

The alarm gqueue contains all alarm requests. Triggered alarms are
queued up until the alarm manager can send the launch code to the
application that created the alarm. However, if the alarm queue be-
comes full, the oldest entry that has been both triggered and notified
is deleted to make room for a new alarm.

Alarm Manager Processing

When an alarm is triggered, the alarm manager notifies each appli-
cation that set an alarm for that alarm time via the sysAppLaunch-
CndAl ar nil'r i gger ed launch code.

After each application has processed this launch code, the alarm
manager sends each application the sysAppLaunchCndDi spl ay-
Al ar mlaunch code in order for the application to display the alarm.

If a new alarm time is triggered while an older alarm is still being
displayed, all applications with alarms scheduled for this second
alarm time are sent the sysAppLaunchCndAl ar mTri gger ed
launch code, but the display cycle is postponed until all earlier
alarms have finished displaying.

Alarm Scenario

The alarm manager typically first notifies each application that an
alarm has been triggered, then notifies each application to display
the alarm. Here’s how an application and the alarm manager typi-
cally interact when processing an alarm

1. When the alarm time is reached, the alarm manager finds the
first application in the alarm queue that set an alarm for this
alarm time.

2. The alarm manager sends this application the
sysAppLaunchCndAl ar mTri gger ed launch code.

Developing Palm OS 3.0 Applications, Part Il 19

Using Palm OS System Managers
The Alarm Manager

3. The application can now:
— Set the next alarm.
— Play a short sound.
— Perform some maintenance activity.

4. The alarm manager finds in the alarm queue the next appli-
cation that set an alarm and repeats steps 2 and 3.

5. This is process is repeated until no more applications are
found with this alarm time.

6. The alarm manager then finds once again the first application
in the alarm queue who set an alarm for this alarm time and
sends this application the sysAppLaunchCndDi spl ay-

Al ar mlaunch code

7. The application can now:
— Display a dialog box
— Display some other type of reminder

8. The alarm manager processes the alarm queue for the next
application that set an alarm for the alarm being triggered
and step 6 and 7 are repeated.

9. This is process is repeated until no more applications are
found with this alarm time.

Using the Alarm Manager

An applications can use the Palm OS function Al nfSet Al ar mto set
and/or clear an alarm.

An application can find out its current alarm setting by using the
Al nteet Al ar mfunction. This function returns the alarm date and
time (expressed in seconds since 1/1/1904). The return value is O if
no active alarm exists for the application.

Alarm Manager Function Summary

The following alarm manager functions are for application use:
e AlmGetAlarm

e AlmSetAlarm

20 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Error Manager

The Error Manager

The error manager can be used by applications or system software
for displaying unexpected runtime errors such as those that typical-
ly show up during program development. Final versions of applica-
tions or system software won’t use the error manager.

The error manager API consists of a set of functions for displaying
an alert with an error message, file name, and the line number
where the error occurred. If a debugger is connected, it is entered
when the error occurs.

The error manager also provides a “try and catch” mechanism that
applications can use for handling such runtime errors as out of
memory conditions, user input errors, etc. This mechanism is close-
ly modeled after the try/catch functionality of the recent ANSI C
specification.

This section helps you understand and use the error manager, dis-
cussing the following topics:

< Displaying Development Errors

= Understanding the Try-and-Catch Mechanism

« Using the Error Manager Macros

= Error Manager Function Summary

Displaying Development Errors

The error manager provides some compiler macros that can be used
in source code. These macros display a fatal alert dialog on the
screen and provide buttons to reset the device or enter the debugger
after the error is displayed. There are three macros: Er r Di spl ay,
Err Fatal Di spl ayl f,and Err NonFat al D spl ayl f.

= Err Di spl ay always displays the error message on the screen.

e ErrFat al D spl ayl f and Err NonFat al Di spl ayl f display
the error message only if their first argument is TRUE.

The error manager uses the compiler define ERROR_CHECK LEVEL
to control the level of error messages displayed. You can set the
value of the compiler define to control which level of error checking

Developing Palm OS 3.0 Applications, Part Il 21

Using Palm OS System Managers

The Error Manager

and display is compiled into the application. Three levels of error
checking are supported: none, partial, and full.

If you set The compiler...
ERR_CHECK_LEVEL to...

ERROR_CHECK_NONE (0) Doesn’t compile in any error calls.

ERROR _CHECK PARTI AL(1) Compilesinonly Err D spl ay
and Err Fat al Di spl ayl f calls.

ERROR _CHECK _FULL (2) Compiles in all three calls.

During development, it makes sense to set full error checking for
early development, partial error checking during alpha and beta test
periods, and no error checking for the final product. At partial error
checking, only fatal errors are displayed; error conditions that are
only possible are ignored under the assumption that the application
developer is already aware of the condition and designed the soft-
ware to operate that way.

Using the Error Manager Macros

Calls to the error manager to display errors are actually compiler
macros that are conditionally compiled into your program. Most of
the calls take a boolean parameter, which should be set to TRUE to
display the error, and a pointer to a text message to display if the
condition is true.

Typically, the boolean parameter is an in-line expression that evalu-
ates to TRUE if there is an error condition. As a result, both the ex-
pression that evaluates the error condition and the message text are
left out of the compiled code when error checking is turned off. You
cancall Err Fat al Di spl ayl f,or Err D spl ay, but using

Err Fat al Di spl ayl f makes your source code look neater.

For example, assume your source code looks like this:
result = DoSonet hi ng();

ErrFatal Di splaylf (result < 0, “unexpected
result from DoSonet hing”);

22 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The Error Manager

With error checking turned on, this code displays an error alert dia-
log if the result from DoSormret hi ng() is less than 0. Besides the
error message itself, this alert also shows the file name and line
number of the source code that called the error manager. With error
checking turned off, both the expression evaluationerr < 0 and
the error message text are left out of the compiled code.

The same net result can be achieved by the following code:
result = DoSonet hi ng();
#i f ERROR_CHECK_LEVEL != ERROR_CHECK_NONE
if (result < 0)
ErrDi splay (“unexpected result from
DoSonet hi ng”) ;
#endi f

However, this solution is longer and requires more work than sim-
ply calling Er r Fat al Di spl ayl f . It also makes the source code
harder to follow.

Understanding the Try-and-Catch Mechanism

The try-and-catch mechanism of the error manager is closely mod-
eled after the ANSI C try and catch standard.

The error manager is aware of the machine state of the Palm OS de-
vice and can therefore correctly save and restore this state. The built-
in try and catch of the compiler can’t be used because it’s machine
dependent.

Try and catch is basically a neater way of implementing a got o if an
error occurs. A typical way of handling errors in the middle of a
routine is to go to the end of the routine as soon as an error occurs
and have some general-purpose cleanup code at the end of every
routine. Errors in nested routines are even trickier because the result
code from every subroutine call must be checked before continuing.

When you set up a try/catch, you are providing the compiler with a
place to jump to when an error occurs. You can go to that error han-
dling routine at any time by calling Er r Thr ow. When the compiler
sees the Er r Thr owcall, it performs a got o to your error handling

Developing Palm OS 3.0 Applications, Part Il 23

Using Palm OS System Managers
The Error Manager

code. The greatest advantage to calling Er r Thr ow, however, is for
handling errors in nested subroutine calls.

Even if Er r Thr ow is called from a nested subroutine, execution im-
mediately goes to the same error handling code in the higher-level
call. The compiler and runtime environment automatically strip off
the stack frames that were pushed onto the stack during the nesting
process and go to the error handling section of the higher-level call.
You no longer have to check for result codes after calling every sub-
routine; this greatly simplifies your source code and reduces its size.

Using the Try and Catch Mechanism

The following example illustrates the possible layout for a a typical
routine using the error manager’s try and catch mechanism.

Listing 1.1 Try and Catch Mechanism Example

ErrTry {
p = MenPtrNew 1000);
if (!'p) ErrThrow err NoMenory);
MenSet (p, 1000, O0);
Creat eTabl e(p);
Print Tabl e(p);

}

ErrCatch(err) {
/'l Recover or cleanup aftera failure in the
/1 above Try block."err" is an int
/1l identifying the reason for the failure.

/1l You may call ErrThrow() if you want to
/1 junp out to the next Catch bl ock.

// The code in this Catch bl ock doesn't
/'l execute if the above Try bl ock conpl etes
// without a Thr ow.

if (err == errNoMenory)
ErrDisplay("Qut of Menory");
el se

24 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Feature Manager

ErrDi spl ay(" Sone other error");
} ErrEndCat ch
/1l You nmust structure your code exactly as
/ I above. You can’t have an ErrTry wi t hout an
[l ErrCatch { } ErrEndCatch, or vice versa.

Any call to Er r Thr owwithin the Er r Tr y block results in control
passing immediately to the Er r Cat ch block. Even if the subroutine
Cr eat eTabl e called Er r Thr ow, control would pass directly to the
Er r Cat ch block. If the Er r Tr y block completes without calling

Er r Thr ow, the Er r Cat ch block is not executed.

You can nest multiple Er r Tr y blocks. For example, if you wanted to
perform some cleanup at the end of Cr eat eTabl e in case of error,

e PutErr Try/Err Cat ch blocks in Cr eat eTabl e
= Clean up in the Er r Cat ch block first
e Call Er r Thr owto jump to the top-level Er r Cat ch

Error Manager Function Summary

The following error manager functions are available for application
use:

= ErrDisplay
ErrDisplayFileLineMsg

ErrFatalDisplaylf

ErrNonFatalDisplaylf

ErrThrow

The Feature Manager

A feature is a 32-bit value that has special meaning to both the fea-
ture publisher and to users of that feature. Features can be pub-
lished by the system or by applications.

Each feature is identified by a feature creator and a feature number:

= The feature creator is usually the database creator type of the ap-
plication that publishes the feature.

Developing Palm OS 3.0 Applications, Part Il 25

Using Palm OS System Managers

The Feature Manager

= The feature number is any 16-bit value used to distinguish be-
tween different features of a particular creator.

Once a feature is published, it remains present until it is explicitly
deleted. A feature published by an application sticks around even
after the application quits.

The System Version Feature

An example for a feature is the system version. This feature is pub-
lished by the system and contains a 32-bit representation of the sys-
tem version. The system version has a feature creator of “psys” and
a feature number of 1. Currently, the different versions of the system
software have the following numbers:

0x01003001 Pilot 1000 and Pilot 5000 (Palm OS 1.0)
0x02003000 PalmPilot and PalmPilot Professional (Palm OS 2.0)
0x03003000 Palm Il Connected Organizer (Palm OS 3.0)

Any application can find out the system version by looking for this
feature.

Application-Defined Features

When an application adds or removes capabilities from the base sys-
tem, it can create features to test for the presence or absence of those
capabilities. This allows an application to be compatible with multi-
ple versions of the system by refining its behavior, depending on
which capabilities are present or not. Future hardware platforms
may lack some capabilities present in the first platform, so checking
the system version feature is important.

This section introduces the feature manager by discussing these
topics:

« Using the Feature Manager

e Feature Manager Function Summary

26 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Feature Manager

Using the Feature Manager

Applications may find the feature manager useful for their own pri-
vate use. For example, an application may want to publish a feature
that contains a pointer to some private data it needs for processing
launch codes. Because an application’s global data is not generally
available while it processes launch codes, using the feature manager
is usually the easiest way for an application to get to its data.

To check whether a particular feature is present, call Ft r Get and
pass it the feature creator and feature number. If the feature exists,
Ft r Get returns the 32-bit value of the feature. If the feature doesn’t
exist, an error code is returned.

To publish a new feature or change the value of an existing one, call
Ft r Set and pass the feature creator and number, and the 32-bit
value of the feature. A published feature remains available until it is
explicitly removed by a call to Ft r Unr eqgi st er or until the system
resets; simply quitting an application doesn’t remove a feature pub-
lished by that application.

Features are split into two groups: ROM-based and RAM-based.
ROM-based features are stored in a separate table in ROM and can
never be removed; only system-defined features are in this table. All
features installed at runtime are in the RAM table. Ft r Get Byl ndex
accepts a parameter that specifies whether to search the ROM table
or RAM table.

Call Ft r Unr egi st er to remove RAM-based features created at
runtime by calling Ft r Set .

You can get a complete list of all published features by calling

Ft r Get Byl ndex repeatedly. Passing an index value starting at 0 to
Ft r Get Byl ndex and incrementing repeatedly by 1 eventually re-
turns all available features.

Feature Manager Function Summary

The following feature manager functions are available for applica-
tion use:

e FtrGet
e FtrGetBylndex

Developing Palm OS 3.0 Applications, Part Il 27

Using Palm OS System Managers
File Streaming Application Program Interface

e FtrSet
= FtrUnregister

File Streaming Application Program Interface

The file streaming functions in Palm OS 3.0 let you work with large
blocks of data. File streams can be arbitrarily large—they are not
subject to the 64k maximum size limit imposed by the memory
manager on allocated objects. File streams can be used for perma-
nent data storage; in Palm OS 3.0, their underlying implementation
is a PalmOS database. You can read, write, seek to a specified offset,
truncate, and do everything else you'd expect to do with a desktop-
style file.

Other than backup/restore, Palm OS does not provide direct Hot
Sync support for file streams, and none is planned at this time.

The use of double-buffering imposes a performance penalty on file
streams that may make them unsuitable for certain applications.
Record-intensive applications tend to obtain better performance
from the Data Manager.

Using the File Streaming API

The File Streaming API is derived from the C programming lan-
guage’s <st di 0. h> interface. Any C book that explains the

<st di 0. h> interface should serve as a suitable introduction to the
concepts underlying the Palm OS File Streaming API. This section
provides only a brief overview of the most commonly used file
streaming functions.

The Fi | eOpen function opens a file, and the Fi | eRead function
reads it. The semantics of Fi | eRead and Fi | eW i t e are just like
their <st di 0. h> equivalents, the f r ead and f wri t e functions.
The other <st di 0. h> routines have obvious analogs in the File
Streaming API as well.

28 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
File Streaming Application Program Interface

For example,

theStream=Fil eOpen(cardld, "Ki || er AppDat aFi | e",
"KILR, "KILD , fileMddeReadOnly,
&err);

As on a desktop, the filename is the unique item. The creator ID and
filetype are for informational purposes and your code may require
that an opened file have the correct type and creator.

Normally, the Fi | eQpen function returns an error when it attempts
to open or replace an existing stream having a type and creator that
do not match those specified. To suppress this error, pass the

fil eMbdeAnyTypeCr eat or selector asaflag inthe openMde pa-
rameter to the Fi | eOpen function.

To read data, use the Fi | eRead function as in the following exam-
ple:

Fi |l eRead(t heStream &buf, objSize, nuntbjs,
&err);

To free the memory used to store stream data as the data is read, you
can use the Fi | eCont r ol function to switch the stream to destruc-
tive read mode. This mode is useful for manipulating temporary
data; for example, destructive read mode would be ideal for adding
the objects in a large data stream to a database when sufficient mem-
ory for duplicating the entire file stream is not available. You can
switch a stream to destructive read mode by passing the

fil eOpDestructi veReadMbde selector as the value of the op pa-
rameter to the Fi | eCont r ol function.

The Fi | eDnRead function can read data directly into a Database
Manager chunk for immediate addition to a PalmOS database.

File Streaming Data Structures

This section lists enumerated types used by file streaming functions.

Developing Palm OS 3.0 Applications, Part Il 29

Using Palm OS System Managers
File Streaming Application Program Interface

FileOpEnum

This data type describes the file streaming operation to perform. Itis
passed as the value of the op parameter to the Fi | eCont r ol func-
tion. Normally, you do not call the Fi | eCont r ol function yourself;
it is called for you by most of the other file streaming functions or
macros to perform common file streaming operations. However,
you may call Fi | eContr ol explicitly to enable specialized read
modes.

Listing 1.2 FileOpEnum type definition

t ypedef enum Fi | eOpEnum {

fil

fil
Il
/11
Il
Il
/11
Il
Il
/11
Il
Il
11
Il
Il
11
Il
Il
11
Il

fil
Il
11
/11
Il
Il

eOpNone = 0,// no-op

eQpDestructi veReadMode,

Enter destructive read node, and rewind streamto its
begi nning. Once in this node, there is no turning back:
streanis contents after closing (or crash) are undefi ned.
Destructive read node deletes file stream data bl ocks as
data is being read, thus freeing storage autonmatically.
You cannot call FileWite, FileSeek or FileTruncate on a
streamin this node. An exception to this rule applies to
streans opened in "wite + append” node and then switched
into destructive read node. FileWite appends data to this
stream while preserving the current file position, and
subsequent reads pick up where they left off (you can think
of this feature as a pseudo- pi pe).

ARGUMENTS:

stream = open stream handl e

val ueP = NULL

val ueLenP = NULL

RETURNS:

zero on success; fileErr... on error

eOpCGet EOFSt at us,

get end-of-file status (like Cruntine’s feof)
(err = fileErrECF) indicates end of file condition
use FileC earerr to clear this error status
ARGUMENTS:

stream = open stream handl e

30 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
File Streaming Application Program Interface

[/ val ueP = NULL

/1 val ueLenP = NULL

/| RETURNS:

/[l zero if _not_ end of file;
/1 non-zero if end of file

fileQpCetLastError,

/'l get error code fromlast operation on stream and clear the
/1l last error code value. Doesn’t change status of end-of-file
/[l or I/Oerrors -- use FileC earerr to reset all error codes.
/1 ARGUVMENTS:

/] stream = open stream handl e

/1l valueP = NULL

/1 val ueLenP = NULL

/'l RETURNS:

/'l Error code fromlast file stream operation

fileOpd earError,

/[l clear 1/O and end of file error status, and |ast error
/1 ARGUMENTS:

[l stream = open stream handl e

/1 val ueP = NULL

/1 val ueLenP = NULL

/| RETURNS:

/'l zero on success; fileErr... on error

fileOpGetl CErrorStatus,

/1l get 1/Oerror status (like Cruntine's ferror)
/'l use FileCearerr to clear this error status
/'l ARGUMENTS:

/'l stream = open stream handl e

/1 valueP = NULL

/1 val ueLenP = NULL

/1 RETURNS:

/[l zero if _not_1/Oerror;

/[l non-zero if I/Oerror is pending

fileOpGet CreatedSt at us,
[l find out whether file was created by FileOpen function
/1 ARGUMENTS:

Developing Palm OS 3.0 Applications, Part Il 31

Using Palm OS System Managers
File Streaming Application Program Interface

Il

Il
11
Il
11
/11
Il
Il

fi
Il
/11
Il
Il
11
Il
Il
11
Il
Il
11
Il
11
/11
Il
Il
/11

fi
/11
I
Il
11
Il
Il
11

stream = open stream handl e

val ueP = ptr to Bool ean type vari abl e

val ueLenP = ptr to Long variable set to sizeof (Bool ean)
RETURNS:

zero on success; fileErr... on error;

t he Bool ean variable will be set to

non-zero if the file was created.

epCet OpenDbRef

Get the open database reference (handle) of the underlying
dat abase that inplenments the stream (NULL if none); this is
needed for perform ng Pal nOS-specific operations on the
under| yi ng dat abase, such as changing or getting creator
and type, version, backup/reset bits, etc.

ARGUMENTS:

stream = open stream handl e

val ueP = ptr to DnOpenRef type variabl e

val ueLenP = ptr to Long variable set to sizeof (DnOpenRef)
RETURNS:

zero on success; fileErr... on error;

t he DnOpenRef variable will be set to the

file's open db reference that nay be passed

to Data Manager calls;

WARNI NG

Do not nmake any changes to the data of the underlying
dat abase -- doing so will corrupt the file stream
epFl ush,

flush any cached data to storage

ARGUMENTS:

stream = open stream handl e

val ueP = NULL

val ueLenP = NULL

RETURNS:

zero on success; fileErr... on error;

renoved systemuse-only info that appears here in FileStreamh

} Fil eOpEnum

32 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
File Streaming Application Program Interface

Listing 1.3

FileOriginEnum

This data type describes the origin of a seek operation on a file
stream. It is passed as the value of the or i gi n parameter to the
Fi | eSeek function.

FileOriginEnum type definition

t ypedef enum Fi

[eOri gi nEnum {

fileOriginBeginning = 1,
/'l fromthe beginning (first data byte of file)

fileOiginCur

rent,

/[l fromthe current position

fileOiginEnd

/1 fromthe end of file (one position beyond | ast data byte)
} FileOigi nEnum

Open Mode Constants

This section lists constants passed in the openMbde parameter to
the Fi | eOpen function. These constants specify the mode in which
a file stream is opened.

For each file stream, you must pass to the Fi | eQpen function only
one of the primary mode selectors listed in Table 1.1.

Table 1.1 Primary Open Mode Constants:
Primary Selectors (use only one) Comment
fil eMbdeReadOnly Open for read-only access
fil eModeReadWite Open/create for read/write access, dis-

fil eMbdeUpdat e

fil eMbdeAppend

carding any previous version of stream

Open/create for read/write, preserving
previous version of stream if it exists

Open/create for read/write, always
writing to the end of the stream

Developing Palm OS 3.0 Applications, Part Il 33

Using Palm OS System Managers
File Streaming Application Program Interface

You can use the | operator (bitwise inclusive OR) to append to a
primary mode selector one or more of the secondary mode selectors
listed in Table 1.2.

Table 1.2 Secondary Open Mode Constants

Secondary Selectors (append to primary) Comment

fileMbdeDont Overwite Preventsfi | eMbdeReadW i t e from
discarding an existing stream having
the same name; may only be specified
together with fi | eMbdeReadWite

fil eModeLeaveQpen Leave stream open when application
quits. Most applications should not use
this option.

fil eMbdeExcl usi ve No other application can open the

stream until the application that
opened it in this mode closes it.

fil eMbdeAnyTypeCreat or Accept any type/creator when opening

or replacing an existing stream. Nor-
mally, the Fi | eOpen function opens
only streams having the specified cre-
ator and type. Setting this option en-
ables the Fi | eOpen function to open
streams having a type or creator other
than those specified.

fil eMbdeTenporary Delete the stream automatically when it
is closed. For more information, see
Comment section of Fi | eOQpen func-
tion description.

34 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

File Streaming Function Summary
= FileClearerr

= FileClose

= FileControl

e FileDelete

e FileDmRead

e FileEOF

= FileError

e FileFlush

= FileGetLastError
= FileOpen

= FileRead

= FileReadlLow

= FileRewind
= FileSeek

= FileTell

e FileTruncate
e FileWrite

The Sound Manager

The Palm OS sound manager provides an extendable API for play-
ing custom sounds and system sounds, and for controlling default
sound settings. Although the sound APl accommodates multichan-
nel design, the system provides only a single sound channel at
present.

The sound hardware can play only one simple tone at a time
through an onboard piezoelectric speaker. Note that for a particular
amplitude level, the Palm Il device is slightly louder than its prede-
Cessors.

Single tones can be played by the SndDoCnd function and system
sounds are played by the SndPI aySyst enfSound function. The

Developing Palm OS 3.0 Applications, Part Il 35

Using Palm OS System Managers

The Sound Manager

end-user can control the amplitude of alarm sounds, game sounds,
and system sounds by means of the Preferences application. Sys-
tem-supplied sounds include the Information, Warning, Error, Start-
up, Alarm, Confirmation, and Click sounds.

Palm OS 3.0 introduces support for Standard MIDI Files (SMFs), for-
mat 0. An SMF is a note-by-note description of a tune—PalmQOS
doesn't support sampled sound, multiple voices or complex “instru-
ments.” You can download the SMF format specification from the
http://ww. m di . or g Web site.

The alarm sounds used in the built-in Date Book application are
SMFs stored in the System MIDI Sounds database and can be
played by the SndPI ay SMF function.

All SMF records in the System MIDI Sounds database are available
to the user. Developers can add their own alarm SMFs to this data-
base as a way to add variety and personalization to their devices.
You can use the sysFi | eTM di filetype and sysFi | eCSyst em
creator to open this database.

Each record in the database is a single SMF, with a header structure
containing the user-visible name. The record includes a song header,
then a track header, followed by any number of events. The system
only recognizes the keyDown, keyUp and t enpo events in a single
track; other commands which might be in the SMF are ignored. For
more information, see the following sections in this book:

= “Adding a Standard MIDI File to a Database” on page 38
= “MIDI Record Type” on page 46

« “MIDI Record Header” on page 47

You can use standard MIDI tools to create SMF blocks on desktop
computers, or you can write code to create them on the Palm OS de-
vice. The sample code project "RockMusic"”, particularly the routines
in the MakeSMF. c file, can be helpful to see how to create an SMF
programmatically.

Previous versions of PalmOS don't support SMFs or asynchronous
notes; don't use the new routines or commands when the Ft r Get
function returns a system version of less than 0x03000000. Doing
so will crash your application. For more information, see the
Retrieving the System Version Number section beginning on

36 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

Compatibility
Note

page 51 in the “Developing Palm OS Applications” chapter of Part |
of this documentation suite.

Synchronous and Asynchronous Sound

The SndDoCnd function executes synchronously or asynchronously
according to the operation it is to perform. The cndNot eOn and
cndFr egOn operations execute asynchronously; that is, they are
non-blocking and can be interrupted by another sound command.
In contrast, the cndFr eqDur at i onAnp operation is synchronous
and blocking (it cannot be interrupted).

The SndPl ay SMF function is also synchronous and blocking; how-
ever, the Sound Manager polls the key queue periodically during
playback and halts playback in progress if it finds events generated
by user interaction with the screen, digitizer, or hardware-based
buttons. Optionally, the caller can override this default behavior to
specify that the SndPl ay SMF function play the SMF to completion
without being interrupted by user events.

Using the Sound Manager

Before playing custom sounds that require a volume (amplitude)
setting, your code needs to discover the user’s current volume set-
tings. To do so in Palm OS 3.0, pass one of the pr ef SysSoundVol -
une, pr ef GameSoundVol une, or pr ef Al ar nSoundVol une selec-
tors to the Pr ef Get Pr ef er ence function.

See “Sound Preferences Compatibility Information” starting on
page 42 for important information regarding the correct use of
sound preferences in various versions of Palm OS.

You can pass the returned amplitude information to the

SndPl ay SMFE function as one element of a SndSnf Opt i onsType
parameter block. Alternatively, you can pass amplitude information
to the SndDoCnd function as an element of a SndConmandType
parameter block.

To execute a sound manager command, pass to the SndDoCnd func-
tion a sound channel pointer (presently, only NULL is supported and

Developing Palm OS 3.0 Applications, Part Il 37

Using Palm OS System Managers

The Sound Manager

maps to the shared channel), a pointer to a structure of
SndCommandType, and a flag indicating whether the command
should be performed asynchronously.

To play SMFs, call the SndPI ay SMF function. This function, which
is new in Palm OS 3.0, is used by the built in Date Book application
to play alarm sounds.

To play single notes, you can use either of the SndPl ay SMF or
SndDoCd functions. Of course, you can use the SndPl ay SMF func-
tion to play a single MIDI note from an SMF. You can also use the
SndDoCd function to play a single MIDI note by passing the snd-
CmdNot eOn command selector to this function. To specify by fre-
guency the note to be played, pass the sndCnmdFr eqOn command
selector to the SndDoCnrd function.You can pass the sndCndQui et
selector to this function to stop playback of the current note.

The system provides no specialized API for playing game sounds or
alarm sounds. When an alarm triggers, the application that set the
alarm must use the standard Sound Manager API to play the sound
associated with that alarm. Similarly, game sounds are implemented
by the game developer using any appropriate element of the Sound
Manager API. Games should observe the pr ef GameSoundVol une
setting, as described in the Sound Preferences Compatibility Infor-
mation section starting on page 42.

To play a default system sound, such as a click or an error beep, pass
the appropriate system sound ID to the SndPI aySyst enfSound
function, which will play that sound at the volume level specified
by the user’s system sound preference. For the complete list of sys-
tem sound IDs, see the SoundMyr . h file provided by the Palm OS
SDK.

Adding a Standard MIDI File to a Database

To add a format 0 standard MIDI file to the system MIDI database,
you can use code similar to the AddSnf ToDat abase example func-
tion shown in the following code listing. This function returns 0 if
successful, and returns a non-zero value otherwise. To use a differ-
ent database, pass different creator and type values to the
DmOpenDat abaseBy TypeCr eat or function.

38 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

Listing 1.4 AddSmfToDatabase

[l Useful structure field offset macro
#define prvFieldOfset(type, field)((DWrd) (& (type*)0)->field))

// returns O for success, nonzero for error
i nt AddSnf ToDat abase(Handl e snfH, CharPtr trackNane)

{
Err err = 0;
DmOpenRef dbP;
Ul nt recl ndex;
Voi dHand recH,;
Byt e* rechk;
Byt e* snf P;
Byt e bM di O f set ;
ULong dwsnt Si ze;

SndM di RecHdr Type recHdr;

bM di O fset = si zeof (SndM di RecHdr Type) + StrlLen(trackName) + 1;
dwsnf Si ze = MenHandl eSi ze(snf H) ;

recHdr. si gnature = sndM di RecSi gnat ur e;
recHdr.reserved = O;
recHdr. bDataOf f set = bM di O f set;

dbP = DnOpenDat abaseByTypeCreator (sysFil eTM di, sysFil eCSystem
dmvbdeReadWite | dmvbdeExcl usive);
if (!dbP)
return 1;

// Allocate a newrecord for the mdi resource
recl ndex = dmvaxRecor dl ndex;
recH = DrNewRecor d(dbP, &recl ndex, dwsnfSize + bMdi O fset);
if ('recH)
return 2;

/'l Lock down the source SMF and target record and copy the data
snf P = MenHandl eLock(snf H);
recP MenHandl eLock(recH);

Developing Palm OS 3.0 Applications, Part Il 39

Using Palm OS System Managers
The Sound Manager

err = DiWite(recP, 0, & ecHdr, sizeof(recHdr));

if (lerr) err = DnttrCopy(recP, prvFieldOfset(SndM di RecType,
nanme), trackNane);

if (lerr) err = DWWite(recP, bMdi Ofset, snfP, dwsSnfSi ze);

/1 Unlock the pointers

MenHandl eUnl ock(snf H);

MenHandl eUnl ock(recH);

/ | Because DmNewRecord marks the new record as busy,

/1 we nust call DnRel easeRecord before closing the database
DRel easeRecor d(dbP, reclndex, 1);

DCl oseDat abase(dbP) ;

return err;

Saving References to Standard MIDI Files

To save a reference to a SMF stored in a particular database, save its
record ID and the name of the database in which it is stored. Do not
store the database ID between invocations of your application, be-
cause various events, such as a Hot Sync, can invalidate database
IDs. Using an invalid database ID can crash your application.

Retrieving a Standard MIDI File From a Database

Standard MIDI Files (SMFs) are stored as individual records in a
MIDI record database—one SMF per record. Palm OS defines the
database type sysFi | eTM di for MIDI record databases. The sys-
tem MIDI database, with type sysFi | eTM di and creator sysFi -
| eCSyst em holds multiple system alarm sounds. In addition, your
applications can create their own private MIDI databases of type
sysFi | eTM di and your own creator.

To obtain a particular SMF, you need to identify the database in
which it resides and the specific database record which holds the
SMF data. The database record itself is always identified by record
ID. The MIDI database in which it resides may be identified by
name or by database ID. If you know the creator of the SMF, you can

40 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

use the SndCr eat eM di Li st utility function to retrieve this infor-
mation. Alternatively, you can use the Data Manager record API
functions to iterate through MIDI database records manually in
search of this information.

The SndCr eat eM di Li st utility function retrieves information
about Standard Midi Files from one or more MIDI databases. This
information is returned as a table of entries. Each entry contains the
name of an SMF; its unique record ID; and the database ID and card
number of the record database in which it resides.

Once you have the appropriate identifiers for the record and the da-
tabase in which it resides, you need to open the MIDI database. If
you have identified the database by type and creator, pass the
sysFi | eTM di type and an appropriate creator value to the
DnOpenDat abaseByTypeCr eat or function. For example, to re-
trieve a SMF from the system MIDI database, pass type

sysFi | eTM di and creator sysFi | eCSyst em The

DnOpenDat abaseByTypeCr eat or function returns a reference to
the open database.

If you have identified the database by name, rather than by creator,
you’ll need to discover its database ID in order to open it. The

DnFi ndDat abase function returns the database ID for a database
specified by name and card number. You can pass the returned ID to
the DnOpenDat abase function to open the database and obtain a
reference to it.

Once you have opened the MIDI database, call

DnFi ndRecor dByl Dto get the index of the SMF record. To retrieve
the record itself, pass this index value to either of the functions Dm
Quer yRecor d or Dneet Recor d. When you intend to modify the
record, use the Dnizet Recor d function—it marks the record as
busy. When you intend to use the record in read-only fashion, use
the DntQuer yRecor d function —it does not mark the record as
busy. You must lock the handle returned by either of these functions
before making further use of it.

To lock the database record’s handle, pass it to the MenHandl eLock
function, which returns a pointer to the locked record holding the
SMF data. You can pass this pointer to the SndPI ay SMF function in
the snf P parameter to play the MIDI file.

Developing Palm OS 3.0 Applications, Part Il 41

Using Palm OS System Managers
The Sound Manager

When you’ve finished using the record, unlock the pointer to it by
calling the MenPt r Unl ock function. If you’ve used DmGet Recor d
to open the record for editing, you must call DnRel easeRecor d to
make the record available once again to other callers. If you used
DnQuer yRecor d to open the record for read-only use, you need
not call DnRel easeRecor d.

Finally, close the database by calling the DnCl oseDat abase func-
tion.

Sound Preferences Compatibility Information

The sound preferences implementation and API varies slightly
among versions 1.0, 2.0, and 3.0 of Palm OS. This section describes
how to use sound preferences correctly for various versions of Palm
os.

Because versions 2.0 and 3.0 of Palm OS provide backward compat-
ibility with previous sound preference mechanisms, applications
written for an earlier version of the sound preferences API will get
correct sound preference information from newer versions of Palm
OS. However, it is strongly recommended that new applications use
the latest API.

Using Sound Preferences on All Palm OS Devices

Because the user chooses sound preference settings, your applica-
tion should respect them and adhere to their values. Further, you
should always treat sound preferences as read-only values.

At reset time, the sound manager reads stored preference values
and caches them for use at run time. The user interface controls up-
date both the stored preference values and the sound manager’s
cached values.

The Pr ef Set Pr ef er ence function writes to stored preference val-
ues without affecting cached values. New values are read at the next
system reset. The system-use-only SndSet Def aul t Vol une func-
tion updates cached values but not stored preferences. Applications
should avoid modifying stored preferences or cached values in
favor of respecting the user’s choices for preferences.

42 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

Using Palm OS v. 1.0 Sound Prefs

To read sound preference values in version 1.0 of Palm OS, call the
Pr ef Get Pr ef er ences function to obtain the data structure
shown in Listing 1.5. This Syst enPr ef er encesTypeV10 struc-
ture holds the current values of all system-wide preferences.You
must extract from this structure the values of the sysSoundLevel
and al ar nSoundLevel fields. These values are the only sound
preference information that Palm OS version 1.0 provides.

Each of these fields holds a value of either s| On (on) or sl O f (off).
Your code must interpret the values read from these fields as an in-
dication of whether those volumes should be on or off, then map
them to appropriate amplitude values to pass to Sound Manager
functions: map the sl On selector to the sndMaxAnp constant (de-
fined in SoundMgr.h) and map the s| O f selector to the value O (ze-
ro).

Listing 1.5 Syst enPref erencesTypeV10 data structure

t ypedef struct {
Wbrd version; // Version of preference info

/1l International preferences

CountryType country;// Country the device is in

Dat eFor mat Type dateFormat;// Format to display date in

Dat eFor mat Type | ongDat eFormat;// Format to display date in
Byt e weekStartDay;// Sunday or Monday

Ti meFor mat Type tinmeFormat;// Format to display tinme in

Nunmber For mat Type nunber Format;// Format to di splay nunbers in

/'l system preferences
Byte autoOrfDuration;// Time period before shutting off
SoundLevel TypeV20 sysSoundLevel ;//error beeps
SoundLevel TypeV20 al ar nSoundLevel ;//al arm only
Bool ean hi deSecret Records;// True to not display records with
/'l their secret bit attribute set
Bool ean devi ceLocked; // Device |ocked until the system
/1l password is entered
Wor dsysPref Fl ags;// M scel | aneous system pref flags copied into
/1 the gl obal GSysPrefFlags at boot tine.

Developing Palm OS 3.0 Applications, Part Il 43

Using Palm OS System Managers
The Sound Manager

SysBatt er yKi ndsysBatteryKind;// The type of batteries install ed.
/1l This is copied into the gl obals
/] GSysbatteryKind at boot tine.

} SystenPreferencesTypeV1O;

Using Palm OS v. 2.0 Sound Prefs

Version 2.0 of Palm OS introduces a new API for retrieving individ-
ual preference values from the system. You can pass any of the selec-
tors pr ef SysSoundLevel V20, pr ef GaneSoundLevel V20, or

pr ef Al ar nSoundLevel V20 to the Pr ef Get Pr ef er ence func-
tion to retrieve individual amplitude preference values for alarm
sounds, game sounds, or for overall (system) sound amplitude. As
in Palm OS 1.0, each of these settings holds values of either s| On
(on) or sl O f (off), as defined in the Preferences.h file. Your code
must interpret the values read from these fields as an indication of
whether those volumes should be on or off, then map them to ap-
propriate amplitude values to pass to Sound Manager functions:
map the sl On selector to the sndMaxAnp constant (defined in
SoundMgr.h file) and map the sl O f selector to the value 0 (zero).

For a complete listing of selectors you can pass to the
Pr ef Get Pr ef er ence function, see the Preferences.h file.

Using Palm OS v. 3.0 Sound Prefs

Palm OS version 3.0 enhances the resolution of sound preference
settings by providing discrete amplitude levels for games, alarms,
and the system overall. As usual, do not set preferences yourself,
but treat them as read-only values indicating the proper volume
level for your application to use.

Palm OS 3.0 defines the new sound amplitude selectors

pr ef SysSoundVol une, pr ef GaneSoundVol une, and

pr ef Al ar mSoundVol une for use with the Pr ef Get Pr ef er -
ence function. The values this function returns for these selectors
are actual amplitude settings that may be passed directly to Sound
Manager functions.

44 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

Compatibility
Note

The amplitude selectors used in previous versions of Palm OS (all
ending with the Level suffix, such as pr ef sGaneSoundLevel)
are obsoleted in version 3.0 of Palm OS and replaced by new se-
lectors. The old selectors remain available in Palm OS 3.0 to en-
sure backward compatibility and are suffixed V20 (for example,

pr ef sGaneSoundLevel V20).

Ensuring Sound Preferences Compatibility

For greatest compatibility with multiple versions of the sound pref-
erences mechanism, your application should condition its sound
preference code according to the version of Palm OS on which it is
running. Information on Retrieving the System Version Number is
available on page 51 of the “Developing Palm OS Applications”
chapter of Part | of this documentation suite.

When your application is launched, it should retrieve the system
version number and save the results in its global variables (or equiv-
alent structure) for use elsewhere. If the major version number is 3
(three) or greater, then use the 3.0 mechanism for obtaining sound
amplitude preferences, since this reflects the user’s selection most
accurately. If the major version number is 2 (two), then use the 2.0
mechanism described in Using Palm OS v. 2.0 Sound Prefs starting
on page 44 of this book. If it is 1 (one), then use the 1.0 mechanism
described in Using Palm OS v. 1.0 Sound Prefs starting on page 43 of
this book.

Avoid calling new API’s (including new selectors) when running on
older versions of Palm OS that do not implement them. In particu-
lar, note that violating any of the following conditions will cause
your application to crash:

= Do not call either of the SndPI ay SMF or SndCr eat eM di Li st
functions on versions of PalmOS prior to 3.0.

= Do not pass any selector other than sndCndFr eqDur at i onAnp
to the SndDoCnd function on versions of PalmQOS prior to 3.0.

Developing Palm OS 3.0 Applications, Part Il 45

Using Palm OS System Managers

The Sound Manager

Figure 1.1

Listing 1.6

Sound Manager Data Structures

This section describes the data structures that define the MIDI
records and parameter blocks used by sound manager functions.
Figure 1.1 depicts a Palm OS MIDI record graphically.

Palm OS Midi Record

signature (4 bytes)

sndMidiRecType

sndMidiRecHdrType
bDataOffset (1 byte)

reserved (1 byte)

name (1 or more bytes)
< null-terminated
* size varies

SMF 0

(standard
MIDI

track)

MIDI Record Type

This variable-length header precedes the actual MIDI data in a
PalmOS MIDI record. It consists of a fixed-size MIDI Record Header
followed by the name of the MIDI track.

SndMidiRecType structure

t ypedef struct

SndM di RecHdr Type
/1 fixed-size portion of the Palm COS M DI
name[1] ;
[l Track nane:

Char

/'l length of

SndM di RecType {
hdr ;
record header

1 or
nane,

nmore chars including NULL term nator.
including NULL term nator, nust not be

46 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

/'l greater than sndM di NanmeLength. The NULL character mnust
/'l always be provided, even for tracks that have no nane
} SndM di RecType;

MIDI Record Header

This structure defines the fixed-size portion of a Palm OS MIDI
record.

Listing 1.7 SndMidiRecHdrType structure

t ypedef struct SndM di RecHdr Type {
DWord si gnature;
/1l set to sndM di RecSi gnature
Byte bDataOfset;
/'l offset fromthe beginning of the record
/1l to the Standard Mdi File data stream
Byte reserved,
/'l set to zero
} SndM di RecHdr Type;

SndMidiListltemType

When the SndCr eat eM di Li st function returns TRUE, its ent HP
parameter holds a handle to a memory chunk containing an array of
SndM di Li st 1t enmType structs.

Listing 1.8 SndMidiListltemType structure

t ypedef struct SndM diListltenType{
Char nane[sndM di NaneLengt h] ;
/1 including NULL term nator
ULong uni queRecl D
Local | D dbl D;
Ul nt car dNo;
} SndM di Li stltenmlype;

Developing Palm OS 3.0 Applications, Part Il 47

Using Palm OS System Managers
The Sound Manager

SndCommandType

This structure is passed as the value of the cndP parameter to the
SndDoCd function. Its parameters are defined by the
SndCndl DTy pe enumerated constant.

Listing 1.9 SndCommandType structure

t ypedef struct SndCommandType {
SndCndl DType cnd;
/1 command id
Long parant,
/1l use varies according to value of cnd
U nt paran®;
/'l use varies according to value of cnd
U nt paranS,
/'l use varies according to value of cnd
} SndCommandType;

SndCmdIDType

This enumerated type defines the commands that may be specified
in the cnd field of the SndConmandType struct. Each command de-
fines its own specific use of the par aml, par an, and par anB
fields.

Listing 1.10 SndCmdIDType type definition

t ypedef enum SndCndl DType {
sndCrdFr eqDur ati onAnp = 1
/1l play a sound, blocking for the entire
[l duration (except for zero anplitude)
[l paraml = frequency in Hz
[l paran2 = duration in mlliseconds
[l paranB = anplitude (0 - sndMaxAnp);
/1 if value of paranB is O,return inmediately

/'l Commands added in PalmGS v3.0

[[***| MPORTANT* * *

/'l Please note that SndDoCnd() in Palm OS before v3.0 wi |
/'l Fatal Error on unknown commands (anything other than

48 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The Sound Manager

/1 sndCrdFr eqDurati onAnp). For this reason, applications

/1 wishing to take advantage of these new commands whil e staying
/1l conpatible wwth the earlier version of the GS, _nust_ avoid
/1 using these conmmands when running on OS versions |ess than
/1 v3.0 (see sysFtrNumROWersion in Systemvgr. h).

/1 Beginning with v3.0, SndDoCnd has been fixed to return

/'l sndErrBadParam when an unknown command i s passed.

sndCndNot eOn,

/1l play sound at specified MD key index

/1 with max duration and vel ocity;

[l returninmrediately, without waiting for playback to conpl ete.
/1 any other sound play request nmade before

/1l this one conpletes will interrupt it.

[l paraml = M DI key index (0-127)

[l paranm2 = maxi mum duration in mlliseconds

/1l paramB = velocity (0 - 127) to be interpolated as anplitude
sndCdFr qOn,

/1 simlar to sndCrdNot eOn except note to play

/'l is specified as frequency in Hz.

/1l play sound at specified frequency

/1 with max duration and vel ocity;

[l return imedi ately, without waiting for playback to conplete
/1 any other sound play request nmade before

/1l this one conpletes will interrupt it.

[l paranml = frequency in Hz

[l paranm2 = maxi mum duration in mlliseconds

/1l paranmB = anplitude (0 - sndMaxAnmp)

sndCndQui et

/'l stop playback of current sound

[l paraml = 0

[l param2 = 0

/[l paranB = 0

} SndCndl DType;

Developing Palm OS 3.0 Applications, Part Il 49

Using Palm OS System Managers
The Sound Manager

SndSmfOptionsType

This struct is passed as the value of the sel P parameter to the
SndPI ay SMF function.

t ypedef struct SndSnf OptionsType {
/[l dwStartM|1iSec and dwendM | | i Sec are used as inputs to the
/1 fn for sndSnfCndPl ay and as outputs for sndSnf CndDurati on

DWor d dwStartM I |i Sec;

/'l position at which to begin playback, expressed as nunber of
/1 mlliseconds from begi nning of track

/[l 0 ="start fromthe begi nning"

DWor d dwendM I |'i Sec;
/1l position at which to stop playback, expressed as nunber of
/1 mlliseconds from begi nning of track

[l sndSnfPlayAllMIliSec = "play entire track";
/1l the default is "play entire track"
/1 if this structure is not passed in

Ul nt anpl i t ude;

/1 The anplitude and interruptible fields

[l are used only for sndSnf ChdPl ay

/'l relative volunme: 0 - sndMaxAnp, inclusively
/1l the default is sndMaxAnmp if this structure
/1l is not passed in; if 0, the play wll be

/'l skipped and the call will return inmediately

Bool ean i nterrupti bl e;

/1 If true, sound play will be interrupted if user interacts
/1 with the controls (digitizer, buttons, etc.) even if the
/1l interaction does not generate a sound command. If false,
/'l playback is not interrupted; the default behavior is

/1l "interruptible"” if this structure is not passed in

DWor d reserved;
/] RESERVED! -- MJST SET TO ZERO BEFORE PASSI NG
} SndSnf Qpti onsType;

50 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The Sound Manager

SndSmfChanRangeType

This struct is passed as the value of the chanRangeP parameter to
the SndPI ay SMF function.

Listing 1.11 SndSmfChanRangeType structure

t ypedef struct SndSnf ChanRangeType {
/'l specifies a range of enabl ed channel s.
/'l events for channels outside this range are ignored.
[l if this structure is not passed,
/1 all channels in track are honored.
Byt e bFi r st Chan;
/1l first MDI channel (0-15 decinal)
Byt e bLast Chan;
/1l last M DI channel (0-15 decinmal)}
SndSnf ChanRangeType;

Sound Callback Functions

These structures define callback functions to be executed by the
SndPI ay SMF function.

A non-null completion callback function is executed after playback
of the SMF completes.

t ypedef void SndConpl FuncType(voi d* chanP, DwWrd dwUser Dat a) ;
t ypedef SndConpl FuncType* SndConpl FuncPtr ;

A non-null blocking callback function is executed periodically dur-
ing playback of the SMF. This function returns TRUE to continue
playback, or FALSE to cancel playback. Suggested uses for this func-
tion include updating the user interface or checking for user input.
You can test sysTi cksAvai | abl e to determine the maximum
amount of time available for completion of this function.

t ypedef Bool ean SndBl ocki ngFuncType(voi d* chanP, DWrd dwUser Dat a,
Long sysTi cksAvail abl e);
t ypedef SndBl ocki ngFuncType* SndBl ocki ngFuncPtr ;

Developing Palm OS 3.0 Applications, Part Il 51

Using Palm OS System Managers
The Sound Manager

Both kinds of callbacks are wrapped in a SndCal | backl nf oType
struct.

t ypedef struct SndCal | backl nfoType {
Ptr funcP;
/'l pointer to the callback function (NULL = no function)
DWord dwUser Dat a;
/1l value to pass in dwJserData paraneter of callback function
} SndcCal | backl nf oType;

The SndSnf Cal | backsType struct is passed as the value of the
cal | backsP parameter to the SndPl ay SMF function.

t ypedef struct SndSnf Cal | backsType {
SndCal | backl nf oType conpl eti on;
/1 conpletion callback function (see SndConpl FuncType)
SndCal | backl nf oType bl ocki ng;
/'l bl ocki ng hook cal |l back function (see SndBl ocki ngFuncType)
SndCal | backl nf oType reserved;
/| RESERVED -- SET ALL FIELDS TO ZERO BEFORE PASSI NG

} SndSnf Cal | backsType;

Sound Manager Function Summary

The following sound manager functions are available for applica-
tion use:

= SndCreateMidiList
SndDoCmd
SndGetDefaultVolume

SndPlaySMF
SndPlaySystemSound

52 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The String Manager

The String Manager

The string manager provides a set of string manipulation functions.
The string manager API is closely modeled after the standard C
string-manipulation functions like st r cpy, str cat, etc.

Applications should use the functions built into the string manager
instead of the standard C functions, because doing so makes the ap-
plication smaller:

= When your application uses the string manager functions, the
actual code that implements the function is not linked into your
application but is already part of the operating system.

= When you use the standard C functions, the code for each func-
tion you use is linked into your application and results in a big-
ger executable.

In addition, many standard C functions don’t work on the Palm OS
device at all because the OS doesn’t provide all basic system func-
tions (such as mal | oc) and doesn’t support the subroutine calls
used by most standard C functions.

String Manager Function Summary

The following functions are available for application use:
= StrATol

= StrCat

= StrCaselessCompare

= StrChr

= StrCompare

= StrCopy
e StriIToA

= StrliToH

= StrLen

e StrStr

= StrTolLower

Developing Palm OS 3.0 Applications, Part Il 53

Using Palm OS System Managers
The System Manager

The System Manager

The Palm OS system manager is responsible for the general opera-
tion of the system, including boot-up, power-up, launching applica-
tions, library management, monitoring the battery, multitasking,
timing, and semaphore support. Applications need to be concerned
with very few system manager API functions. Most of what the sys-
tem manager does is transparent to applications and is explained
here as background information only.

In this section, you learn about the following aspects of the system
manager:

= System Boot and Reset — information about the different
reset operations, including system reset calls

= Power Management — the three different power modes and
guidelines for application developers

= The Microkernel— basic task management provided by the sys-
tem

= Application Support — event processing and interapplication
communication from the system’s point of view

= System Manager Function Summary — list of all system manag-
er functions available to applications

System Boot and Reset

The system manager provides support for booting the Palm OS de-
vice. Booting occurs only when the user presses the reset switch on
the device (see “Palm OS Device Reset Switch” in Developing Palm
OS Applications, Part 1). Palm OS differs from a traditional desktop
system in that it’s never really turned off. Power is constantly sup-
plied to essential subsystems and the on/off key is merely a way of
bringing the device in or out of low-power mode (see Palm OS
Power Modes). The obvious effect of pressing the on/off key is that
the LCD turns on or off. When the user presses the power key to
turn the device off, the LCD is disabled, which makes it appear as if
power to the entire unit is turned off. In fact, the memory system,
real-time clock, and interrupt generation circuitry are still running,
though they are consuming little current.

54 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Manager

In this version of Palm OS, there is only one user interface applica-
tion running at a time. The User Interface Application Shell (UIAS)
is responsible for managing the current user-interface application.
The UIAS launches the current user-interface application as a sub-
routine and doesn’t get control back until that application quits.
When control returns to the UIAS, the UIAS immediately launches
the next application as another subroutine. See Power Management
Calls for more information.

System Reset Calls

The system calls SysReset to reset the device. This call does a soft
reset and has the same effect as pressing the reset switch on the unit.
Normally, applications should not use this call.

SysReset is used, for example, by the Sync application. When the
user copies an extension onto the Palm OS device, the Sync applica-
tion automatically resets the device after the sync is completed to
allow the extension to install itself.

The SysCol dBoot call is similar, but even more dangerous. It per-
forms a hard reset that clears all user storage RAM on the device,
destroying all user data.

Power Management

This section looks at Palm OS power management, discussing the
following topics:

< Palm OS Power Modes

= Guidelines for Application Developers

= Power Management Calls

Palm OS Power Modes

At any time, the Palm OS device is in one of three power modes:
sleep, doze, or running. The system manager controls transitions be-
tween different power modes and provides an API for controlling
some aspects of the power management.

= Sleep mode. If the unit appears to be off, it is actually in
sleep mode and is consuming as little current as possible. At
this rate, a unit could sit for almost a year on a single set of

Developing Palm OS 3.0 Applications, Part Il 55

Using Palm OS System Managers

The System Manager

batteries without losing the contents of memory. To enter
sleep mode, the system puts as many peripherals as possible
into low-power mode and sets up the hardware so that an
interrupt from any hard key or the real-time clock wakes up
the system.

When the system gets one of these interrupts while in sleep

mode, it quickly checks that the battery is strong enough to com-
plete the wake-up and then takes each of the peripherals, for ex-
ample, the LCD, serial port, and timers, out of low-power mode.

The system reenters sleep mode when the user presses the on/
off key again, when the system has been idle for the minimum
auto-off time, or when the battery level reaches a critically low
level.

= Doze mode. In doze mode, the processor is halted, but all pe-
ripherals including the LCD are powered up. The system can
come out of doze mode much faster than it can come out of sleep
mode since none of the peripherals need to be woken up. In fact,
it takes no longer to come out of doze mode than to process an
interrupt. Usually, when the system appears on, it is actually in
doze mode and goes into running mode only for short periods of
time to process an interrupt or respond to user input like a pen
tap or key press.

< Running mode. Running means that the processor is executing
instructions and all peripherals are powered up. A typical appli-
cation puts the system into running mode only about 5% of the
time.

Guidelines for Application Developers

Normally, applications don’t need to be aware of power manage-
ment except for a few simple guidelines. When an application calls
Evt Get Event to ask the system for the next event to process, the
system automatically puts itself into doze mode until there is an
event to process. As long as an application uses Evt Get Event
power management occurs automatically. If there has been no user
input for the amount of time determined by the current setting of
the auto-off preference, the system automatically enters sleep mode
without intervention from the application.

Applications should avoid providing their own delay loops. In-
stead, they should use SysTaskDel ay, which puts the system into
doze mode during the delay to conserve as much power as possible.

56 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Manager

If an application needs to perform periodic work, it can pass a time
out to Evt Get Event ; this forces the unit to wake up out of doze
mode and to return to the application when the time out expires,
even if there is no event to process. Using these mechanisms pro-
vides the longest possible battery life.

Power Management Calls

The system calls Sys S| eep to put itself immediately into low-
power sleep mode. Normally, the system puts itself to sleep when
there has been no user activity for the minimum auto-off time or
when the user presses the power key.

The SysSet Aut o f Ti e routine changes the auto-off time value.
This routine is normally used by the system only during boot, and
by the Preferences application. The Preferences application saves
the user preference for the auto-off time in a preferences database,
and the system initializes the auto-off time to the value saved in the
preferences database during boot. While the auto-off feature can be
disabled entirely by calling SysSet Aut oOf f Ti ne with a time-out
of 0, doing this depletes the battery.

The current battery level and other information can be obtained
through the SysBat t er yl nf 0V20 routine. This call returns infor-
mation about the battery, including the current battery voltage in
hundredths of a volt, the warning thresholds for the low-battery
alerts, the battery type, and whether external power is applied to
the unit. This call can also change the battery warning thresholds
and battery type.

The Microkernel

Palm OS has a preemptive multitasking kernel that provides basic
task management.

Most applications don’t need the microkernel services because they
are handled automatically by the system. This functionality is pro-
vided mainly for internal use by the system software or for certain
special purpose applications.

The User Interface Application Shell (UIAS) is responsible for man-
aging the current user-interface application, as described in System
Boot and Reset.

Developing Palm OS 3.0 Applications, Part Il 57

Using Palm OS System Managers

The System Manager

Usually, the UIAS is the only task running. Occasionally though, an
application launches another task as a part of its normal operation.
One example of this is the Sync application, which launches a sec-
ond task to handle the serial communication with the desktop. The
Sync application creates a second task dedicated to the serial com-
munication and gives this task a lower priority than the main user-
interface task. The result is optimal performance over the serial port
without a delay in response to the user-interface controls.

Normally, there is no user interaction during a sync, so that the seri-
al communication task gets all of the processor’s time. However, if
the user does tap on the screen, for example, to cancel the sync, the
user-interface task immediately processes the tap, since it has a
higher priority. Alternatively, the Sync application could have been
written to use just one task, but then it would have to periodically
poll for user input during the serial communication, which would
hamper performance and user-interface response time.

Application Support

The system manager provides application support in several func-
tional areas. The following aspects of application support are dis-
cussed in this section:

« | aunching and Cleanup

Event Processing

Interapplication Communication

Retrieving Events

Opening Applications Programmatically

Launching and Cleanup

Usually, applications on the Palm OS device are launched when the
user presses one of the buttons on the case or selects an application
icon from the application launcher screen. Alternatively, an applica-
tion can programmatically launch another application by using the
system manager function SysApplLaunch.

When the current user-interface application quits, the system man-
ager cleans up by deleting any chunks in the dynamic heap(s) that
the application left around and closing any databases left open.

58 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Manager

Note, however, that applications should perform those kinds of
cleanup tasks themselves.

Event Processing

The system manager provides the infrastructure for event genera-
tion and also contains the support for handling most system-related
events. Hardware activity, such as taps on the digitizer and key
presses, is interpreted by interrupt handlers of the system manager
and converted into events that are eventually sent to the application
through the Evt Get Event call. In addition, many events returned
by Evt Get Event are system-related events that can be processed
by the system manager call SysHandl eEvent .Events in Palm OS
include hardware- and software-generated events. The following
table provides an overview:

Hardware-generated events Software-generated events

Caused directly by user interaction with the Generated by the system software as a
device, such as tapping on the screen with side effect of a user interaction.
the pen, or pressing a hardware button.

Include pen-downs, pen-ups (optionally in- Include events like the quit event that

cluding stroke data), and hard button press- causes an application to exit, or key-

es. board events generated by the Graffiti
recognizer. Applications can define
software-generated events for their
own use.

Typically posted by interrupt routines. Typically posted as the result of a sys-
tem call. Include application-quit
events, window-enter and window-exit
events, user-interface control events,
etc.

= Pen-generated events are stored in the Stored in the software event queue.
pen queue.

= Hard button press events are stored in
the key queue.

Developing Palm OS 3.0 Applications, Part Il 59

Using Palm OS System Managers
The System Manager

When Evt Get Event is called by the application, it first checks
whether any events are in the software event queue and returns the
topmost event if so.

If the software event queue is empty, Evt Get Event checks the key
and pen queues. The result is that all software events generated by a
particular hardware event are processed before the next hardware
event is processed. For example, a pen-down hardware event may
trigger the system software to generate window-exit and window-
enter software events. Both events are then pulled from the software
event queue and processed before the next hardware event is pro-
cessed.

Some event types returned by Evt Get Event are not actually posted
into the event queue, but are artificially generated by Evt Get Event
when all event queues are empty. One example is the pen-moved
event, which is returned if no other events are in the queues and the
pen has moved since the last time Evt Get Event was called. In this
way, the application is notified of low-priority events, such as pen
movements, but the event queue isn’t cluttered with them.

In a typical application, SysHandl eEvent is called immediately
after Evt Get Event . If Evt Get Event returns a pen-up event in the
Graffiti writing area, SysHandl eEvent calls the Graffiti recognizer
with the pen stroke information obtained from the pen queue and
uses the results of the Graffiti recognizer to post one or more key-
board events into the key queue. A similar process occurs for pen-
up events detected over a silk-screened icon. SysHandl eEvent
converts the pen-up to a keyboard event with a virtual key code rep-
resenting the silk-screened icon.

When an application calls Evt Get Event , the event manager checks
a number of system-event data structures and returns an event
record to the application with information about the highest-priori-
ty event that needs processing. Events in Palm OS are stored in one
of three event queues: a key queue, a pen queue, or a software event
gueue. The event queues are circular buffers containing event
records stored in a first-in, first-out (FIFO) sequence.

Here’s some additional information on hardware and software
events:

= Hardware events are posted into their appropriate event queue
by interrupt routines. The interrupt routine for handling key-

60 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Manager

board presses immediately enqueues the keyboard event into
the key queue and sets up a periodic interrupt routine to watch
for auto-repeat and for key debouncing.

= Software-generated events include window-enter and window-
exit events, application quit events, and user-interface object
events like control enter, control exit, etc. These events are typi-
cally generated as a side effect of a hardware-generated event
like a pen-down. Software can, however, also generate key
events, usually as a result of recognizing a Graffiti stroke or a tap
on a silk-screened icon.

Software-generated events are posted into the appropriate event
gueue, but are not typically posted at interrupt time. Many of
these events are inserted into the event queue by the various
user-interface managers. Others, like key events, are posted by
SysHandl eEvent after recognizing a Graffiti stroke or a tap on
a silk-screened icon.

Interapplication Communication

The system manager provides the API for interapplication commu-
nication. This API permits any application or system routine to send
a launch code to any other application and get results back. For ex-
ample, an application that is to work with the global find must sup-
port the find launch code.

Sending a launch code to another application is like calling a specif-
ic subroutine in that application: the application responding to the
launch code is responsible for determining what to do given the
launch code constant passed on the stack as a parameter.

Predefined launch codes are listed in “Developing Palm OS Appli-
cations, Part I’ and can be found in Syst emVgr . h. All the parame-
ters for a launch code are passed in a single parameter block, and
the results are returned in the same parameter block. “How Launch
Codes Control an Application” in “Developing Palm OS Applica-
tions, Part I, describes launch codes in more detail.

Retrieving Events

The SysHandl eEvent call allows applications to correctly respond
to system events like key presses, Graffiti strokes, low-battery warn-
ings, and taps on silk-screened icons. Every application should call
this routine from its event loop, usually before the application even

Developing Palm OS 3.0 Applications, Part Il 61

Using Palm OS System Managers

The System Manager

looks at the event. If an application needs to override any part of the
default system behavior, it could selectively filter out events before
calling SysHandl eEvent .

Opening Applications Programmatically

The system provides several APIs for opening applications pro-
grammatically. Under most circumstances, you would use the
SysUl AppSwi t ch routine to close your application and open a
specified application. This routine notifies the system which appli-
cation to launch next and feeds an application-quit event into the
event queue. If and when the current application responds to the
quit event and returns, the system launches the new application.

When you want to make use of another application’s functionality
and eventually return control of the system to your application, you
can use the SysAppLaunch function to open a specified application
as a subroutine of the calling application. It has numerous options,
including whether to launch the application as a separate task,
whether to allocate a globals world, and whether or not to give the
called application its own stack. For example, you would use this
function to request that the built in Address List application search
its databases for a specified phone number and return the results of
the search to your application. You could then call SysAppLaunch
again to use the modem handle to dial the number. (In fact, this is
how the built-in applications perform this task.) When calling
SysApplLaunch do not set Launch Flags yourself—the
SysAppLaunch function sets launch flags appropriately for you.

This routine is also used to send launch codes to applications (by
telling it to use the caller’s stack, no globals world, and not a sepa-
rate task). Usually, applications use it only for sending launch codes
to other user-interface applications. An alternative, simpler method
of sending launch codes is the SysBr oadcast Act i onCode call.
This routine automatically finds all other user-interface applications
and calls SysAppLaunch to send the launch code to each of them.

If your application is called to process a launch code, it is called as a
subroutine from the current user-interface application. Use the rou-
tine SysCur AppDat abase to get the card number and database ID
of the currently running user-interface application. This routine

62 Developing Palm OS 3.0 Applications, Part Il

Using Palm OS System Managers
The System Event Manager

doesn’t return your application’s database ID but the database ID of
the application that initiated the launch code.

Palm OS 3.0 also provides a new application from which the end
user can launch any application installed on the Palm OS device.
For more information, see “Application Launcher” on page 70.

WARNING: Do not use the SysUl AppSwi t ch or SysAppLaunch
functions to open the Application Launcher application.

System Manager Function Summary

The following system manager functions are available for applica-
tion use:

= SysReset
SysBatteryInfoV20
SysSetAutoOffTime
SysHandleEvent
SysUIAppSwitch
SysCurAppDatabase

SysBroadcastActionCode

SysApplaunch

The System Event Manager

The system event manager
= Manages the low-level pen and key event queues.
= Translates taps on silk-screened icons into key events.
= Sends pen strokes in the Graffiti area to the Graffiti recognizer.

= Puts the system into low-power doze mode when there is no
user activity.

Most applications have no need to call the system event manager di-
rectly because most of the functionality they need comes from the
higher-level event manager or is automatically handled by the sys-
tem.

Developing Palm OS 3.0 Applications, Part Il 63

Using Palm OS System Managers
The System Event Manager

Applications that do use the system event manager directly might
do so to enqueue key events into the key queue or to retrieve each of
the pen points that comprise a pen stroke from the pen queue.

This section provides information about the system event manager
by discussing these topics:

e Event Translation: Pen Strokes to Key Events

e Pen Queue Management
= Auto-Off Control
« System Event Manager Function Summary

Event Translation: Pen Strokes to Key Events

One of the higher-level functions provided by the system event
manager is conversion of pen strokes on the digitizer to key events.
For example, the system event manager sends any stroke in the
Graffiti area of the digitizer automatically to the Graffiti recognizer
for conversion to a key event. Taps on silk-screened icons, such as
the application launcher, Menu button, and Find button, are also in-
tercepted by the system event manager and converted into the ap-
propriate key events.

When the system converts a pen stroke to a key event, it:

= Retrieves all pen points that comprise the stroke from the
pen queue

= Converts the stroke into the matching key event
= Enqueues that key event into the key queue

Eventually, the system returns the key event to the application as a
normal result of calling Evt Get Event .

Most applications rely on the following default behavior of the sys-
tem event manager:

= All strokes in the predefined Graffiti area of the digitizer are con-
verted to key events

= All taps on the silk-screened icons are convert to key events
= All other strokes are passed on to the application for processing

64 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The System Event Manager

Pen Queue Management

The pen queue is a preallocated area of system memory used for
capturing the most recent pen strokes on the digitizer. It is a circular
gueue with a first-in, first-out method of storing and retrieving pen
points. Points are usually enqueued by a low-level interrupt routine
and dequeued by the system event manager or application.

The following table summarizes pen management.

The user... The system...

Brings the pen down Stores a pen-down sequence in the pen

on the digitizer. gueue and starts the stroke capture.

Draws a character. Stores additional points in the pen queue
periodically.

Lifts the pen. Stores a pen-up sequence in the pen

gueue and turns off stroke capture.

The system event manager provides an API for initializing and
flushing the pen queue and for queuing and dequeueing points.
Some state information is stored in the queue itself: to dequeue a
stroke, the caller must first make a call to dequeue the stroke infor-
mation (Evt DequeuePensSt r okel nf 0) before the points for the
stroke can be dequeued. Once the last point is dequeued, another
Evt DequeuePensSt r okel nf o call must be made to get the next
stroke.

Applications usually don’t need to call Evt DequePenSt r okel nf o
because the event manager calls this function automatically when it
detects a complete pen stroke in the pen queue. After calling

Evt DequePensSt r okel nf o, the system event manager stores the
stroke bounds into the event record and returns the pen-up event to
the application. The application is then free to dequeue the stroke
points from the pen queue, or to ignore them altogether. If the
points for that stroke are not dequeued by the time Evt Get Event is
called again, the system event manager automatically flushes them.

Developing Palm OS 3.0 Applications, Part Il 65

Using Palm OS System Managers
The System Event Manager

User action

Hardware button
press.

Key Queue Management

The key queue is an area of system memory preallocated for captur-
ing key events. Key events come from one of two occurrences:

= As adirect result of the user pressing one of the buttons on the
case

= As aside effect of the user drawing a Graffiti stroke on the digi-
tizer, which is converted in software to a key event

The following table summarizes key management:

System response

Interrupt routine enqueues the appropriate key event into
the key queue, temporarily disables further hardware button
interrupts, and sets up a timer task to run every 10 ms.

Hold down key for ex- Timer task to supports auto-repeat of the key (timer task is
tended time period. also used to debounce the hardware).

Release key for certain Timer task reenables the hardware button interrupts.

amount of time.

Pen stroke in Graffiti System manager calls the Graffiti recognizer, which then re-

area of digitizer.

Pen stroke on silk-
screened icons.

moves the stroke from the pen queue, converts the stroke
into one or more key events, and finally enqueues these key
events into the key queue.

System event manager converts the stroke into the appropri-
ate key event and enqueues it into the key queue.

The system event manager provides an API for initializing and
flushing the key queue and for enqueuing and dequeuing key
events. Usually, applications have no need to dequeue key events;
the event manager does this automatically if it detects a key in the
gueue and returns a keyDownEvent (documented in “Developing
Palm OS Applications,” Part I) to the application through the

Evt Get Event call.

66 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
The System Event Manager

Auto-Off Control

Because the system event manager manages hardware events like
pen taps and hardware button presses, it’s responsible for resetting
the auto-off timer on the device. Whenever the system detects a
hardware event, it automatically resets the auto-off timer to 0. If an
application needs to reset the auto-off timer manually, it can do so
through the system event manager call Evt Reset Aut oOf f Ti mer .

System Event Manager Function Summary

The following functions are part of the developer API to the system
event manager:

e EvtAddEventToQueue
e FviCopyEvent

= EviDequeuePenPoint

e EviDequeuePenStrokelnfo
e EvtEnableGraffiti
= EviEnqueueKey

e EvtFlushKeyQueue

= EvtFlushNextPenStroke
e EvtFlushPenQueue

= EvtGetEvent

= EvtGetPen

= EvtKeyQueueEmpty

e EvtKeyQueueSize

e EviKeyQueueEmpty
e EviGetPenBtnList
e EvtPenQueueSize

= EvtProcessSoftKeyStroke
e EvtResetAutoOffTimer

= EvtWakeup

Developing Palm OS 3.0 Applications, Part Il 67

Using Palm OS System Managers

The Time Manager

The Time Manager

The date and time manager (called time manager in this chapter)
provides access to both the 1-second and 0.01-second timing re-
sources on the Palm OS device.

= The 1-second timer keeps track of the real-time clock (date
and time), even when the unit is in sleep mode.

= The 0.01-second timer, also referred to as the system ticks, can be
used for finer timing tasks. This timer is not updated when the
unit is in sleep mode and is reset to 0 each time the unit resets.

The basic time-manager API provides support for setting and get-
ting the real-time clock in seconds and for getting the current system
ticks value (but not for setting it). The system manager provides
more advanced functionality for setting up a timer task that exe-
cutes periodically or in a given number of system ticks.

This section discusses the following topics:
= Using Real-Time Clock Functions

« Using System Ticks Functions

< Time Manager Function Summary

Using Real-Time Clock Functions

The real-time clock functions of the time manager include

Ti nSet Seconds and Ti nGet Seconds. Real time on the Palm OS
device is measured in seconds from midnight, Jan 1, 1904. Call

Ti mSecondsToDat eTi e and Ti nDat eTi neToSeconds to con-
vert between seconds and a structure specifying year, month, day;,
hour, minute, and second.

Using System Ticks Functions

The Palm OS device maintains a tick count that starts at 0 when the
device is reset. This tick increments

= 100 times per second when running on the Palm OS device

= 60 times per second when running on the Macintosh under the
Simulator

68 Developing Palm OS 3.0 Applications, Part I/

Using Palm OS System Managers
The Time Manager

Listing 1.12

For tick-based timing purposes, applications should use the macro
sysTi cksPer Second, which is conditionally compiled for differ-
ent platforms. Use the function Ti ncet Ti cks to read the current
tick count.

Although the Ti mGet Ti cks function could be used in a loop to im-
plement a delay, it is recommended that applications use the
SysTaskDel ay function instead. The SysTaskDel ay function au-
tomatically puts the unit into low-power mode during the delay.
Using Ti mGet Ti cks in a loop consumes much more current.

Time Manager Structures
The time manager uses these structures to store information.

Time Manager Structures

t ypedef struct{

Sword second;

Sword m nut e;

Swor d hour;

Swor d day;

Swor d nont h;

Sword year;

Sword weekDay; /1 Days since Sunday (0 to 6)
} Dat eTi neType,;

t ypedef DateTi neType* DateTi mePTr;

t ypedef struct {

Byte hours;
Byte m nutes;
} Ti meType;

t ypedef TineType * TinePtr;

t ypedef struct{

Wrd year :7; //years since 1904 (Mac fornat)
Word nont h: 4;

Wrd day :5;

} Dat eType;

t ypedef DateType * DatePtr;

Developing Palm OS 3.0 Applications, Part Il 69

Using Palm OS System Managers
Application Launcher

Time Manager Function Summary

The following time manager functions are available for application
use:

= DateAdjust

= DateDaysToDate

= DateSecondsToDate

= DateToAscii

= DateToDays

e DateToDOWDMFormatf
= DayOfMonth

= DayOfWeek

= DaysinMonth

= TimAdjust

= TimDateTimeToSeconds

< TimGetSeconds
e TimGetTicks
e TimSecondsToDateTime

e TimSetSeconds

e TimeToAscii

Note that two functions associated with the Date and Time object,
Sel ect Day and Sel ect Ti me are documented in Developing Palm
OS Applications Part I.

Application Launcher

The Application Launcher (accessed via the silkscreen "Applica-
tions" button) presents a window or menu from which the user can
open other applications present on the Palm device. Applications in-
stalled on the Palm device (resource databases of type APPL) appear
in the Application Launcher automatically.

70 Developing Palm OS 3.0 Applications, Part I

Using Palm OS System Managers
Application Launcher

Compatibility
Note

Versions of Palm OS prior to 3.0 implemented the Launcher as a
popup. The SysAppLauncher Di al og function, which provides
the API to the old popup launcher, is still present in Palm OS 3.0
for compatibility purposes, but it has not been updated and, in
most cases, should not be used.

The Launcher application can beam applications to other Palm de-
vices. Only the application itself is beamed; associated storage data-
bases and preferences are not transmitted. To suppress the beaming
of your application by the Launcher, you can can set the

dnHdr At t r CopyPr event i on bit in your database header. (For a
runtime code example, see the “DrMcCoy”’sample application. Note
that you can also use compile-time code to suppress beaming.)

Normally, the Launcher represents installed applications graphical-
ly as icons that appear in the Launcher window. The Launcher ap-
plication also provides a list mode that allows the user to see more
applications at once than are normally visible in its default viewing
mode. You can use the Constructor tool to provide a small icon for
the list mode—you’ll need to create at Al B resource having 1001 as
the value of its ID.

The Launcher displays a version string from each application’s
t ver resource, ID 1000. This short string (usually 3 to 6 characters)
is displayed in the "Info" dialog.

Situations in which you need to open the Application Launcher pro-
grammatically are rare, but the system does provide an API for
doing so. To activate the Launcher from within your application, en-
gueue a keyDownEvent that contains al aunchChr, as shown in

Listing 1.13.

WARNING: Do not use the SysUl AppSwi t ch or SysAppLaunch
functions to open the Application Launcher application.

Developing Palm OS 3.0 Applications, Part Il 71

Using Palm OS System Managers
Application Launcher

Listing 1.13 Opening the Launcher

Event Type newEvent ;

newkvent . eType = KeyDownEvent;

newEvent . dat a. keyDown. chr = | aunchChr;

newkEvent . dat a. keyDown. nodi fi ers = comandKeyMask;
Evt AddEvent ToQueue (&newEvent);

For information on launching other applications programmatically,
see “Opening Applications Programmatically” on page 62.

72 Developing Palm OS 3.0 Applications, Part Il

-oo—
-—o—
—-oo—
.
.

Palm OS System
Functions

Alarm Manager API

Purpose

Prototype

Parameters

Result

AlmGetAlarm

Return the alarm date/time in seconds since 1/1/1904 and the call-
er-defined alarm reference value for the given application.

ULong Al mGet Alarm (Ul nt cardNo,
Local | D dbl D,
DWordPtr refP)

->cardNo Storage card number of the application.
->dbl D Local ID of the application.

<->refP Pointer to location for the alarm’s reference value.

Alarm seconds since 1/1/1904; if no alarm is active for the applica-
tion, 0 is returned for the alarm seconds and the reference value is
undefined.

Developing Palm OS 3.0 Applications, Part Il 73

Palm OS System Functions
Alarm Manager API

AlmSetAlarm

Purpose Setor cancel an alarm for the given application.

Prototype Err AlnBetAlarm (U nt cardNo,
Local | D dbl D,
DWord ref,
ULong al ar mSeconds,
Bool ean qui et)

Parameters ->cardNo Storage card number of the application.
->dbl D Local ID of the application.
->ref Caller-defined value to be passed with

notifications.

-> al ar nBeconds Alarm date/time in seconds since 1/1/1904,
or 0 to cancel the current alarm (if any).

-> qui et Reserved for future upgrade (set to zero).

Result O No error.
al nErr Menory Insufficient memory.
al nErr Ful | Alarm table is full.

Comments Ifanalarm for this application has already been set, it is replaced
with the new alarm. Action code notifications are sent after the
alarm is triggered and can be used by the application to set the next
alarm.

74 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Alarm Manager API

Functions for System Use Only

AlmAlarmCallback

Prototype void Al mAl arntCal | back (void)

WARNING: This function for use by system software only.

AlmCancelAll

Prototype void Al nCancel All (Bool ean enabl e)

WARNING: This function for use by system software only.

AlmDisplayAlarm

Prototype void Al nDisplayAl arm (Bool ean displayOnly)

WARNING: This function for use by system software only.

AlmEnableNotification

Prototype void Al nEnabl eNotificatio(Bool ean enabl e)

WARNING: This function for use by system software only.

Almlinit

Prototype FErr Almnit (void)

WARNING: This function for use by system software only.

Developing Palm OS 3.0 Applications, Part Il 75

Palm OS System Functions
Error Manager Functions

Error Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

ErrDisplay

Display an error alert if error checking is set to partial or full.
void ErrDi splay (char* nmessage)

->nessage Error message text.

No return value.

Call this routine to display an error message, source code filename,
and line number. This routine is actually a macro that is compiled
into the code only if the compiler define ERROR_CHECK LEVEL is set
to 1 or 2 (ERROR_CHECK_PARTI AL or ERROR_CHECK_FULL).

Err Fat al Di spl ayl f ,Err NonFat al Di spl ayl f ,“UsingtheError

Manager Macros.”

76 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Error Manager Functions

Purpose

Prototype

Parameters

Result

Comment

See Also

ErrDisplayFileLineMsg

Display a nonexitable dialog with an error message. Do not allow
the user to continue.

voi d ErrDi spl ayFil eLi neMsg(CharPtr fil enane,
U nt |ineno,

CharPtr nsgQ)
fil ename Source code filename.
i neno Line number in the source code file.
nmsg Message to display.

Never returns.

Called by Err Fat al Di spl ayl f and Err NonFat al Di spl ayl f.
This function is useful when the application is already on the device
and being tested by users.

Err Fat al Di spl ayl f, Err NonFat al Di spl ayl f, Err Di spl ay

Developing Palm OS 3.0 Applications, Part Il 77

Palm OS System Functions
Error Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

ErrFatalDisplaylf

Display an error alert dialog if condi t i on is TRUE and error check-
ing is set to partial or full.

void ErrFatal D splaylf (Bool ean condition,
char* nmessage)

->condition If TRUE, display the error.
->nessage Error message text.

No return value.

Call this routine to display a fatal error message, source code filena-
me, and line number. The alert is displayed only if condi ti on is
TRUE. The dialog is cleared only when the user resets the system by
responding to the dialog.

This routine is actually a macro that is compiled into the code if the
compiler define ERROR_CHECK LEVEL issetto1or 2
(ERROR_CHECK_PARTI AL or ERROR_CHECK_FULL).

Err NonFat al Di spl ayl f ,Err Di spl ay,“Usingthe Error Manager
Macros.”

78 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Error Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

ErrNonFatalDisplaylf

Display an error alert dialog if condi t i on is TRUE and error check-
ing is set to full.

voi d ErrNonFat al Di splaylf (Bool ean conditi on,
char* nessage)

->condition If TRUE, display the error.
->nessage Error message text.

No return value.

Call this routine to display a nonfatal error message, source code
filename, and line number. The alert is displayed only if condi ti on
is TRUE. The alert dialog is cleared when the user selects to continue
(or resets the system).

This routine is actually a macro that is compiled into the code only if
the compiler define ERROR_CHECK LEVEL is setto 2
(ERROR_CHECK_FULL).

Err Fat al Di spl ayl f, Err Di spl ay, “Using the Error Manager
Macros.”

Developing Palm OS 3.0 Applications, Part Il 79

Palm OS System Functions
Event Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

ErrThrow

Cause a jump to the nearest Catch block.
void ErrThrow (Long err)

err Error code.

Never returns.

Use the macros Err Try, Er r Cat ch, and Er r EndCat ch in conjunc-
tion with this function.

Err Fat al Di spl ayl f, Err NonFat al Di spl ayl f, Err Di spl ay,
“Using the Error Manager Macros.”

Event Manager Functions

Purpose
Prototype

Parameters

Result

EvtAddEventToQueue
Add an event to the event queue.
voi d Evt AddEvent ToQueue (EventPtr event)

event Pointer to the structure that contains the event.
error Pointer to any error encountered by this function.

Returns nothing.

80 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Event Manager Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

EvtAddUniqueEventToQueue

Look for an event in the event queue of the same event type and ID
(if specified). The routine replaces it with the new event, if found.

= |f no existing event is found, the new event is added.
= If an existing event is found, the routine proceeds as follows:

— ifi nPl ace is TRUE,the existing event is replaced with the
new event

— ifi nPl ace is FALSE, the existing event is removed and
the new event will be added to the end

voi d Evt AddUni queEvent ToQueue
(EventPtr eventP, DWord id, Bool ean inPl ace)

event P Pointer to the structure that contains the event
id ID of event. 0 means match only on the type.

i nPl ace If TRUE, existing event are replaced.
If FALSE, existing event is deleted and new event
added to end of queue.

Returns nothing.

EvtCopyEvent

Copy an event.

voi d Evt CopyEvent (EventPtr source, EventPtr dest)

sour ce Pointer to the structure containing the event to copy.
dest Pointer to the structure to copy the event to.

Returns nothing.

Developing Palm OS 3.0 Applications, Part Il 81

Palm OS System Functions
Event Manager Functions

Purpose

Prototype
Parameters
Result

Comments

See Also

EvtDequeuePenPoint

Get the next pen point out of the pen queue. This function is called
by recognizers.

Err Evt DequeuePenPoi nt (Poi nt Type* retP)

retP Return point.

Always returns 0.

Called by a recognizer that wishes to extract the points of a stroke.

Returns the point (-1, -1) at the end of a stroke.

Before calling this routine, you must call
Evt DequeuePenSt r okel nf o.

Evt DequeuePenSt r okel nf o

82 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Event Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters

Result

EvtDequeuePenStrokelnfo

Initiate the extraction of a stroke from the pen queue.

Err Evt DequeuePenStrokel nf o(Poi nt Type* startPtP,
Poi nt Type* endPt P)

start Pt P Start point returned here.
start Pt P End point returned here.

Always returns 0.

Called by the system function Evt Get SysEvent . This routine must
be called before Evt DequeuePenPoi nt is called.

Subsequent calls to Evt DequeuePenPoi nt return points at the
starting point in the stroke and including the end point. After the
end point is returned, the next call to Evt DequeuePenPoi nt re-
turns the point -1, -1.

Evt DequeuePenPoi nt

EvtEnableGraffiti

Set Graffiti enabled or disabled.
voi d Evt Enabl eGaffiti (Bool ean enabl e)
enabl e TRUE to enable Graffiti, FALSE to disable Graffiti.

Returns nothing.

Developing Palm OS 3.0 Applications, Part Il 83

Palm OS System Functions
Event Manager Functions

Purpose

Prototype

Parameters

Result

Comments

EvtEnqueueKey

Place keys into the key queue.

Err Evt EnqueueKey (U nt ascii,
U nt keycode,
U nt nodifiers)

asci i ASCII code of key.
keycode Virtual key code of key.
nodi fi ers Modifiers for key event.

Returns 0 if successful, or evt Er r Par ankr r if an error occurs.

Called by the keyboard interrupt routine and the Graffiti and Soft-
Keys recognizers. Note that because both interrupt- and noninter-
rupt-level code can post keys into the queue, this routine disables

interrupts while the queue header is being modified.

Most keys in the queue take only 1 byte if they have no modifiers
and no virtual key code, and are 8-bit ASCII. If a key event in the
gueue has modifiers or is a non-standard ASCII code, it takes up to 7
bytes of storage and has the following format:

evtKeyStringEscape 1 byte

ASCII code 2 bytes
virtual key code 2 bytes
modifiers 2 bytes

84 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Event Manager Functions

Purpose
Prototype
Parameters

Result

Purpose
Prototype
Parameters
Result

Comments

EvtEventAvalil

Return TRUE if an event is available.

Bool ean Evt Event Avail (void)

None

Returns TRUE if an event is available, FALSE otherwise.

EvtFlushKeyQueue

Flush all keys out of the key queue.
Err Evt Fl ushKeyQueue (voi d)
None.

Always returns 0.

Called by the system function Evt Set PenQueuePt r.

Developing Palm OS 3.0 Applications, Part Il 85

Palm OS System Functions
Event Manager Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

EvtFlushNextPenStroke

Flush the next stroke out of the pen queue.
Err Evt Fl ushNext PenSt roke (voi d)
None

Always returns 0.

Called by recognizers that need only the start and end points of a
stroke. If a stroke has already been partially dequeued (by

Evt DequeuePensSt r okel nf 0) this routine finishes the stroke de-
gueueing. Otherwise, this routine flushes the next stroke in the
queue.

Evt DequeuePenPoi nt

EvtFlushPenQueue

Flush all points out of the pen queue.

Err Evt Fl ushPenQueue (voi d)

None

Always returns 0.

Called by the system function Evt Set KeyQueuePtr .

Evt PenQueueSi ze

86 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Event Manager Functions

Purpose
Prototype

Parameters

Comments

Result

Purpose

Prototype

Parameters

Result
Comments

See Also

EvtGetEvent

Return the next available event.

voi d Evt Get Event (EventPtr event, Long timnmeout)

event Pointer to the structure to hold the event returned.

Maximum number of ticks to wait before an event is
returned (-1 means wait indefinitely).

ti meout

Pass t i meout = -1 in most instances. When running on the device,
this makes the CPU go into doze mode until the user provides in-
put. For applications that do animation, passt i neout >=0.

Returns nothing.

EvtGetPen

Return the current status of the pen.
voi d Evt Get Pen(Sword *pScreenX,
Sword *pScreeny,
Bool ean *pPenDown)

pScreenX x location relative to display.
pScreenY y location relative to display.
pPenDown TRUE or FALSE.

Returns nothing.
Called by various Ul routines.

KeyCur r ent St at e (documented in Developing Palm OS Applica-
tions, Part 1)

Developing Palm OS 3.0 Applications, Part Il 87

Palm OS System Functions
Event Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters

Result

Comments

EvtGetPenBtnList

Return a pointer to the silk-screen button array.

PenBt nl nfoPtr asm
Evt Get PenBt nLi st (Ul ntPtr nunButtons)

Pointer to the variable to contain the
number of buttons in the array.

nunBut t ons

Returns a pointer to the array.

The array returned contains the bounds of each silk-screened button
and the ASCII code and modifiers byte to generate for each button.

Evt Pr ocessSof t KeySt r oke

EviKeyQueueEmpty

Return TRUE if the key queue is currently empty.
Bool ean Evt KeyQueueEnpty (voi d)
None.

Returns TRUE if the key queue is currently empty, otherwise returns
FALSE.

Usually called by the key manager to determine if it should enqueue
auto-repeat keys.

88 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Event Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result

Comments

EvtKeyQueueSize

Return the size of the current key queue in bytes.
ULong Evt KeyQueueSi ze (void)

None.

Returns size of queue in bytes.

Called by applications that wish to see how large the current key
queue is.

EvtPenQueueSize

Return the size of the current pen queue in bytes.
ULong Evt PenQueueSi ze (void)

None.

Returns size of queue in bytes.

Call this function to see how large the current pen queue is.

Developing Palm OS 3.0 Applications, Part Il 89

Palm OS System Functions
Event Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

EvtProcessSoftKeyStroke

Translate a stroke in the system area of the digitizer and enqueue the
appropriate key events in to the key queue.

Err Evt ProcessSoft KeyStroke(Poi nt Type* startPtP,
Poi nt Type* endPt P)

start Pt P Start point of stroke.

endPt P End point of stroke.

Returns 0 if recognized, -1 if not recognized.

Evt Get PenBt nLi st, G f ProcessSt r oke (documented in Devel-
oping Palm OS Applications, Part I)

EvtResetAutoOff Timer

Reset the auto-off timer to assure that the device doesn’t automati-
cally power off during a long operation without user input (for ex-
ample, serial port activity).

Err EvtReset AutoOF f Ti mer (void)
None.
Always returns 0.

Called by Seri al Li nkMgr, Can be called periodically by other
managers.

SysSet Aut oO f Ti ne

90 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Event Manager Functions

Purpose

Prototype

Parameters

Result

Comment

Purpose

Prototype
Parameters
Result

Comments

EvtSysEventAvail

Return TRUE if a low-level system event (such as a pen or key event)
is available.

Bool ean Evt SysEvent Avai | (Bool ean i gnor ePenUps)

i gnor ePenUps If TRUE, this routine ignores pen-up events
when determining if there are any system
events available.

Returns TRUE if a system event is available.

Call Evt Event Avai | to determine whether high-level software
events are available.

EvtWakeup

Force the event manager to wake up and send a ni | Event to the
current application. Events are documented in “Developing Palm OS
Applications, Part I”).

Err EvtWakeup (voi d)
None.
Always returns 0.

Called by interrupt routines, like the sound manager and alarm
managetr.

Developing Palm OS 3.0 Applications, Part Il 91

Palm OS System Functions
Event Manager Functions

Functions for System Use Only

EvtDequeueKeyEvent

Prototype Err EvtDequeueKeyEvent (EventPtr eventP)

WARNING: System Use Only!

EvtEnqueuePenPoint

Prototype Err EvtEnqueuePenPoint (Point Type* ptP)

WARNING: System Use Only!

EvtGetSysEvent

Prototype void EvtCGet SysEvent (EventPtr eventP,
Long tinmeout)

WARNING: System Use Only!

Evtlnitialize

Prototype void Evtinitialize (void)

WARNING: System Use Only!

EvtSetKeyQueuePtr

Prototype Err EvtSet KeyQueuePtr (Ptr keyQueueP, ULong size)

WARNING: System Use Only!

92 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Feature Manager Functions

Prototype

Prototype

EvtSetPenQueuePtr

Err Evt Set PenQueuePtr (Ptr penQueueP, ULong size)

WARNING: System Use Only!

EvtSysinit

Err EvtSyslnit (void)

WARNING: System Use Only!

Feature Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

FtrGet

Get a feature.

Err FtrGet (DWord creator,
U nt featureNum
DWor dPtr val ueP)

creator Creator type, should be same as the application
that owns this feature.

f eat ur eNum Feature number of the feature.

val ueP Value of the feature is returned here.

Returns O if no error,orftr Er r NoSuchFtr or
ftrErrlnternal Error if an error occurs.

The value of the feature is application-dependent.

Ft r Set

Developing Palm OS 3.0 Applications, Part Il 93

Palm OS System Functions
Feature Manager Functions

Purpose

Prototype

Parameters

Result

Comments

FtrGetBylIndex

Get a feature by index.

Until the caller gets back f t r Er r NoSuchFeat ur e, it should pass
indices for each table (ROM, RAM) starting at 0 and incrementing .

Err FtrGetBylndex (U nt index,
Bool ean roniabl e,
DWrdPtr creatorP,
untPtr nunP,
DWor dPtr val ueP)

i ndex Index of feature.

romrabl e If TRUE, index into ROM table; otherwise,
index into RAM table.

creatorP Feature creator is returned here.

nunP Feature number is returned here.

val ueP Feature value is returned here.

ReturnsOifnoerror,orftrErrl nternal Error or
ftrErr NoSuchFeat ur e if an error occurs.

This routine is normally only used by shell commands. Most appli-
cations don’t need it.

94 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Feature Manager Functions

FtrSet

Purpose Setafeature.

Prototype Err FtrSet (DWrd creator,
U nt featureNum
DWrd newval ue)

Parameters creator Creator type, should be same as the application
that owns this feature.
f eat ur eNum Feature number of the feature.
newVal ue New value.

Result ReturnsOif noerror,orftrErr NoSuchFeat ur e,
menEr r ChunkLocked, nmentrr | nval i dPar am or
menEr r Not EnoughSpace if an error occurs.

Comments The value of the feature is application-dependent.

See Also FtrGCet

Developing Palm OS 3.0 Applications, Part Il 95

Palm OS System Functions
Feature Manager Functions

Purpose

Prototype

Parameters

Result

Prototype

FtrUnregister

Unregister a feature.

Err FtrUnregi ster (DWrd creator,
U nt featureNum

creator Creator type, should be same as the application
that owns the creator.

f eat ur eNum Feature number of the feature.

Returns O if noerror,orftrl nternal Error,

ftrErrNoSuchFeat ur e, nentr r ChunkLocked,

menEr r |1 nval i dPar amornmentr r Not EnoughSpace ifanerroroc-
curs.

Functions for System Use Only

Ftrinit

Err Ftrinit (void)

WARNING: This function for System use only

96 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Find Functions

Find Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

FindDrawHeader

Draw the header line that separates, by database, the list of found
items.

Bool ean Fi ndDr awHeader (Fi ndPar ansPtr parans,
CharPtr title)

par anms Handle of Fi ndPar ansPtr.
title Description of the database (for example Memos).

Returns TRUE if Find screen is filled up. Applications should exit
from the search if this occurs.

FindGetLineBounds

Returns the bounds of the next available line for displaying a match
in the Find Results dialog.

voi d Fi ndGCet Li neBounds (Fi ndParansPtr parans,
Rect angl ePtr r)

par ans Handle of Fi ndPar ansPtr.
r Pointer to a structure to hold the bounds of the next
results line.

Returns nothing.

Developing Palm OS 3.0 Applications, Part Il 97

Palm OS System Functions

Find Functions

Purpose

Prototype

Parameters

Result

Comments

FindSaveMatch

Saves the record and position within the record of a text search
match. This information is saved so that it’s possible to later navi-
gate to the match.

voi d Fi ndSaveMat ch (Fi ndParansPtr parans,
U nt recordNum
Word pos,
unt fieldNum
DWord appCust om
U nt dbCar dNo,
Local I D rdbl D)

par ans Handle of Fi ndPar ansPtr.

r ecor dNum Record index.

pos Offset of the match string from start of record.
appCust om Extra data the application can save with a match.
dbCar dNo Card number of the database that contains the match.
rdbl D Local ID of the database that contains the match.

Returns TRUE if the maximum number of displayable items has
been exceeded

Called by application code when it gets a match.

98 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Find Functions

Purpose

Prototype

Parameters

Result

Comment

FindStrinStr

Perform a case-blind partial word search for a string in another
string. This function assumes that the string to find is in lower-case
characters.

void FindStrinStr(CharPtr strToSearch,
CharPtr strToFi nd,
Wor dPtr posP)

strToSear ch String to search.

strToFi nd Converted, caseless version of the ASCII text
string to be found.

posP Pointer to offset in search string of the match.

Returns TRUE if the string was found.

To convert a standard ASCII, null-terminated text string into the ap-
propriate format for st r ToFi nd, use the conversion table returned
by CGet Char Casel essVal ue in code similar to the following:

CharPtr origStr;
/[* Standard null-term nated ascii string */
Char Ptr strToFi nd;

/* Converted string to be passed to */
[* FindStrinStr */

Byt ePtr convTab;

/* Conversion table returned from */
[/ * Get Char Casel essVal ue*/

int i;
convTab = Get Char Casel essVal ue();

Developing Palm OS 3.0 Applications, Part Il 99

Palm OS System Functions
Find Functions

for (1=0; origStr[i] !'= 0; i++)
{
strToFind[i] = convTab[origStr[i]];
}
strToFind[i] = O;
/* Now pass strToFind to
FindStrinStr...*/

Note that the st r ToFi nd element of the parameter block passed by
the system’s Find utility is preconverted, so it can be passed straight
through to Fi ndSt r I nSt r, just as in the example in the tutorial.

See Also Cet Char Casel essVal ue (documented in “Developing Palm OS
Applications, Part I)

100 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Float Manager Functions

Float Manager Functions

Palm OS 2.0 and later implements floating point arithmetic differ-
ently than Palm OS 1.0 did. The floating-point library in OS versions
2.0 and later provides 32-bit and 64-bit floating point arithmethic.

Using Floating Point Arithmetic

To take advantage of the floating-point library, applications can now
use the mathematical symbols + —* Zinstead of using functions like
Fl pAdd, FI pSub, etc.

When compiling the application, you have to link in the floating
point library under certain circumstances. Choose from one of these
options:

= Simulator application or application for 1.0 device — link in
the floating point library explicitly.

This library adds approximately 8KB to the size of your prc
file. The library provides 32-bit and 64-bit floating-point
arithmetic. The original Palm OS Fpl functions provided
only 16-bit floating-point arithmetic. Linking in the library
explicitly won’t cause problems when you complile for a 2.0
or later device.

e 2.0 or later Palm OS device—It’s not necessary to link in the
library.

The compiler generates trap calls to equivalent floating-point
functionality in the system ROM.

There are control panel settings in the IDE which let you select the
appropriate floating-point model.

Floating-point functionality is identical in either method.

Using 1.0 Floating-Point Functionality

The original Fpl calls (documented in this section) are still avail-
able. They may be useful for applications that don’t need high preci-
sion, don’t want to incur the size penalty of the float library, and
want to run on 1.0 devices only. To get 1.0 behavior, use the 1.0 calls
(Fp! Add, etc) and don’t link in the library.

Developing Palm OS 3.0 Applications, Part |l 101

Palm OS System Functions
Float Manager Functions

Purpose
Prototype
Parameters
Result

Comment

Purpose

Prototype
Parameters
Result
Comment

See Also

FplAdd

Add two floating-point numbers (returns a + b).
Fl oat Type Fpl Add (Fl oat Type a, Float Type hb)
a, b The floating-point numbers.

Returns the normalized floating-point result of the addition.

Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See Using Floating Point Arithmetic.

FplAToF

Convert a zero-terminated ASCII string to a floating-point number.
The string must be in the format : [-]x[.]yyyyyyyyle[-1zz]

Fl oat Type Fpl AToF (char* s)
S Pointer to the ASCII string.
Returns the floating-point number.

The mantissa of the number is limited to 32 bits.

Fpl FToA

102 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Float Manager Functions

Purpose

Prototype

Parameters

Result

Comments

FplBaselOinfo

Extract detailed information on the base 10 form of a floating-point
number: the base 10 mantissa, exponent, and sign.

Err Fpl BaselOlnfo (FloatType a,
ULong* manti ssaP,
| nt * exponent P,

I nt* signP)
a The floating-point number.
mant i ssaP The base 10 mantissa (return value).
exponent P The base 10 exponent (return value).
si gnP The sign, 1 or -1 (return value).

Returns an error code, or 0 if no error.

The mantissa is normalized so it contains at least
kMaxSi gni fi cant Di gi t s significant digits when printed as an
integer value.

Fl pBasel0l nf o reports that zero is "negative"”; that is, it returns a
one for xSign. If this is a problem, a simple workaround is:
if (xMantissa == 0) {
xSign = 0;

Developing Palm OS 3.0 Applications, Part Il 103

Palm OS System Functions
Float Manager Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype
Parameters
Result

See Also

FplDiv
Divide two floating-point numbers (result = dividend/divisor).

Fl oat Type Fpl Div (Fl oat Type divi dend,
Fl oat Type di vi sor)

di vi dend Floating-point dividend.
di vi sor Floating-point divisor.

Returns the normalized floating-point result of the division.

Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See Using Floating Point Arithmetic.

FplFloatToLong

Convert a floating-point number to a long integer.
Long Fpl Fl oat ToLong (Fl oat Type f)

f Floating-point number to be converted.
Returns the long integer.

Fpl LongToFI oat , Fpl Fl oat ToULong

104 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Float Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

Comments

See Also

FplFloatToULong

Convert a floating-point number to an unsigned long integer.
ULong Fpl Fl oat ToULong (Fl oat Type f)

f Floating-point number to be converted.

Returns an unsigned long integer.

Fpl LongToFI oat , Fpl FI oat ToLong

FplFree

Release all memory allocated by the floating-point initialization.
voi d Fpl Free()

None.

Returns nothing.

Applications must call this routine after they’ve called other func-
tions that are part of the float manager.

Fpl I nit

Developing Palm OS 3.0 Applications, Part Il 105

Palm OS System Functions
Float Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

FplFToOA

Convert a floating-point number to a zero-terminated ASCII string
in exponential format : [-]X.yyyyyyyye[-]zz
Err Fpl FToA (Fl oat Type a, char* s)

a Floating-point number.
S Pointer to buffer to contain the ASCII string.

Returns an error code, or O if no error.

Fpl AToF
Fplinit

Initialize the floating-point conversion routines.
Allocate space in the system heap for floating-point globals.

Initialize the t enPower s array in the globals area to the powers of
10 from -99 to +99 in floating-point format.

Err Fpllnit()
None.
Returns an error code, or 0 if no error.

Applications must call this routine before calling any other f pl
function.

Fpl Free

106 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Float Manager Functions

Purpose
Prototype
Parameters

Result

Purpose
Prototype
Parameters
Result

Comment

FplLongToFloat

Convert a long integer to a floating-point number.
Fl oat Type Fpl LongToFl oat (Long x)
X A long integer.

Returns the floating-point number.

FplMul

Multiply two floating-point numbers.

Fl oat Type Fpl Mul (Fl oat Type a, FloatType b)

a, b The floating-point numbers.

Returns the normalized floating-point result of the multiplication.

Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See Using Floating Point Arithmetic.

Developing Palm OS 3.0 Applications, Part Il 107

Palm OS System Functions
Float Manager Functions

Purpose
Prototype
Parameters
Result

Comment

FplSub

Subtract two floating-point numbers (returns a - b).

Fl oat Type Fpl Sub (Fl oat Type a, Float Type b)

a, b The floating-point numbers.

Returns the normalized floating-point result of the subtraction.

Under Palm OS 2.0 and later, most applications will want to use the
arithmetic symbols instead. See Using Floating Point Arithmetic.

108 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Miscellaneous System Functions

Miscellaneous System Functions

Purpose

Prototype

Parameters

Result

Crcl6CalcBlock

Calculate the 16-bit CRC of a data block using the table lookup
method.

Word Crcl6éCal cBl ock (VoidPtr bufP,
U nt count,

Word crc)
buf P Pointer to the data buffer.
count Number of bytes in the buffer.
crc Seed crc value.

A 16-bit CRC for the data buffer.

Developing Palm OS 3.0 Applications, Part Il 109

Palm OS System Functions
Miscellaneous System Functions

MdmDial

Purpose Initialize the modem, dial the phone number and wait for result.

When executing this function, the system goes through these steps:

Switch to the requested initial baud rate.

If HW hand-shake is requested, enable CTS/RTS hand-shak-
ing; otherwise, disable it.

Reset the modem.

Execute the setup string (if any).

Configure the modem with required settings;

Dial the phone number.

Wait for CONNECT XXXXX or other response.

If auto-baud is requested, switch to the connected baud rate.

Prototype FErr MinDial (Mim nf oPtr nodenP,

Char Ptr okDi al P,
Char Ptr set upP,
Char Ptr phoneNunP)

Parameters nodenP Pointer to modem info structure (filled in by caller)
okDi al P (NOT IMPLEMENTED) Pointer to string of chars

allowed in dial string

set upP Pointer to modem setup string without the AT prefix.

phoneNunP Pointer to phone number string

Result 0 if successful; otherwise ndEr r NoTone, ndnEr r NoDCD,
ndnEr r Busy, ndnEr r User Can, ndner r CrdEr r or

110 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Miscellaneous System Functions

Purpose
Prototype
Parameters

Result

Purpose

Prototype
Parameters

Comments

Result

MdmHangUp

Hang up the modem.
Err MinHangUp (Mnl nfoPtr nodenP)
nodenP Pointer to modem info structure (filled in by caller)

0 if successful;

Warning: This function alters configuration of the serial port
(without restoring it).

PhoneNumberLookup

This routine called the Address Book application to lookup a phone
number. See the phonel ookup. ¢ example program for more infor-
mation.

voi d PhoneNunber Lookup (FieldPtr fld)
f1d Field object in which the text to match is found.

When trying to match a field, this function first tries to match select-
ed text.

= [f there is some selected text, the function replaces it with the
phone number if there is a match.

= |f there is no selected text, the function replaces the text in
which the insertion point is with the phone number if there is
a match.

= |If there is no match, the function displays the Address Book
short list.

Nothing returned; it’s locked.

Developing Palm OS 3.0 Applications, Part |l 111

Palm OS System Functions
Miscellaneous System Functions

Purpose

Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

ResLoadForm

Copy and initialize a form resource. The structures are complete ex-
cept pointers updating. Pointers are stored as offsets from the begin-
ning of the form.

voi d* ResLoadForm (Word rscl D)
rscl D The resource ID of the form.

The handle of the memory block that the form is in, since the form
structure begins with the W ndowType structure, this is also a
W ndowHandl e.

ResLoadMenu

Copy and initialize a menu resource. The structures are complete
except pointers updating. Pointers are stored as offsets from the be-
ginning of the menu.

Voi dPtr ResLoadMenu (Word rscl D)
rscl D The resource ID of the menu.

The handle of the memory block that the form is in, since the form
structure begins with the W ndowType structure this is also a
W ndowHandl e.

112 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Preferences Functions

System Preferences Functions

Purpose

Prototype

Parameters

Result

See Also

PrefGetAppPreferences

Return a copy of an application’s preferences. Sometimes, for vari-
able length resources, this routine is called twice:

= Once with a NULL pointer and size ofk zero to find out how
many bytes need to be read.

= Asecond time with an allocated buffer allocated of the cor-
rect size. Note that the application should always check that
the return value is greater than or equal to pr ef sSi ze.

SWord Pref Get AppPref erences (DWrd creator,
Wrd id,
Voi dPtr prefs,
Word *prefsSize,
Bool ean saved)

creat or Application creator.

id ID number (lets an application have multiple
preferences).
prefs Pointer to a buffer to hold preferences.

prefsSi ze Pointer to size the buffer passed.

saved If TRUE, retrieve the saved preferences. If FALSE,
retrieve the current preferences.

Returns the constant noPr ef er enceFound if the preference re-
source wasn’t found.

If the preference resource was found, the application should check
that the value in pr ef sSi ze is equal or less than the return value. If
it’s greater than the size passed, then some bytes were not retrieved.

Pr ef Set Pr ef er ences, Pr ef Get AppPr ef er encesV10

Developing Palm OS 3.0 Applications, Part Il 113

Palm OS System Functions
System Preferences Functions

PrefGetAppPreferencesV10

Purpose Return acopy of an application’s preferences.

Prototype Bool ean Pref Get AppPref erencesV1i0 (ULong type,
| nt version,
Voi dPtr prefs,
Word prefsSize)

Parameters type Application creator type.
versi on \ersion number of the application.

prefs Pointer to a buffer to hold preferences.
pref sSi ze Size of the buffer passed.

Result Returns FALSE if the preference resource was not found or the pref-
erence resource contains the wrong version number.

Comments The content and format of an application preference is application-
dependent.

See Also Pr ef Set Pr ef er ences, Pr ef Get AppPr ef er ences

114 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Preferences Functions

Purpose

Prototype

Parameters

Comments

Result

See Also

PrefGetPreference

Return a system preference. Use this instead of Pr ef Get Pr ef er -
ences.

DWord Pref Get Pref erence(
Syst enPr ef er encesChoi ce choi ce)

System preference choice; see Pr ef er ences. h for available op-
tions.

This function replaces the 1.0 function Pr ef Get Pr ef er ences.
While Pr ef Get Pr ef er ences only let you retrieve the whole sys-
tem preferences structure, this function lets you specify which pref-
erences to retrieve. You can also choose among different preferences
using an ID, or choose to access the saved or unsaved preferences.

Returns the system preference.

Pr ef Set Pr ef er ences, Pr ef Get AppPr ef er ences,
Pr ef Get AppPr ef er encesV10

Developing Palm OS 3.0 Applications, Part Il 115

Palm OS System Functions
System Preferences Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose
Prototype
Parameters
Result
Comments

See Also

PrefGetPreferences

Return a copy of the system preferences.

voi d Pref Get Preferences (SystenPreferencesPtr p)
p Pointer to system preferences.

Returns nothing. Stores the system preferences in p.

The p parameter points to a memory block allocated by the caller

that is filled in by this function.

This function is often called in St ar t Appl i cat i on to get localized
settings.

Pr ef Set Pr ef er ences

PrefOpenPreferenceDBV10

Return a handle to the system preference database.
DmOpenRef Pref OpenPr ef erenceDBV10 (voi d)
Nothing.

Returns the handle, or 0 if an error results.

This function is for system use only in Palm OS 2.0 and later.

Pr ef Get Pr ef er ences, Pr ef Set Pr ef er ences

116 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Preferences Functions

PrefSetAppPreferences

Purpose Setan application’s preferences in the preferences database.

Prototype void Pref Set AppPreferences (DWrd creator,
VWord id,
SWord versi on,
Voi dPtr prefs,
Word prefsSize,
Bool ean saved)

Parameters creator Application creator type.
id Resource ID (usually 0).
ver si on Version number of the application.
prefs Pointer to a buffer that holds preferences.
pref sSi ze Size of the buffer passed.
saved If TRUE, set the saved preferences. If not, set the

current preferences.

Result Nothing.

See Also Pr ef Set AppPr ef er encesV10

Developing Palm OS 3.0 Applications, Part Il 117

Palm OS System Functions
System Preferences Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

PrefSetAppPreferencesV10

Save an application’s preferences in the preferences database.

voi d Pref Set AppPr ef erencesV10 (ULong type,
I nt version,
Voi dPtr prefs,
Word prefsSize)

type Application creator type.

versi on \ersion number of the application.
prefs Pointer to a buffer holding preferences.
pref sSi ze Size of the buffer passed.

Nothing.

The content and format of an application preference is application-
dependent.

Pr ef Set AppPr ef er ences, Pr ef Get Pr ef er ences

118 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Preferences Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype
Parameters
Result

Comments

See Also

PrefSetPreference

Set a system preference. Using this function instead of
Pr ef Set Pr ef er ences allows you to set selected preferences
without having to access the whole structure.

voi d Pref Set Preference(
Syst enPr ef er encesChoi ce choi ce,

DWord val ue)
choi ce A SystemPreferencesChoice (see Preferences.h)
val ue Value to assign to the item in

Syst enPr ef er encesChoi ce.

Returns nothing. Changes the value of the system preference.

PrefSetPreferences

Set the system preferences.

voi d Pref Set Preferences (SystenPreferencesPtr p)
p Pointer to system preferences.

Returns nothing.

Unless there’s a reason for you to access the whole preferences
structure, call Pr ef Set Pr ef er ence instead.

Pr ef Get Pr ef er ences

Developing Palm OS 3.0 Applications, Part Il 119

Palm OS System Functions

Password Functions

Password Functions

Purpose
Prototype
Parameters

Result

Purpose

Prototype
Parameters

Result

PwdEXxists

Return TRUE if the system password is set.
Bool ean PwdExi st s()

None

Returns TRUE if the system password is set.

PwdRemove

Remove the encrypted password string and recover data hidden in
databases.

extern void PwdRenove()
None

Returns nothing

120 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Password Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

PwdSet

Use a passed string as the new password. The password is stored in
an encrypted form.

voi d PwdSet (CharPtr ol dPassword,
Char Ptr newPasswor d)

ol dPasswor d The old password must be successfully
verified or the new password isn’t accepted

newPasswor d Char Pt r to a string to use as the password.
NULL means no password.
Returns nothing

PwdVerify

Verify that the string passed matches the system password.
Bool ean PwdVerify (CharPtr string)

string String to compare to the system password.
NULL means no current password.

Returns TRUE if the string matches the system password.

Developing Palm OS 3.0 Applications, Part Il 121

Palm OS System Functions
String Manager Functions

String Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose
Prototype
Parameters
Result

Comments

See Also

StrATol

Convert a string to an integer.

Int StrATol (CharPtr str)

str String to convert.

Returns the integer.

Use this function instead of the standard at oi routine.

StrCaselessCompare

Compare two strings with case and accent insensitivity.

I nt StrCasel essConpare (CharPtr s1, CharPtr s2)
Two string pointers.

Returns 0 if the two strings match, or non-zero if they don’t.

Use this function instead of the standard st r i cnp routine. Use it to
find strings but not sort them because it ignores case and accents.

St r Conpar e

122 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
String Manager Functions

Purpose
Prototype

Parameters

Result

Comments

Purpose
Prototype

Parameters

Result

Comments

See Also

StrCat

Concatenate one string to another.

CharPtr StrCat (CharPtr dst, CharPtr src)

dst Destination string pointer.

src Source string pointer.

Returns a pointer to the destination string.

Use this function instead of the standard st r cat routine.

StrChr

Look for a character within a string.

CharPtr StrChr (CharPtr str, Int chr)

str
chr

String to search.
Character to search for.

Returns a pointer to the first occurrence of character in st r, or NULL

if not found.

Use this function instead of the standard st r chr routine.

This routine does not correctly find a “\0’ character.

StrStr

Developing Palm OS 3.0 Applications, Part Il 123

Palm OS System Functions
String Manager Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters
Result

Comments

StrCompare

Compare two strings.

Int StrConpare (CharPtr sl1, CharPtr s2)

sl, s2 Two string pointers.

Returns O if the strings match.
Returns a positive number if s1 > s2.

Returns a negative number if s1 < s2.

This function is case sensitive. Use it to sort strings but not to find
them.

Use this function instead of the standard st r cnp routine.

St r Casel essConpar e

StrCopy

Copy one string to another.

CharPtr StrCopy (CharPtr dst, CharPtr src)
sl, s2 Two string pointers.

Returns a pointer to the destination string.

Use this function instead of the standard st r cpy routine.
This function does not return overlapping strings.

124 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
String Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype

Parameters

Result

See Also

StrDelocalizeNumber

Delocalize a number passed in as a string. Convert the number from
any localized notation to US notation (decimal point and thou-
sandth comma). The current thousand and decimal separators have
to be passed in.

Char Ptr StrDel ocal i zeNunber (
CharPtr s,
Char t housandSepar at or,
Char deci mal Separ at or)

S Pointer to the number ASCII string.
t housandSepar at or Current thousand separator.
deci mal Separ at or Current decimal separator.

Returns a pointer to the changed number and modifies the string in
S.

StrLocal i zeNunber ,LocGet Nunber Separ at or s (documented
in “Develping Palm OS Applications, Part I”*)

StriToA
Convert an integer to ASCII.
CharPtr StrlToA (CharPtr s, Long i)

S String pointer to store results.
i Integer to convert.

Returns a pointer to the result string.

StrATol ,Strl ToH

Developing Palm OS 3.0 Applications, Part Il 125

Palm OS System Functions
String Manager Functions

StriToH

Purpose Convertan integer to hexadecimal ASCII.
Prototype CharPtr StrlToH (CharPtr s, ULong i)

Parameters s String pointer to store results.
i Integer to convert.

Result Returns the string pointer s.

See Also StrlToA

StrLen

Purpose Compute the length of a string.
Prototype U nt StrLen (CharPtr src)
Parameters src String pointer
Result Returns the length of the string.

Comments Use this function instead of the standard st r | en routine.

126 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
String Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

See Also

StrLocalizeNumber

Convert a number (passed in as a string) to localized format, using a
specified thousandSeparator and decimalSeparator.

void StrLocalizeNunmber (CharPtr s,
Char thousandSepar at or,

Char deci mal Separ at or)

S Number ASCII string to localize
t housandSepar at or Localized thousand separator.

deci mal Separ at or Localized decimal separator.

Returns nothing. Converts the number string in s.

StrDel ocal i zeNunber

StrNCaselessCompare

Compares two strings out to N characters with case and accent in-
sensitivity.

I nt StrNCasel essConpar e(const Char* sl1,
const Char* s2,

DWord n)
sl Pointer to first string.
s2 Pointer to second string.
n Number of characters to compare.

0 if they match, non-zero if not: positive if s1 > s2, negative if s1 <s2

St r NConpar e

Developing Palm OS 3.0 Applications, Part Il 127

Palm OS System Functions
String Manager Functions

Purpose

Prototype

Parameters

Result

Comment

StrNCat

Concatenates 1 string to another clipping the destination string to a
max of N characters (including null at end).

CharPtr StrNCat(CharPtr dstP,
const Char* srcP,
Word n)

dst P Pointer to destination string.
sr cP Pointer to source string.
n Maximum number of characters for dst P.

Returns a pointer to the destination string.

This function differs from the standard C st r ncat function in these
ways:

e St r NCat treats the parameter n as the maximum size of
dst P. The standard C function copies n characters from
srcPinto dst P.

= St r NCat does not append the "\0' character to the end of
the destination string if the size of the destination string is
already n. That is, if you specify 6 as the value for n and the
dst P string reaches a size of 6 characters when characters
from sr cP are added to it, St r NCat does not append "\0' to
the dst P string.

128 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
String Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

Result

StrNCompare

Compare two strings out to N characters. This function is case and
accent sensitive.

I nt StrNConpare(const Char* s1,
const Char* s2,
DWord n)

sl Pointer to first string.
s2 Pointer to second string.
n Number of characters to compare.

Returns 0 if the strings match, non-zero if they don’t match. In that
case:

+ifsl>s2
-ifsl<s2

St r NCasel essConpar e

StrNCopy

Copies up to N characters from str string to dst string. Terminates
dst string at index N-1 if sr ¢ string length was N-1 or less.

Char Ptr StrNCopy(CharPtr dstP,
const Char* srcP,

Word n)
dstP Destination string.
srcP Source string.
n Maximum number of bytes to copy from sr ¢ string.

Returns a pointer to destination string

Developing Palm OS 3.0 Applications, Part Il 129

Palm OS System Functions
String Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype

Parameters

Result

Comments

See Also

StrPrintF

Implements a subset of the ANSI C sprintf() call.

Currently, only %, % , %, % and % are implemented and don’t
accept field length or format specifications except for the | (long)
modifier.

SWrd StrPrintF(CharPtr s,
const Char* formatStr,

-)
S Destination string
format Str Format string.
. Arguments for format string.

Number of characters written to destination string.
StrVPrintF

StrStr

Look for a substring within a string.

CharPtr StrStr (CharPtr str, CharPtr token)

str String to search.

t oken String to search for.

Returns a pointer to the first occurrence of t oken instr, or NULL if
not found.

Use this function instead of the standard st r st r routine.

StrChr

130 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
String Manager Functions

Purpose
Prototype
Parameters
Result

Comments

Purpose

Prototype

Parameters

Result

StrToLower

Convert all the characters in a string to lowercase.

CharPtr StrToLower (CharPtr dst, CharPtr src)
dst,src Two string pointers.

Returns a pointer to the destination string.

This function doesn’t convert accented characters.

StrVPrintF

Implements a subset of the ANSI C vsprintf () call.

Currently, only %, % , %, % and % are implemented and don’t
accept field length or format specifications except for the | (long)
modifier.

SWwrd StrVPrintF(CharPtr s,
const Char* formatStr,
Voi dPtr ar gPar anm

S Destination string.
format Str Format string.
ar gPar am Pointer to argument list.

Returns the number of characters written to destination string.

Developing Palm OS 3.0 Applications, Part Il 131

Palm OS System Functions
String Manager Functions

Example Here’s an example of how to use this call:
#i ncl ude <stdarg. h>
void MyPrintF(CharPtr s, CharPtr formatStr,
{

va_list args;
Char text[0x100];
va_start(args, formatStr);
StrVPrintF(text, formatStr, args);
va_end(args);
MyPut S(t ext);

}

See Also StrPrintF

132 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
File Streaming Functions

File Streaming Functions

Purpose
Prototype
Parameters

Result

See Also

Purpose

Prototype
Parameters

Result

FileClearerr

Clear 170 error status, end of file error status, and last error.
Err FileC earErr(Fil eHand stream
-->stream Handle to open stream.

Oifnoerror,orafil eErr code ifan error occurs. For a complete
listing of File Streaming Error Codes, see the section beginning on
page 149.

Fil eGet Last Error, Fil eRewi nd

FileClose

Close the file stream and destroy its handle. If the stream was
opened with f i | eModeTenpor ary, it is deleted upon closing.

Err FileC ose(FileHand strean
-->stream Handle to open stream.

Oifnoerror,orafil eErr code ifan error occurs. For a complete
listing of File Streaming Error Codes, see the section beginning on
page 149.

Developing Palm OS 3.0 Applications, Part Il 133

Palm OS System Functions
File Streaming Functions

FileControl

Purpose Perform the operation specified by the op parameter on the st r eam
file stream.

Prototype Err FileControl (Fil eOpEnumop, FileHand stream
Voi dPtr val ueP, LongPtr
val ueLenP)

Parameters op The operation to perform, and its associated
formal parameters, as specified by one of the
following selectors:
fileOpDestructiveReadVode
fileOpGet EOFSt at us
fileQpCetLastError
fileOpCd earError
fileOpGetl OErrorStatus
fileOpGet CreatedStatus
fil eOpGet OpenDbRef
fil eOpFl ush
For details, see Fi | eOpEnumon page 30.

-->stream Open stream handle if required for file stream
operation.

<-->val ueP Pointer to value or buffer, as required. This pa-
rameter is defined by the selector passed as the
value of the op parameter. For details, see

Fi | eOoEnumon page 30.

<-->val ueLenP Pointer to value or buffer, as required. This pa-
rameter is defined by the selector passed as the
value of the op parameter. For details, see

Fi | eOpEnumon page 30.

Result Returns either a value defined by the selector passed as the argu-
ment to the op parameter, or an error code resulting from the re-
guested operation. For a complete listing of File Streaming Error
Codes, see the section beginning on page 149.

134 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
File Streaming Functions

Comments

See Also

Normally, you do not call the Fi | eCont r ol function yourself; it is
called for you by most of the other file streaming functions and mac-
ros to perform common file streaming operations. You can call

Fi | eCont r ol yourself to enable specialized read modes.

Passthefi | eOpDestructi veReadMode selector as the value of
the op parameter to the Fi | eCont r ol function to enable destruc-
tive read mode. This mode deletes blocks as data are read, thus free-
ing storage automatically. Once in destructive read mode, you can-
not re-use the file stream—the contents of the stream are undefined
after it is closed or after a crash.

Writing to files opened without write access or those that are in de-
structive read state is not allowed; thus, you cannot call the
FileWite, FileSeek, orFil eTruncat e functions on a stream
that is in destructive read mode. One exception to this rule applies
to streams that were opened in “write + append” mode and then
switched into destructive read state. In this case, the Fi | eWite
function can append data to the stream, but it also preserves the cur-
rent stream position so that subsequent reads pick up where they
left off (you can think of this as a pseudo-pipe).

Fil eOpEnumFil ed earerr,Fil eEOCF, FileError,Fil e-

Fl ush,Fil eGet Last Error, Fi |l eRewi nd

Developing Palm OS 3.0 Applications, Part Il 135

Palm OS System Functions
File Streaming Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

FileDelete

Deletes the specified file stream from the specified card. Only a
closed stream may be passed to this function.

Err FileDelete(Unt cardNo, CharPtr nanmeP)

car dNo Card on which the file stream to delete resides.
Currently, no Palm OS devices support multi-
ple cards, so this value must be 0.

nameP String that is the name of the stream to delete.

Oifnoerror,orafil eErr code if an error occurs. For a complete
listing of File Streaming Error Codes, see the section beginning on
page 149.

Thefil eMbdeTenpor ary argument to the openMbde parameter
of the Fi | eOpen function.

FileDmRead

Read data from a file stream into a chunk, record, or resource resid-
ing in a database.

Long Fil eDrRead(Fi | eHand stream
Voi dPtr start O DChunkP,
Long dest O f set,
Long obj Si ze, Long nunmObj,
Err* errP)

-->stream Handle to open stream.

-->st art O DChunkP
Pointer to beginning of chunk, record or re-
source residing in a database.

dest O f set Offset from st ar t O DChunkP (base pointer)
to the destination area (must be >=0).

136 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
File Streaming Functions

Result

Comments

See Also

obj Si ze Size of each stream object to read.
nunmObj Number of stream objects to read.
<->errP Pointer to variable that is to hold the error code

returned by this function. Pass NULL to ignore.
For a list of file streaming error codes, see File
Streaming Error Codes beginning on page 149.

The number of whole objects that were read—note that the number
of objects actually read may be less than the number requested.

When the number of objects actually read is less than the number re-
guested, you may be able to determine the cause of this result by ex-
amining the return value of the er r P parameter or by calling the

Fi | eGet Last Err or function. If the cause is insufficient data in the
stream to satisfy the full request, the current stream position is at
end-of-file and the “end of file” indicator is set. If a non-NULL
pointer was passed as the value of the er r P parameter when the

Fi | eDmRead function was called and an error was encountered,
*er r P holds a non-zero error code when the function returns. In
addition, the Fi | eEr r or and Fi | eEOF functions may be used to
check for 1/0 errors.

Fi | eRead, Fi | eReadLow, Fi | eError, Fil eEOF

Developing Palm OS 3.0 Applications, Part Il 137

Palm OS System Functions
File Streaming Functions

Purpose

Prototype
Parameters

Result

Comments

See Also

FileEOF

Get end-of-file status (err =f i | eEr r EOF indicates end of file condi-
tion).

Err Fil eEOF(Fil eHand strean)
-->stream Handle to open stream.

0 if not end of file; non-zero if end of file. For a complete listing of
File Streaming Error Codes, see the section beginning on page 149.

This function’s behavior is similar to that of the f eof function pro-
vided by the C programming language runtime library.

Use Fi | ed ear err to clear the I/0 error status.

FileC earerr,Fil eGet Last Error, Fil eRewi nd

138 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
File Streaming Functions

Purpose
Prototype
Parameters

Result

Comments

See Also

Purpose
Prototype
Parameters

Result

Comments

FileError

Get I/0 error status.
Err FileError(FileHand strean
-->stream

Handle to open stream.

0 if no error, and non-zero if an 1/0 error indicator has been set for
this stream. For a complete listing of File Streaming Error Codes, see
the section beginning on page 149.

This function’s behavior is similar to that of the C programming lan-
guage’s f er r or runtime function.

Use Fi | ed ear err to clear the I/0 error status.

FileC earerr,Fil eGetlLastError, Fil eRewi nd

FileFlush

Flush cached data to storage.
Err Fil eFlush(FileHand strean
-->stream

Handle to open stream.

Oifnoerror,orafil eErr code ifan error occurs. For a complete
listing of File Streaming Error Codes, see the section beginning on
page 149.

It is not always necessary to call this function explicitly—certain op-
erations flush the contents of a stream automatically; for example,
streams are flushed when they are closed. Because this function’s
behavior is similar to that of the f f | ush function provided by the C
programming language runtime library, you only need to call it ex-

Developing Palm OS 3.0 Applications, Part Il 139

Palm OS System Functions
File Streaming Functions

Purpose

Prototype
Parameters

Result

See Also

Purpose

Prototype

Parameters

plicitly under circumstances similar to those in which you would
call f f 1 ush explicitly.

FileGetLastError

Get error code from last operation on file stream, and clear the last
error code value (will not change end of file or I/0 error status --
use Fi | ed earerr toresetall error codes)

Err FileGetLastErr(FileHand stream
-->stream Handle to open stream.

Error code returned by the last file stream operation. For a complete
listing of File Streaming Error Codes, see the section beginning on
page 149.

FileC earerr,Fil eECF Fil eError

FileOpen

Open existing file stream or create an open file stream for 1/0 in the
mode specified by the openMbde parameter.

Fil eHand Fil eQpen (U nt cardNo, CharPtr naneP,
ULong type, ULong creator,
DWrd openMode, Err* errP)

car dNo Card on which the file stream to open resides.
Currently, no Palm OS devices support multi-
ple cards, so this value must be 0.

--> naneP Pointer to text string that is the name of the file
stream to open or create. This value must be a
valid name—no wildcards allowed, must not
be NULL.

140 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
File Streaming Functions

type

creator

openMbde

Filetype of stream to open or create. Pass O for
wildcard, in which case

sysFi | eTFi | eSt r eamis used if the stream
needs to be created and f i | eMbdeTenpor ary
is not specified. If type is 0 and

fil eModeTenpor ary is specified, then
sysFi | eTTenp is used for the filetype of the
stream this function creates.

Creator of stream to open or create. Pass O for
wildcard, in which case the current applica-
tion's creator ID is used for the creator of the
stream this function creates.

Mode in which to open the file stream. You
must specify only one primary mode selector.
Additionally, you can use the | operator (bit-
wise inclusive OR) to append one or or more
secondary mode selectors to the primary mode
selector. The primary mode selectors are:

fil eMbdeReadOnly
Open for read-only access

fil eMbdeReadWite
Open/create for read/write access,
discarding any previous version of
stream

fil eMbdeUpdat e
Open/create for read/write, preserving
previous version of stream if it exists

fil eMbdeAppend
Open/create for read/write, always
writing to the end of the stream

You can use the | operator (bitwise inclusive
OR) to append one or more of the following
secondary mode selectors to the primary mode
selector:

fil eMbdeDont Overwite
Prevents fi | eMbdeReadWi t e from
discarding an existing stream having the

Developing Palm OS 3.0 Applications, Part Il 141

Palm OS System Functions
File Streaming Functions

same name; may only be specified
together with fi | eMbdeReadWi te

fil eModeLeaveQpen
Leave stream open when application
guits. Most applications should not use
this option. See Conment s at the end of
this function description for more
information.

fil eMbdeExcl usive
No other application can open the
stream until the application that opened
it in this mode closes it.

fil eMbdeAnyTypeCreat or
Accept any type/creator when opening
or replacing an existing stream.
Normally, the Fi | eOpen function opens
only streams having the specified
creator and type. Setting this option
enables the Fi | eOpen function to open
streams having a type or creator other
than those specified.

fil eMbdeTenporary
Delete the stream automatically when it
is closed. See Comment s at the end of
this function description for more
information.

<->errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
For a list of file streaming error codes, see File
Streaming Error Codes beginning on page 149.

Result If successful, returns a handle to an open file stream; otherwise, re-
turns 0.

Comments Thefil eMbdeReadOnly,fil eModeReadWit e,
fil eMbdeUpdat e,andfi | eModeAppend modes are mutually ex-
clusive—pass only one of them to the Fi | eOQpen function!

142 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
File Streaming Functions

Purpose

Prototype

Parameters

When the fi | eMbdeTenpor ary open mode is used and the file
type passed to Fi | eOQpen is 0, the Fi | eOpen function uses

sysFi | eTTenp (defined in Syst em\gr . r h) for the file type, as
recommended. In future versions of PalmOS, this configuration will
enable the automatic cleanup of undeleted temporary files after a
system crash. Automatic post-crash cleanup is not implemented in
current versions of Palm OS.

To open a file stream even if it has a different type and creator than
specified, passthefi | eModeAnyTypeCr eat or selectorasaflagin
the openMbde parameter to the Fi | eQpen function.

Thefil eMbdeLeaveOpen mode is an esoteric option that most ap-
plications should not use. It may be useful for a library that needs to
open a stream from the current application’s context and keep it
open even after the current application quits. By default, Palm OS
automatically closes all databases that were opened in a particular
application’s context when that application quits. The

fil eMbdeLeaveOpen option overrides this default behavior.

FileRead

Reads data from a stream into a buffer. Do not use this function to
read data into a chunk, record or resource residing in a database—
you must use the Fi | eDnmRead function for such operations.

Long Fil eRead(Fil eHand stream Voi dPtr bufP,
Long obj Si ze, Long nun(bj,

Err* errP)

-->stream Handle to open stream.

-->puf P Pointer to beginning of buffer into which data
is read

obj Si ze Size of each stream object to read.

nunQbj Number of stream objects to read.

<->errP Pointer to variable that is to hold the error code

returned by this function. Pass NULL to ignore.

Developing Palm OS 3.0 Applications, Part Il 143

Palm OS System Functions
File Streaming Functions

For a list of file streaming error codes, see File
Streaming Error Codes beginning on page 149.

Result The number of whole objects that were read—note that the number
of objects actually read may be less than the number requested.

Comments Do not use this function to read data into a chunk, record or re-
source residing in a database—you must use the Fi | eDnRead func-
tion for such operations.

When the number of objects actually read is fewer than the number
requested, you may be able to determine the cause of this result by
examining the return value of the er r P parameter or by calling the
Fi | eGet Last Err or function. If the cause is insufficient data in the
stream to satisfy the full request, the current stream position is at
end-of-file and the “end of file” indicator is set. If a non-NULL
pointer was passed as the value of the er r P parameter when the

Fi | eRead function was called and an error was encountered,

*er r P holds a non-zero error code when the function returns. In
addition, the Fi | eEr r or and Fi | eEOF functions may be used to
check for 1/0 errors.

See Also Fil eDnRRead

FileRewind

Purpose Reset position marker to beginning of stream and clear all error
codes.

Prototype Err FileRew nd(FileHand stream
Parameters -->stream Handle to open stream.

Result Oifnoerror,orafil eErr code ifan error occurs. For acomplete
listing of File Streaming Error Codes, see the section beginning on
page 149.

144 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
File Streaming Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

See Also

Fil eSeek,Fil eTell ,Filed earerr,Fil eEOF Fil eError,

Fi | eGet Last Error

FileSeek

Set current position within a file stream, extending the stream as
necessary if it was opened with write access.

Err Fil eSeek(Fil eHand stream Long offset,
Fil eOri gi nEnum ori gi n)

-->stream Handle to open stream.

of f set Position to set, expressed as the number of
bytes from origin. This value may be positive,
negative, or 0.

origin A structure of type Fi | eOri gi nEnum which
describes the origin of the position change (be-
ginning, current, or end).

Oifnoerror,orafil eErr code ifan error occurs. For a complete
listing of File Streaming Error Codes, see the section beginning on
page 149.

Attempting to seek beyond end-of-file in a read-only stream results
inan 1/0 error.

This function’s behavior is similar to that of the f seek function pro-
vided by the C programming language runtime library.

Fi |l eRewi nd, Fi | eTel |

Developing Palm OS 3.0 Applications, Part Il 145

Palm OS System Functions
File Streaming Functions

FileTell

Purpose Getcurrent position and, optionally, filesize.

Prototype Long FileTell(FileHand stream LongPtr fileSizeP,
Err* errP)

Parameters -->stream Handle to open stream.

<->fileSizeP Pointer to variable that holds value describing
size of stream in bytes when this function re-
turns. Pass NULL to ignore.

<-->errP Pointer to variable that is to hold the error code
returned by this function. Pass NULL to ignore.
For a list of file streaming error codes, see File
Streaming Error Codes beginning on page 149.

Result If successful, returns current position, expressed as an offset in bytes
from the beginning of the stream. If an error was encountered, re-
turns - 1 as a signed long integer.

See Also Fil eRewi nd, Fi | eSeek

146 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
File Streaming Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose

Prototype

Parameters

FileTruncate

Truncate the file stream to a specified size; not allowed on streams
open in destructive read mode or read-only mode.

Err FileTruncate(Fil eHand stream Long newSi ze)

-->stream Handle of open stream.

newsSi ze New size; must not exceed current stream size.

Oifnoerror,orafil eErr code ifanerror occurs. For a complete
listing of File Streaming Error Codes, see the section beginning on
page 149.

Fil eTell
FileWrite
Write data to a stream.

Long FileWite(FileHand stream Voi dPtr dataP,
Long obj Si ze, Long nun(bj,

Err* errP)
-->stream Handle to open stream.
-->dat aP Pointer to buffer holding data to write.
obj Si ze Size of each stream object to write; must be > 0.
nunmObj Number of stream objects to write.
<->errP Optional pointer to variable that holds the error

code returned by this function. Pass NULL to ig-
nore. For a list of file streaming error codes, see
File Streaming Error Codes beginning on

page 149.

Developing Palm OS 3.0 Applications, Part Il 147

Palm OS System Functions
File Streaming Functions

Result The number of whole objects that were written—note that the num-
ber of objects actually written may be less than the number request-
ed. Should available storage be insufficient to satisfy the entire re-
guest, as much of the requested data as possible is written to the
stream, which may result in the last object in the stream being in-
complete.

Comments Writing to files opened without write access or those that are in de-
structive read state is not allowed; thus, you cannot call the
FileWite, FileSeek, orFil eTruncat e functions on a stream
that is in destructive read mode. One exception to this rule applies
to streams that were opened in "write + append" mode and then
switched into destructive read state. In this case, the Fi | eWite
function can append data to the stream, but it also preserves the cur-
rent stream position so that subsequent reads pick up where they
left off (you can think of this as a pseudo-pipe).

Functions For System Use Only

FileReadLow

Purpose Low-level routine for reading data from a file stream. This function
is for system use only—use the helper macros Fi | eRead and
Fi | eDrRead instead of calling this function directly.

Prototype Long Fil eReadLow Fil eHand stream VoidPtr baseP,
Long of fset,
Bool ean dat aSt or eBased,
Long obj Si ze, Long nuntbj,
Err* errP)

WARNING: System Use Only!

148 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions

File Streaming Functions

File Streaming Error Codes
This section lists all error codes returned by the file streaming func-

tions.

Error Code Value

fileErrMenkrr (fileErrordass| 1)
fileErrlnvalidParam (fil eErrorC ass| 2)
fileErrCorruptFile (fileErrord ass|3)

fil eErrNot Found (fileErrord ass|4)
fileErrTypeCreatorM smatch
(fileErrord ass|b5)

fileErrReplaceError (fileErrord ass|6)
fileErrCreateError (fileErrord ass|7)
fileErrQpenError (fileErrord ass| 8)
fileErrlnUse (fileErrord ass|9)

fileErrReadOnly (fileErrord ass| 10)

fileErrlnvalidDescriptor
(fileErrord ass| 11)

fileBrrd oseError
fil eErrQut O Bounds

(fileErrord ass| 12)
(fileErrord ass| 13)

fil eBrrPerm ssi onDeni ed
(fileErrord ass| 14)

fileBrrl OError
fil eErr EOF
fil eErrNotStream

(fileErrord ass| 15)
(fileErrord ass| 16)
(fileErrord ass| 17)

Meaning

out of memory error

invalid parameter value passed
alleged stream is corrupted,
invalid, or not a stream
couldn't find the stream

type and/or creator not what
was specified

couldn't replace existing stream
couldn't create new stream
generic open error

stream couldn't be opened or
deleted because it is in use
couldn't open in write mode
because existing stream is
read-only

invalid file descriptor

(Fi | eHandl e)

error closing the stream
attempted operation went out of
bounds of the stream

couldn't write to a stream open
for read-only access

generic 1/0 error

end-of-file error

attempted to open an entity that
is not a stream

Developing Palm OS 3.0 Applications, Part Il 149

Palm OS System Functions
Sound Manager Functions

Sound Manager Functions

Purpose

Prototype

Parameters

Result

Comments

See Also

SndCreateMidilList

Generate a list of MIDI records having a specified creator.

Bool ean SndCreat eM di Li st (ULong creator,
Bool ean mul ti pl eDBs,
Wor dPt r wCount P,
Handl e *ent HP)

-->Cr eat or Creator of database in which to find MIDI
records. Pass O for wildcard.

-->mul ti pl eDBs Pass TRUE to search multiple databases for
MIDI records. Pass FALSE to search only in the
first database found that meets search criteria.

<-->wCount P When the function returns, contains the num-
ber of MIDI records found.

<-->ent HP When the function returns, this handle holds a
a memory chunk containing an array of
SndM di Li st |t emlype structs if MIDI
records were found.

Returns FALSE if no MIDI records were found, TRUE if MIDI
records were found. When this function returns TRUE, it updates the
wCount P parameter to hold the number of MIDI records found and
updates the ent HP parameter to hold a handle to an array of

SndM di Li st 1t enmlypestructs. Each record of this type holds the
name, record ID, database ID, and card number of a MIDI record.

This function is useful for displaying lists of sounds residing on the
Palm device as MIDI records.

DnFi ndRecor dByl D, DnipenDat abase, DnlQuer yRecor d,
DrOpenDat abaseByTypeCr eat or functions; "Rock Music" sam-
ple code.

150 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Sound Manager Functions

Purpose

Prototype

Parameters

Note

Result

Comments

SndDoCmd

Send a sound manager command to a specified sound channel.

Err SndDoCnd (Voi dPtr chanP,
SndConmandPtr cndP,
Bool ean noWait)

->chanP Pointer to sound channel. Present implementa-
tion doesn’t support multiple channels. Must
be NULL.

->cndP Pointer to a SndCommandType structure hold-

ing a parameter block that specifies the note to
play, its duration, and amplitude.

->noWai t Because asynchronous mode is not yet support-
ed for all commands, you must pass 0 for this
value. In the future,

0 = await completion (synchronous)
I 0 = immediate return (asynchronous).

Passing NULL for the channel pointer causes the command to be
sent to the shared sound channel; currently, this is the only option.

0 No error.

sndEr r BadPar am Invalid parameter.
sndEr r BadChannel Invalid channel pointer.
sndErr Qrul | Sound queue is full.

This function is useful for simple sound playback applications, such
as playing a single note to provide user feedback. In addition to pro-
viding the same behavior it did in versions 1.0 and 2.0 of Palm OS,
(specify the frequency, duration, and amplitude of a single note to
be played) new command selectors provided in Palm OS 3.0 allow
you to use MIDI values to specify pitch, duration, and amplitude of
the note to play, and to stop the note currently being played.

Developing Palm OS 3.0 Applications, Part Il 151

Palm OS System Functions
Sound Manager Functions

See Also

Purpose

Prototype

Parameters

Result

Comments

Purpose

Prototype

Parameters

SndCommandType, SndPl ay SMF

SndGetDefaultVolume

Return default sound volume levels cached by Sound Manager.

voi d SndGet Defaul t Volunme (U ntPtr al ar mMAnpP,
U ntPtr sysAnmpP,
U ntPtr def AmpP)

<->al ar mMAnpP Pointer to storage for alarm amplitude.
<->sysAnmpP Pointer to storage for system sound amplitude.
<->def AnpP Pointer to storage for master amplitude.

Returns nothing.

Any pointer arguments may be passed as NULL. In that case, the cor-
responding setting is not returned.

SndPlaySMF

Performs the operation specified by the cnd parameter: play the
specified standard MIDI file (SMF) or return the number of millisec-
onds required to play the entire SMF.

Err SndPl aySnf (voi d* chanP,
SndSnf ChdEnum cnd,
BytePtr snfP,
SndSnf Opt i onsType* sel P,
SndSnf ChanRangeType* chanRangeP,
SndSnf Cal | backsType* cal | backsP,

Bool ean bNoWai t)

chanP The sound channel used to play the sound. This
value must always be NULL because current

152 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Sound Manager Functions

cnd

->snf P

->sel P

--> chanRangeP

-->cal | backsP

bNoWai t

versions of Palm OS provide only one sound
channel that all applications share.

The operation to perform, as specified by one of
the following selectors:

sndSnf CndPl ay
play the selection synchronously

sndSnf CndDur ati on
return the duration of the entire SMF,
expressed in milliseconds

Pointer to the SMF data in memory. This point-
er can reference a valid SndM di RecType
structure followed by MIDI data, or it can point
directly to the beginning of the SMF data.

NULL or a pointer to a SndSnf Opt i onsType
structure specifying options for playback vol-
ume, position in the SMF from which to begin
playback, and whether playback can be inter-
rupted by user interaction with the display. See
the SndSnf Opt i onsType structure for the
default behavior specified by a NULL value.

NULL or a pointer to a SndSnf ChanRange-
Type structure specifying a continuous range
of MIDI channels 0 -15 to use for playback. If
this value is NULL, all tracks are played.

NULL or a pointer to a SndSnf Cal | back-
sType structure that holds your callback func-
tions. Functions of type SndBl ocki ngFunc-
Type execute periodically while a note is
playing, and functions of type SndConpl -
FuncType execute after playback of the SMF
completes. For more information, see the
Sound Callback Functions section beginning on
page 51.

This value is ignored. This function always fin-
ishes playing the SMF selection before return-
ing; however, you can execute a callback func-
tion while the SMF is playing.

Developing Palm OS 3.0 Applications, Part Il 153

Palm OS System Functions
Sound Manager Functions

Result

Comments

See Also

Returns O if no error. When an error occurs, this function returns
one of the following values; for more information see the Sound-
Myr . h file included with the Palm OS 3.0 SDK:

/'l bogus val ue passed to this function
sndEr r BadPar am (sndErrorC ass | 1)

/1 invalid sound channel
sndEr r BadChannel (sndErrord ass | 2)
[l insufficient nmenory

sndErr Menory (sndErrorC ass | 3)

/1l tried to open channel that’s al ready open
sndEr r Open (sndErrorC ass | 4)

/1l can’t accept nore notes

sndEr r Qrul | (sndErrorC ass | 5)
/[linternal use - never returned to applications
sndEr r QEnpt y (sndErrorClass | 6)

/1 unsupported data format

sndEr r For mat (sndErrord ass | 7)

/1l invalid data stream
sndErr BadSt r eam (sndErrorClass | 8)
/1 play was interrupted
sndErrinterrupted (sndErrorCass | 9)

Although this call is synchronous, a callback function can be called
while a note is playing. If the callback does not return before the
number of system ticks required to play the current sound have
elapsed, the next note in the SMF will not start on time.

SndDoCnd,SndCr eat eM di Li st

154 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Sound Manager Functions

Purpose
Prototype
Parameters

Comments

Result

Prototype

SndPlaySystemSound

Play a standard system sound.
void SndPl aySyst enSound (SndSysBeepType beepl D)
-> peepl D System sound to play.

The SndSysBeepType enum is defined in SoundMgr . h as fol-
lows:

t ypedef enum SndSysBeepType {

sndl nfo = 1,

sndWar ni ng,

sndError,

sndSt ar t Up,

sndAl arm

sndConfirmati on,

sndd i ck

} SndSysBeepType;
Note that in versions of Palm OS prior to 3.0, all of these sounds
were synchronous and blocking. In Palm OS 3.0, sndAl ar mstill

blocks, but the rest of these system sounds are implemented asyn-
chronously.

Returns nothing.

Functions for System Use Only
Sndinit

Err Sndlnit(voi d)

WARNING: This function for use by system software only.

Developing Palm OS 3.0 Applications, Part Il 155

Palm OS System Functions

System Functions

Prototype

SndSetDefaultVolume

voi d SndSet Def aul t Vol une (Ul ntPtr al ar mAnpP,

UntPtr sysAnmpP,
U ntPtr def AmpP)

WARNING: This function for use by system software only.

System Functions

Purpose

Prototype

Parameters

Result

Comments

SysAppLaunch

Open an application from a specified database and card, with the
appropriate launch flags—generally used to launch an application
as a subroutine of the caller.

Err SysAppLaunch(U nt cardNo, Local | D dbl D,
U nt |aunchFl ags, Wrd cnd,
Ptr cnmdPBP, DWord* resultP)

car dNo, dbl D car dNo and dbl Didentify the application.
| aunchFl ags Setto 0.

cnd Launch code.
cndPBP Launch code parameter block.
resultP Pointer to what’s returned by the application’s

Pi | ot Mai n routine.

Returns 0 if no error, or one of sysEr r Par antrr,
menEr r Not EnoughSpace, sysErr Qut O Owner | Ds.

Launching an application with all launch bits cleared makes the ap-
plication a subroutine call from the point of view of the caller.

156 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

See Also

Purpose

Prototype
Parameters
Result

Comments

See Also

Do not use this function to open the system-supplied Application
Launcher application. If another application has replaced the de-
fault launcher with one of its own, this function will open the cus-
tom launcher instead of the system-supplied one. To open the sys-
tem-supplied launcher reliably, enqueue a keyDownEvent that
contains al aunchChr, as shown in Listing 1.13, “Opening the

Launcher,” on page 72.

NOTE: For important information regarding the correct use of this
function, see “Opening Applications Programmatically” on
page 62.

SysBr oadcast Acti onCode, SysUl AppSwi t ch,
SysCur AppDat abase functions; Listing 1.13, “Opening the
Launcher,” on page 72.

SysAppLauncherDialog

Display the launcher popup, get a choice, ask the system to launch
the selected application, clean up, and leave. If there are no applica-
tions to launch, nothing happens.

voi d SysAppLauncher D al og()
None.
The system may be asked to launch an application.

Typically, this routine is called by the system as necessary. Most ap-
plications do not need to call this function themselves.

In Palm OS version 3.0 the launcher is an application, rather than a
popup. This function remains available for compatibility purposes
only.

“Application Launcher.” starting on page 70; and the description of
the SysAppLaunch function.

Developing Palm OS 3.0 Applications, Part Il 157

Palm OS System Functions

System Functions

Purpose

Prototype

Parameters

Result

Comments

SysBatterylnfo

Retrieve settings for the batteries. Set set to FALSE to retrieve bat-
tery settings. (Applications should not change any of the settings).

Warning: Use this function only to retrieve settings!

U nt SysBatterylnfo(Bool ean set,
U ntPtr warnThr eshol dP,
UntPtr critical Threshol dP,
U ntPtr maxTi cksP,
SysBat t er yKi nd* ki ndP,
Bool ean* pl uggedl n
Byt ePtr percentP)

set If FALSE, parameters with non-nil pointers are
retrieved. Never set this parameter to TRUE.

war nThr eshol dP Pointer to battery voltage warning threshold
in volts*100, or nil.

critical Threshol dP
Pointer to the battery voltage critical threshold
in volts*100, or nil.

maxTi cksP Pointer to the battery timeout, or nil.

ki ndP Pointer to the battery kind, or nil.

pl uggedl n Pointer to pl uggedl n return value, or nil.
per cent P Percentage of power remaining in the battery.

Returns the current battery voltage in volts*100.

Call this function to make sure an upcoming activity won’t be inter-
rupted by a low battery warning.

war nThr eshol dP and maxTi cksP are the battery-warning volt-
age threshold and time out. If the battery voltage falls below the
threshold, or the timeout expires, al owBat t er yChr key event is

158 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

See Also

Purpose

Prototype

Parameters

put on the queue. Normally, applications call SysHandl eEvent
which calls SysBat t er yWar ni ngDi al og in response to this
event.

critical Threshol dPis the battery voltage threshold. If battery
voltage falls below this level, the system turns itself off without
warning and doesn’t turn on until battery voltage is above it again.

SysBat t eryl nf ovV20

SysBatteryIinfoV20

Retrieve settings for the batteries. Set set to FALSE to retrieve bat-
tery settings. (Applications should not change any of the settings).

Warning: Use this function only to retrieve settings!

U nt SysBatterylnfo(Bool ean set,
U ntPtr warnThreshol dP,
UntPtr critical Threshol dP,
U ntPtr maxTi cksP,
SysBat t er yKi nd* ki ndP,
Bool ean* pl uggedl n)

set If FALSE, parameters with non-nil pointers are
retrieved. Never set this parameter to TRUE.

war nThr eshol dP Pointer to battery voltage warning threshold
in volts*100, or nil.

critical Threshol dP
Pointer to the battery voltage critical threshold
in volts*100, or nil.

maxTi cksP Pointer to the battery timeout, or nil.
ki ndP Pointer to the battery kind, or nil.
pl uggedl n Pointer to pl uggedI n return value, or nil.

Developing Palm OS 3.0 Applications, Part Il 159

Palm OS System Functions

System Functions

Result

Comments

See Also

Purpose

Prototype

Parameters

Returns the current battery voltage in volts*100.

Call this function to make sure an upcoming activity won’t be inter-
rupted by a low battery warning.

war nThr eshol dP and maxTi cksP are the battery-warning volt-
age threshold and time out. If the battery voltage falls below the
threshold, or the timeout expires, al owBat t er yChr key event is
put on the queue. Normally, applications call SysHandl eEvent
which calls SysBat t er yWar ni ngDi al og in response to this
event.

critical Threshol dPis the battery voltage threshold. If battery
voltage falls below this level, the system turns itself off without
warning and doesn’t turn on until battery voltage is above it again.

SysBatteryl nfo

SysBinarySearch

Search elements in a sorted array for the specified data according to
the specified comparison function. The array must be sorted in as-
cending order prior to the search. Use SysinsertionSort or SysQSort
to sort the array.

Bool ean SysBi narySearch (
Voi dPtr baseP, Int nunCOfEl ements,
Int width, SearchFuncPtr searchF,
const Voi dPtr searchDat a, const Long ot her,
ULongPtr position, Boolean findFirst)

baseP Base pointer to an array of elements

nunf El ement s Number of elements to search, starting at 0 to
nunCf El emrent s -1. Must be greater than 0.

wi dt h Width of an element comparison function.
sear chF Search function.

160 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Result

Comments

sear chDat a Data to search for. This data is passed to the
sear chF function.

ot her Data to be passed as the third parameter (the
ot her parameter) to the comparison function.

position Pointer to the position result.

findFirst If set to TRUE, the first matching element is

returned. Use this parameter if the array
contains duplicate entries to ensure that the
first such entry will be the one returned.

Returns TRUE if an exact match was found. In this case, posi ti on
points to the element number where the data was found.

Returns FALSE if an exact match was not found. If FALSE is re-
turned, posi t i on points to the element number where the data
should be inserted if it was to be added to the array in sorted order.

The search starts at element 0 and ends at element (nunCr El e-
ment s - 1).

The search function’s (sear chF) prototype is:

Int _searchF (const VoidPtr, const VoidPtr, Long
ot her);

The first parameter is the data for which to search, the second pa-
rameter is a pointer to an element in the array, and the third param-
eter is any other necessary data.

The function returns:
= > 0 if the search data is greater than the element
= <0 if the search data is less than the element
= 0 if the search data is the same as the element

Developing Palm OS 3.0 Applications, Part |l 161

Palm OS System Functions
System Functions

SysBroadcastActionCode

Purpose Send the specified action code (launch code) and parameter block
to the latest version of every Ul application.

Prototype Err SysBroadcastActionCode (Wrd cnd, Ptr cndPBP)

Parameters cnmd Action code to send.
cndPBP Action code parameter block to send.

Result Returns 0 if no error, or one of the following errors:
sysErrParantrr, nmenktrrNot EnoughSpace,
sysErr Qut OF Owner | Ds.

Comments Launch codes are discussed in some detail in Chapter 2 of Develop-
ing Palm OS Applications, Part I.

See Also SysApplLaunch

SysCopyStringResource

Purpose Copy aresource string to a passed string.

Prototype void SysCopyStringResource (CharPtr string,
U nt thel D)

Parameters string String to copy the resource string to.
t hel D Resource string ID.

Result Stores a copy of the resource string in st ri ng.

162 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Purpose

Prototype

Parameters

Result

SysCreateDataBaselList

Generate a list of databases found on the memory cards matching a
specific type and return the result. If | ookupNane is true then a
name in a tAIN resource is used instead of the database’s name and
the list is sorted. Only the last version of a database is returned. Da-
tabases with multiple versions are listed only once.

Bool ean SysCreat eDat aBaseli st (ULong type,
ULong creat or,
Wor dPt r dbCount ,
Handl e *dbl Ds,
Bool ean | ookupNane)

type Type of database to find (0 for wildcard).
creator Creator of database to find (0 for wildcard).
dbCount Pointer to contain count of matching databases.
dbl Ds Pointer to handle allocated to contain the

database list.
| ookupName Use tAIN names and sort the list.

Returns FALSE if no databases were found, TRUE if databases were
found. dbCount is updated to the number of databases found;
dbl Ds is updated to the list of matching databases found.

Developing Palm OS 3.0 Applications, Part Il 163

Palm OS System Functions

System Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

See Also

SysCreatePanelList

Generate a list of panels found on the memory cards and return the
result. Multiple versions of a panel are listed once.

Bool ean SysCreat ePanel Li st (
Wor dPt r panel Count,
Handl e *panel | Ds)

panel Count Pointer to set to the number of panels.
panel | Ds Pointer to handle containing a list of panels.

Returns FALSE if no panels were found, TRUE if panels were found.
panel Count is updated to the number of panels found; panel | Ds
is updated to the IDs of panels found.

SysCurAppDatabase

Return the card number and database ID of the current application’s
resource database.

Err SysCur AppDat abase (U ntPtr cardNoP,
Local | D* dbl DP)

car dNoP Pointer to the card number; 0 or 1.
dbl DB Pointer to the database ID.

Returns 0 if no error, or SysEr r Par ankr r if an error occurs.

SysAppLaunch, SysUl AppSwi t ch

164 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype
Parameters

Result

SysErrString

Returns text to describe an error number. This routine looks up the
textual description of a system error number in the appropriate List
resource and creates a string that can be used to display that error.

The actual string will be of the form: "<error message> (XXXX)"
where XXXX is the hexadecimal error number.

This routine looks for a resource of type "tstl' and resource 1D of
(err>>8). It then grabs the string at index (err & 0x00FF) out of that
resource.

Note: The first string in the resource is called index #1 by Con-
structor, NOT #0. For example, an error code of 0x0101 will fetch
the first string in the resource.

CharPtr SyskErrString(Err err,
CharPtr strP,

Word maxLen)
err Error number
strP Pointer to space to form the string
maxLen Size of strP buffer.

Stores the error number string.

SysFatalAlert

Display a fatal alert until the user taps a button in the alert.
U nt SysFatal Alert (CharPtr nsqQ)
nsg Message to display in the dialog.

The button tapped; first button is zero.

Developing Palm OS 3.0 Applications, Part Il 165

Palm OS System Functions

System Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype
Parameters
Result

Comments

SysFormPointerArrayToStrings

Form an array of pointers to strings in a block. Useful for setting the
items of a list.

Voi dHand SysFor nPoi nter ArrayToStri ngs
(CharPtr c,
I nt stringCount)

c Pointer to packed block of strings, each
terminated by NULL.
stri ngCount Count of strings in block.

Unlocked handle to allocated array of pointers to the strings in the
passed block. The returned array points to the strings in the passed
packed block.

SysGetOSVersionString

Return the version number of the Palm operating system.
Char Ptr SysGet OSVersionString()

None.

Returns a string such as “v. 3.0.”

You must free the returned string using the Men®t r Fr ee function.

166 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Prototype

Parameters

Result

Comments

See Also

SysGetRomToken

Return from ROM a value specified by token.

Err SysGet ROMIoken(Wrd cardNo, DWord t oken,
BytePtr *dataP, WrdPtr sizeP)

car dNo The card on which the ROM to be queried re-
sides. Currently, no Palm hardware provides
multiple cards, so this value must be 0.

t oken The value to retrieve, as specified by one of the
following tokens:

sysROMIokenSeri al
The serial number of the ROM,
expressed as a text string with no null
terminator.

<--dat aP Pointer to a text buffer that holds the requested
value when the function returns.

<--si zeP The number of bytes in the dat aP buffer.

Returns the requested value if no error, or an error code if an error
occurs. If this function returns an error, or if the returned pointer to
the buffer is NULL, or if the first byte of the text buffer is OxFF, then
no serial number is available.

This function is available only on Palm OS version 3.0 and greater.
Serial numbers are available only on flash ROM-based units.

The serial number is shown to the user in the Application Launcher,
along with a checksum digit you can use to validate input when
your users read the ID from their device and type it in or tell it to
someone else.

“Retrieving the ROM Serial Number” starting on page 51 shows
how to retrieve the ROM serial number and calculate its associated
checksum.

Developing Palm OS 3.0 Applications, Part Il 167

Palm OS System Functions

System Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

SysGetStacklnfo

Return the start and end of the current thread’s stack.

Bool ean SysGet Stacklnfo(Ptr *startPP,
Ptr *endPP)

start PP Upon return, points to the start of the stack.
endPP Upon return, points to the end of the stack.

Returns TRUE if the stack has not overflowed, that is, the value of
the stack overflow address has not been changed. Returns FALSE if
the stack overflow value has been overwritten, meaning that a stack
overflow has occurred.

SysGraffitiReferenceDialog

Pop up the Graffiti Reference Dialog.

void SysGraffiti ReferenceDi al og
(Ref erenceType referenceType)

ref erenceType Which reference to display. See
G affiti Reference. hfor more
information.

Nothing returned.

168 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Purpose

Prototype

Parameters

Result

Comments

SysGremlins

Query the Gremlins facility. You pass a selector for a function and
parameters for that function. Gremlins performs the function call
and returns the result.

DWrd SysGemins(GenminFunctionType sel ector,
G enl i nPar ansType *par ans)

sel ect or The selector for a function to pass to Gremlins.

par ans Pointer to a parameter block used to pass parameters
to the function specified by sel ect or .

Returns the result of the function performed in Gremlins.

Currently, only one selector is defined, G eni i nl sOn, which takes
no parameters. G- el i nl sOn returns 0 if Gremlins is not running,
non-zero if it is running.

Currently, non-zero values are returned only from the version of
Gremlins in the Palm OS emulator. The Gremlins running in the
simulator and over the serial line via the Palm Debugger return zero
forGem i nl sOn.

Use this function if you need to alter the application’s behavior
when Gremlins is running. For example, the debug 3.0 ROM refuses
to bring up the digitizer panel when Gremlins is running under the
emulator.

Developing Palm OS 3.0 Applications, Part Il 169

Palm OS System Functions

System Functions

Purpose
Prototype
Parameters
Result

Comments

See Also

Purpose

Prototype

Parameters

SysHandleEvent

Handle defaults for system events such as hard and soft key presses.
Bool ean SysHandl eEvent (EventPtr eventP)

event P Pointer to an event.

Returns TRUE if the system handled the event.

Applications should call this routine immediately after calling

Evt Get Event unless they want to override the default system be-
havior. However, overriding the default system behavior is almost
never appropriate for an application.

Evt Pr ocessSof t KeySt r oke, KeyRat es (documented in Devel-
oping Palm OS Applications, Part I)

SysinsertionSort

Sort elements in an array according to the passed comparison func-
tion.

void SyslnsertionSort (Byte baseP,
I nt nunCf El enent s,
I nt wi dth,

CnpFuncPtr conpar F,
Long ot her)

baseP Base pointer to an array of elements.

numOf El ements Number of elements to sort (must be at least
2).

wi dt h Width of an element.

conpar F Comparison function (see Comments).

170 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

ot her Other data passed to the comparison function.
Result Returns nothing.

Comments Only elements which are out of order move. Moved elements are
moved to the end of the range of equal elements. If a large amount
of elements are being sorted, try to use the quick sort (see SysQ
Sort).

This is the insertion sort algorithm: Starting with the second ele-
ment, each element is compared to the preceding element. Each ele-
ment not greater than the last is inserted into sorted position within
those already sorted. A binary search for the insertion point is per-
formed. A moved element is inserted after any other equal ele-
ments.

In Palm OS 2.0 and later, DmConpar F has 6 parameters.

These parameters allow a Palm OS application to pass more infor-
mation to the system than before, most noticeably the record (and
all associated information) which allows sorting by unique ID, so

that the Palm OS device and the desktop always match.

The revised callback is used by new sorting routines (and can be
used the same way by your application):

typedef Int DnConparF (void *,
void *,
I nt ot her,
Sort Recordl nfoPtr,
Sort Recordl nf oPtr,
Voi dHand appl nf oH) ;

As a rule, this change in the number of arguments doesn’t cause
problems when a 1.0 application is run on a 2.0 or later device, be-
cause the system only pulls the arguments from the stack that are
there.

Note, however, that some optimized applications built with tools
other than Metrowerks CodeWarrior for Palm OS may have prob-

Developing Palm OS 3.0 Applications, Part |l 171

Palm OS System Functions

System Functions

See Also

Purpose

Prototype
Parameters
Result

Comments

lems as a result of the change in arguments when running on a 2.0
or later device.

The 2.0 comparison function (conpar F) has this prototype:
I nt conparF (VoidPtr, VoidPtr, Long other);

The 1.0 comparison function (conpar F) had this prototype:
I nt conparF (BytePtr A, BytePtr B, Long other);

The function returns:
« >0ifA>B
« <0ifA<B
- 0ifA=B

Sys(OSor t

Sysinstall

Entry point for System code resource,’ CODE #0, in the System re-
source file.

void Sysinstall (Ptr tableP[])
t abl eP Pointer to trap table.
Returns nothing

Called by I ni t () inthe ROMMain module.

172 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Purpose

Prototype
Parameters
Result

See Also

Purpose

Prototype
Parameters
Result

See Also

SysKeyboardDialog

Pop up the system keyboard if there is a field object with the focus.
The field object’s text chunk is edited directly.

voi d SysKeyboar dDi al og (KeyboardType kbdType)
kbdType The keyboard type. See keyboar d. h.
Returns nothing. Changes the field’s text chunk.

SysKeyboar dDi al ogV10, Fr nSet Focus (documented in "Devel-
oping Palm OS Applications, Part I)

SysKeyboardDialogV10

Pop up the system keyboard if there is a field object with the focus.
The field object’s text chunk is edited directly.

voi d SysKeyboar dbDi al ogVv10 ()
None.
Returns nothing. The field’s text chunk is changed.

SysKeyboar dDi al og, Fr nSet Focus (documented in "Develop-
ing Palm OS Applications, Part I)

Developing Palm OS 3.0 Applications, Part Il 173

Palm OS System Functions
System Functions

SysLibFind

Purpose Auutility routine to return a reference number for a library that is al-
ready loaded, given its name.

Prototype Err SysLibFind (CharPtr naneP, U ntPtr refNunP)

Parameters naneP Pointer to the name of a loaded library.
ref NunP Pointer to a variable for returning the library
reference number (on failure, this variable is
undefined)

Result 0ifno error; otherwise: sysErr Li bNot Found (if the library is not
yet loaded), or another error returned from the library's install entry
point.

Comments Most built-in libraries (net, serial, IR) are preloaded automatically
when the system is reset. Third-party libraries must be loaded be-
fore this call can succeed (use SysLibLoad). You can check if a li-
brary is already loaded by calling SysLi bFi nd and checking fora0
error return value (it will return a non-zero value if the library is not
loaded).

174 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Purpose

Prototype

Parameters

Result

Comments

SysLibLoad

A utility routine to load a library given its database creator and
type.

Presently, the “load” functionality is NOT supported when you use
the Palm OS Simulator.

Err SysLi bLoad(Dword |ibType,
DWord IibCreator,
UntPtr refNunP)

i bType Type of library database.
i bCreator Creator of library database.
ref NunP Pointer to variable for returning the library

reference number(on failure,
sysl nval i dRef Numis returned in this
variable)

0 if no error; otherwise: sysEr r Li bNot Found, sysErr NoFr eeR-
AM sysEr r NoFr eeLi bSl ot s, or other error returned from the li-
brary's install entry point

When an application no longer needs a library that it SUCCESSFUL-
LY loaded via SysLi bLoad, it is responsible for unloading the li-
brary by calling SysLi bRenove and passing it the library reference
number returned by SysLi bLoad. More information is available in
the white paper on shared libraries, which you can find on the Palm
developer support web site.

Developing Palm OS 3.0 Applications, Part Il 175

Palm OS System Functions

System Functions

Purpose

Prototype

Parameters

SysQSort

Sort elements in an array according to the passed comparison func-
tion. Equal records can be in any position relative to each other be-
cause a quick sort tends to scramble the ordering of records. As a re-
sult, calling SysQSor t multiple times can result in a different order
if the records are not completely unique. If you don’t want this be-
havior, use the insertion sort instead (see SyslInsertionSort).

To pick the pivot point, the quick sort algorithm picks the middle of
three records picked from around the middle of all records. That
way, the algorithm can take advantage of partially sorted data.

These optimizations are built in:

= The routine contains its own stack to limit uncontrolled
recursion. When the stack is full, an insertion sort is used
because it doesn't require more stack space.

< An insertion sort is also used when the number of records is
low. This avoids the overhead of a quick sort which is
noticeable for small numbers of records.

= |f the records seem mostly sorted, an insertion sort is
performed to move only those few records that need to be
moved.

void SysQSort (Byte baseP,
I nt nunOf El enent s,
I nt wi dth,
CnpFuncPtr conpar F,
Long ot her)

baseP Base pointer to an array of elements.

nunl El enents Number of elements to sort
(must be at least 2).

wi dt h Width of an element.

conpar F Comparison function. See Comments for
SyslnsertionSort.

ot her Other data passed to the comparison function.

176 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Result

See Also

Purpose
Prototype
Parameters

Result

Purpose

Prototype
Parameters
Result

Comments

Returns nothing.

SyslnsertionSort

SysRandom

Return a random number anywhere from 0 to sysRandomvax.
I nt SysRandom (ULong newSeed)

newSeed New seed value, or 0 to use existing seed.
Returns a random number.

SysReset

Perform a soft reset and reinitialize the globals and the dynamic
memory heap.

voi d SysReset (void)
None.
No return value.

This routine resets the system, reinitializes the globals area and all
system managers, and reinitializes the dynamic heap. All database
information is preserved. This routine is called when the user press-
es the hidden reset switch on the device.

When running an application using the simulator, this routine looks
for two data files that represent the memory of card 0 and card 1. If
these are found, the Palm OS memory image is created using them.
If they are not found, they are created.

When running an application on the device, this routine simply
looks for the memory cards at fixed locations.

Developing Palm OS 3.0 Applications, Part Il 177

Palm OS System Functions
System Functions

SysSetAutoOffTime

Purpose Setthe time out value in seconds for auto-power-off. Zero means
never power off.

Prototype U nt SysSet AutoOifTime (U nt seconds)
Parameters seconds Time out in seconds, or 0 for no time out.
Result Returns previous value of time out in seconds.
SysStringBylindex

Purpose Copy astring out of a string list resource by index. String list re-
sources are of type 'tSTL" and contain a list of strings and a prefix
string.

Warning: ResEdit always displays the items in the list as starting
at 1, not 0. Consider this when creating your string list.

Prototype CharPtr SysStringBylndex(Wrd reslD,
Word i ndex,
CharPtr strP,
Wrd maxLen)

Parameters resliD Resource ID of the string list.
i ndex String to get out of the list.
strP Pointer to space to form the string.
maxLen Size of st r P buffer.

Result Returns a pointer to the copied string. The string returned from this
call will be the prefix string appended with the designated index
string. Indices are 0-based; index 0 is the first string in the resource.

178 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype
Parameters

Result

Purpose

SysTaskDelay

Put the processor into doze mode for the specified number of ticks.
Err SysTaskDel ay (Long del ay)

del ay Number of ticks to wait (see SysTi cksPer Second)
Returns 0 if no error.

Evt Get Event

SysTicksPerSecond

Return the number of ticks per second. This routine allows applica-
tions to be tolerant of changes to the ticks per second rate in the sys-
tem.

Word SysTi cksPer Second(voi d)
None

Returns the number of ticks per second.

SysUIAppSwitch

Try to make the current Ul application quit and then launch the Ul
application specified by card number and database ID.

NOTE: For important information regarding the correct use of this
function, see “Opening Applications Programmatically” on
page 62.

Developing Palm OS 3.0 Applications, Part Il 179

Palm OS System Functions

System Functions

Prototype

Parameters

Result

Comments

See Also

Prototype

Err SysU AppSwi tch(Ul nt cardNo,
Local I D dbl D,

Wrd cnd,
Ptr cndPBP)
car dNo Card number for the new application; currently only
card 0 is valid.
dbl D ID of the new application.
cnd Action code (launch code). See Developing Palm OS

Applications, Part I.
cndPBP Action code (launch code) parameter block.

Returns 0 if no error.

Do not use this function to open the system-supplied Application
Launcher application. If another application has replaced the de-
fault launcher with one of its own, this function will open the cus-
tom launcher instead of the system-supplied one. To open the sys-
tem-supplied launcher reliably, enqueue a keyDownEvent that
contains al aunchChr, as shown in Listing 1.13, “Opening the
Launcher,” on page 72.

SysAppLaunch

Functions for System Use Only

SysAppEXxit

Err SysAppExit (SysApplnfoPtr appl nfoP,
Ptr prevd obal sP, Ptr gl obal sP)

WARNING: System Use Only!

180 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
System Functions

Prototype

Prototype

Prototype

Prototype

Prototype

SysAppInfoPtr

SysAppl nfoPtr SysCur Appl nf oP (voi d)

WARNING: System Use Only!

SysAppStartup

Err SysAppStartup (SysAppl nfoPtr appl nf oPP,
Ptr prevd obal sP, Ptr gl obal sP)

WARNING: System Use Only!

SysBatteryDialog

voi d SysBatteryDi al og (void)

WARNING: System Use Only!

SysCardimageDeleted

voi d SysCardl mageDel eted (U nt cardNo)

WARNING: System Use Only!

SysCardlimagelnfo

Ptr SysCardl magel nfo (U nt cardNo, ULongPtr sizeP)

WARNING: System Use Only!

Developing Palm OS 3.0 Applications, Part Il 181

Palm OS System Functions

System Functions

Purpose

Prototype

Prototype

Prototype

Prototype

SysColdBoot

Perform a cold boot and reformat all RAM areas of both memory
cards.

WARNING: System Use Only!

SysCurApplinfoP

SysCur Appl nf oPtr SysCurr Appl nf oP (voi d)

WARNING: System Use Only!

SysDisablelnts

Word SysDi sabl elnts (void)

WARNING: System Use Only!

SysDoze

voi d SysDoze (Bool ean onl yNM)

WARNING: System Use Only!

SysEvGroupCreate

Err SysEvG oupCreate(DWrdPtr evl DP, DWordPtr
tagP, DWord init)

WARNING: System Use Only!

182 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
System Functions

Prototype

Prototype

Prototype

Prototype

Prototype

SysGetApplInfo

SysAppl nf oPtr SysGet Appl nf o(
SysAppl nfoPtr *ui AppPP,
SysAppl nfoPtr *acti onCodeAppPP)

WARNING: System Use Only!

SysEvGroupRead

Err SysEvG oupRead(DWord evi D, DWrdPtr val ueP)

WARNING: System Use Only!

SysEvGroupSignal

Err SysEvG oupSi gnal (DWrd evl D, DWrd nmask, Dwrd
val ue, SDWbrd type)

WARNING: System Use Only!

SysEvGroupWait

Err SysEvG oupWait (DWrd evli D, DWwrd mask, Dwrd
val ue, SDWrd matchType, SDWord ti meout)

WARNING: System Use Only!

SysGetTrapAddress

Voi dPtr SysGet TrapAddress (Ul nt trapNum

WARNING: System Use Only!

Developing Palm OS 3.0 Applications, Part Il 183

Palm OS System Functions
System Functions

Sysinit

Prototype void Syslnit (void)

WARNING: System Use Only!

SysKernellnfo

Prototype Err SysKernel Info (VoidPtr paranP)

WARNING: System Use Only!

SysLaunchConsole

Prototype Err SysLaunchConsol e (void)

WARNING: System Use Only!

SysLiblinstall

Prototype FErr SysLiblnstall (SysLibEntryProcPtr |ibraryP,
UntPtr refNunP)

WARNING: System Use Only!

SysLibRemove

Prototype Err SysLibRenove (Ul nt refNum

WARNING: System Use Only!

SysLibTblEntry

Prototype SysLibTbl EntryPtr SysLibTbl Entry (U nt refNum

WARNING: System Use Only!

184 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
System Functions

Prototype

Prototype

Prototype

Prototype

Prototype

SysMailboxCreate

Err SysMi |l boxCreat e(DWrdPtr nbl DP, DwWordPtr
tagP, DWrd depth)

WARNING: System Use Only!

SysMailboxDelete

Err SysMai | boxDel et e(DWord nbl D)

WARNING: System Use Only!

SysMailboxFlush

Err SysMi | boxFl ush(DWord nbl D)

WARNING: System Use Only!

SysMailboxSend

Err SysMai |l boxSend(Dwbrd nbl D, Voi dPtr nsgP, Dwrd
WACK)

WARNING: System Use Only!

SysMailboxWait

Err SysMail boxWait (DWord nbl D, Voi dPtr nsgP, DWrd
priority, SDWrd timeout)

WARNING: System Use Only!

Developing Palm OS 3.0 Applications, Part Il 185

Palm OS System Functions

System Functions

Prototype

Prototype

Prototype

Prototype

Prototype

SysNewOwnerID

U nt SysNewOmner| D (voi d)

WARNING: System Use Only!

SysPowerOn

void SysPowerOn (Ptr cardOP, ULong cardOSi ze,
Ptr cardlP, ULong cardilSi ze,
DWrd sysCar dHeader O f set
Bool ean reFor mat)

WARNING: System Use Only!

SysRestoreStatus

voi d SysRestoreStatus (Wrd status)

WARNING: System Use Only!

SysSetA5

DWord SysSet A5 (DWrd newval ue)

WARNING: System Use Only!

SysSetTrapAddress

Err SysSet TrapAddress (U nt trapNum
Voi dPtr procP)

WARNING: System Use Only!

186 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions

System Functions

Prototype

Prototype

Prototype

Prototype

Prototype

SysSleep

voi d SysSl eep (Bool ean until Reset,

Bool ean ener gency)

WARNING: System Use Only!

SysTaskResume

Err SysTaskResune(DWrd taskl D)

WARNING: System Use Only!

SysTaskSuspend

Err SysTaskSuspend(DwWord taskl D)

WARNING: System Use Only!

SysUlLaunch

voi d SysUl Launch (void)

WARNING: System Use Only!

SysTaskWait

Err SysTaskWait(SDwWrd timeout)

WARNING: System Use Only!

Developing Palm OS 3.0 Applications, Part Il 187

Palm OS System Functions
System Functions

SysTaskWaitClr

Prototype Err SysTaskWiitdr(void)

WARNING: System Use Only!

SysTaskWake

Prototype Err SysTaskWake(DWord taskl D)

WARNING: System Use Only!

188 Developing Palm OS 3.0 Applications, Part Il

Palm OS System Functions
Time Manager Functions

Time Manager Functions

Purpose
Prototype

Parameters

Result

Comments

Purpose
Prototype

Parameters

Result

See Also

DateAdjust

Return a new date +/- the days adjustment.

voi d Dat eAdj ust (DatePtr dateP, Long adj ustnent)

dat eP A Dat eType structure with the date to be
adjusted (see Dat eTi ne. h).
adj ust nment The adjustment in number of days.

Changes dat eP to contain the new date.
This function is useful for advancing a day or week and not worry-

ing about month and year wrapping.

If the time is advanced out of bounds, it is cut at the bounds sur-
passed.

DateDaysToDate
Return the date, given days.
voi d DateDaysToDate (ULong days, DatePtr dateP)

days Days since 1/1/1904.
dat eP Pointer to Dat eType structure (returned).

Returns nothing, stores the date in dat eP.

Ti mAdj ust , Dat eToDays

Developing Palm OS 3.0 Applications, Part Il 189

Palm OS System Functions
Time Manager Functions

Purpose

Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

See Also

DateSecondsToDate

Return the date given seconds.

voi d Dat eSecondsToDate (ULong seconds,
Dat ePtr dat eP)

seconds Seconds since 1/1/1904.
dat eP Pointer to Dat eType structure (returned).

Returns nothing; stores the date in dat eP.

DateToAscii

Convert the time passed to an ASCII string in the passed
Dat eFor mat Type. Handles long and short formats.

voi d DateToAscii(Byte nonths,
Byt e days,
Wrd years,
Dat eFor mat Type dat eFor nmat
CharPtr pString)

nmont hs Months (1-12).

days Days (1-31).

years Years (for example 1995).

dat eFor mat Long or short Dat eFor mat Type.

pString Pointer to string which gets the result. Must be of
length dat eSt ri ngLengt h for standard formats or
| ongDat eSt r Lengt h for long date formats.

Returns nothing. Stores the resultin pSt ri ng.

Ti mreToAsci i , Dat eToDOADMFoOr nat

190 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Time Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype

Parameters

Result

See Also

DateToDays

Return the date in days since 1/1/1904.
ULong Dat eToDays (DateType date)
dat e Dat eType structure.
Returns the days since 1/1/1904.

Ti mAdj ust , Dat eDaysToDat e

DateToDOWDMFormat

Convert the date passed to an ASCII string.

voi d Dat eToDOADMFor mat (Byt e nont hs,

Byt e days,

Wrd years,

Dat eFor mat Type
dat eFor mat ,

CharPtr pString)

nmont hs Month (1-12).

days Day (1-31).

years Years (for example 1995).

dat eFor mat FALSE to use AM and PM.

pString Pointer to string which gets the result. The

string must be of length t i neSt ri ngLengt h.

Returns nothing; stores ASCII string in pSt ri ng.

Dat eToAsci i

Developing Palm OS 3.0 Applications, Part Il 191

Palm OS System Functions
Time Manager Functions

Purpose

Prototype

Parameters

Result

Purpose
Prototype

Parameters

Result

DayOfMonth

Return the day of a month on which the specified date occurs (for
example, don2ndTue).

Unt DayOMonth (U nt nonth, U nt day, Unt year)

nont h Month (1-12).
day Day (1-31).
year Year (for example 1995).

Returns the day of the month as a Day Of Week Type, see
Dat eTi ne. h.

DayOfWeek

Return the day of the week.

U nt DayOWek (Ul nt nonth, Unt day, U nt year)

nont h Month (1-12).
day Day (1-31).
year Year (for example 1995).

Returns the day of the week (Sunday = 0, Monday = 1, etc.).

192 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Time Manager Functions

Purpose
Prototype

Parameters

Result

Purpose

Prototype

Parameters

Result

Comments

See Also

DaysInMonth

Return the number of days in the month.
U nt DayslnMonth (U nt nonth, Unt year)

nont h Month (1-12).
year Year (for example, 1995).

Returns the number of days in the month for that year.
TimAdjust
Return a new date, +/- the time adjustment.

voi d Ti mAdj ust (DateTi nePtr dateTi meP,
Long adj ust nent)

dat eTi meP A Dat eType structure (see Dat eTi ne. h).
adj ust nent The adjustment in seconds.

Returns nothing. Changes dat eTi nmeP to the new date and time.

This function is useful for advancing a day or week and not worry-
ing about month and year wrapping.

If the time is advanced out of bounds it is cut at the bounds sur-
passed.

Dat eAdj ust

Developing Palm OS 3.0 Applications, Part Il 193

Palm OS System Functions
Time Manager Functions

Purpose
Prototype
Parameters
Result

See Also

Purpose
Prototype
Parameters
Result

See Also

Purpose

Prototype
Parameters

Result

TimDateTimeToSeconds

Return the date and time in seconds since 1/1/1904.
ULong Ti nDat eTi neToSeconds (DateTi nePtr dateTi neP)
dat eTi meP A Dat eType structure (see Dat eTi ne. h).

The time in seconds since 1/1/1904.

Ti nSecondsToDat eTi ne

TimGetSeconds

Return seconds since 1/1/1904.
ULong Ti mGet Seconds (voi d)
None.

Returns the number of seconds.

Ti nSet Seconds

TimGetTicks

Return the tick count since the last reset. The tick count does not ad-
vance while the device is in sleep mode.

ULong Ti nGet Ti cks (voi d)
None.

Returns the tick count.

194 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Time Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Purpose
Prototype
Parameters
Result

See Also

TimSecondsToDateTime

Return the date and time, given seconds.

voi d Ti mSecondsToDat eTi me(ULong seconds,
Dat eTi mePtr dat eTi meP)

seconds Seconds to advance from 1/1/1904.

dat eTi meP A Dat eTi meType structure that’s filled by the
function.

Returns nothing. Stores the date and time given seconds since 1/1/
1904 in dat eTi neP.

Ti nDat eTi mreToSeconds

TimSetSeconds

Return seconds since 1/1/1904.

voi d Ti nSet Seconds (ULong seconds)

seconds Place to return the seconds since 1/1/1904.
Returns nothing; modifies seconds.

Ti nGet Seconds

Developing Palm OS 3.0 Applications, Part Il 195

Palm OS System Functions
Time Manager Functions

Purpose

Prototype

Parameters

Result

See Also

Prototype

Prototype

TimeToAscii

Convert the time passed to an ASCII string.

voi d TimeToAscii(Byte hours,
Byte m nutes,
Ti meFor mat Type ti neFor mat,
CharPtr pString)

hour s Hours (0-23).

m nut es Minutes (0-59).

t i meFor mat FALSE to use AM and PM.

pString Pointer to string which gets the result. Must be

of lengthti meSt ri ngLengt h.

Returns nothing. Stores pointer to the text of the current selection in
pStri ng.

Dat eToAsci i

Functions for System Use Only

TimGetAlarm

ULong Ti nGet Al arm (voi d)

WARNING: System use only!

TimHandlelnterrupt

voi d Ti mHandl el nterrupt (Bool ean peri odi cUpdat e)

Warning: System use only!

196 Developing Palm OS 3.0 Applications, Part I

Palm OS System Functions
Time Manager Functions

TimlInit

Prototype Err Tinminit (void)

Warning: System use only!

TimSetAlarm

Prototype ULong Tinet Al arm (ULong al ar nSeconds)

Warning: System use only!

Developing Palm OS 3.0 Applications, Part Il 197

Palm OS System Functions
Time Manager Functions

198 Developing Palm OS 3.0 Applications, Part I

Ind ex

Numerics

0.01-second timer 68
1-second timer 68

A

accented characters and StrToLower 131
adding event to event queue 80
alarm manager 18-20

and alarm sound 19

reminder dialog boxes 19
alarm sound 19, 36
alarms

canceling 74

setting 74
alerts

SysFatalAlert 165
AlmCancelAll 75
AlmDisplayAlarm 75
AlmEnableNotification 75
almErrFull 74
almErrMemory 74
AlmGetAlarm 73
Almlnit 75
AlmSetAlarm 20, 74
application preferences 113
application-defined features 26
auto-off 57

setting 178

timer 67, 90
auto-repeat 61, 66

B

base 10 form of floating-point number 103
battery 57
battery conservation using modes 56
battery timeout 158, 159
battery voltage warning threshold 158, 159
booting 54
bound of next line for global find 97
buttons

silk-screened icons 60

C

C library
and float manager 101
and string manager 53
canceling alarms 74
cleanup of dynamic heap 58
Click 36
code #0 resource 172
Confirmation sound 36
conserving battery using modes 56
Crcl6CalcBlock 109

D

database ID

and launch codes 63
databases

SysCreateDataBaseL.ist 163
date and time manager 68
DateAdjust 189
DateDaysToDate 189
DateSecondsToDate 190
dateStringLength 190
DateToAscii 190
DateToDays 191
DateToDOWDMFormat 191
DayOfMonth 192
DayOfWeek 192
DaysIinMonth 193
dialog boxes (reminder) 19
digitizer

and pen queue 65

EvtProcessSoftKeyStroke 90

pen stroke to key event 64
DmComparF 171
doze mode 56

SysTaskDelay 179
dynamic heap

cleanup 58

reinitializing 177

Developing Palm OS 3.0 Applications, Part Il 199

Index

E

ErrCatch 80
ErrDisplay 21, 23, 76
ErrDisplayFileLineMsg 77
ErrEndCatch 80
ErrFatalDisplaylf 21, 22, 78
ErrNonFatalDisplaylf 79
error manager 21-25
try-and-catch mechanism 23
Error sound 36
ERROR_CHECK_FUL 76
ERROR_CHECK_FULL 79

ERROR_CHECK_LEVEL 21, 23, 76, 78, 79

ERROR_CHECK _PARTIAL 76
ErrThrow 23, 80
ErrTry 80
event processing 59
event queue
adding event 80
events
hard button presses 59
hardware generated 59, 60
software generated 59, 61
EvtAddEventToQueue 80
EvtAddUniqueEventToQueue 81
EvtCopyEvent 81
EvtDequePenStrokelnfo 65
EvtDequeuePenPoint 82
EvtDequeuePenStrokelnfo 83
EvtEnableGraffiti 83
EvtEnqueueKey 84
EvtEventAvail 85
EvtFlushKeyQueue 85
EvtFlushNextPenStroke 86
EvtFlushPenQueue 86
EvtGetEvent 59
EvtGetPen 87
EvtGetPenBtnList 88
EvtKeyQueueEmpty 88
EvtKeyQueueSize 89
EvtPenQueueSize 89
EvtProcessSoftKeyStroke 90
EvtResetAutoOffTimer 67, 90

EvtSysEventAvail 91
EvtWakeup 91

F

fatal alert 165
feature manager 25-28
features
See functions starting with Ftr
application-defined 26
system version 26
FIFO queue 60
file streaming functions 35
FileClearerr 133
FileClose 133
FileControl 134
FileDelete 136
FileDmRead 136
FileEOF 138
FileError 139
FileFlush 139
FileGetLastError 140
FileOpen 140
FileRead 143
FileReadLow 148
FileRewind 144
FileSeek 145
FileTell 146
FileTruncate 147
FileWrite 147
FindDrawHeader 97
FindGetLineBounds 97
FindSaveMatch 98
FindStrInStr 99
float manager overview 101
flushing pen queue 86
FplAdd 102
FplAToF 102
FplBaselOInfo 103
FpIDiv 104
FplFloatToLong 104
FplFloatToULong 105
FplFree 105
FpIFToA 106
Fplinit 106

200 Developing Palm OS 3.0 Applications, Part I

FplLongToFloat 107
FplMul 107

FplSub 108
ftrErrinternalError 93, 94
ftrErrNoSuchFeature 94, 95, 96
ftrErrNoSuchFtr 93
FtrGet 27, 93
FtrGetBylindex 27, 94
ftrinternalError 96

FtrSet 27, 95
FtrUnregister 27, 96

G

GetCharCaselessValue
and FindStrInStr 99
global find
FindDrawHeader 97
FindGetLineBounds 97
Graffiti
enabling and disabling 83
events 59
Graffiti recognizer 64
EvtDequeuPenPoint 82
Graffiti Reference Dialog 168

H

hard button press events 59
hardware-generated events 59, 60
header line for global find 97

insertion sort 171
interrrupting Sync application 58

K

kernel 57
key debouncing 61
key events
format 84
from pen strokes 64
key presses 59

key queue 66
size 89

keyboard display 173

L

launch codes 61
and returned database ID 63
SysBroadcastActionCode 62, 162
launcher screen 58
launching applications 58
library vs. managers 17
lists
setting items 166
longDateStrLength 190
low-battery warning 61

M

managers
naming convention 17
vs. libraries 17
MdmbDial 110
mdmErrBusy 110
mdmErrCmdError 110
mdmErrNoDCD 110
mdmErrNoTone 110
mdmErrUserCan 110
MdmHangUp 111
memErrChunkLocked 95, 96
memErrinvalidParam 95, 96
memErrNotEnoughSpace 95, 96, 156, 162
modem 110
modes 55
efficient use 56
multiple preferences 113
multitasking kernel 57

N

nilEvent 91
noPreferenceFound 113

P

panel list (SysCreatePanelList) 164
password functions 120
pen
current status 87
strokes and key events 64
pen events 59
pen queue 65

Index

Developing Palm OS 3.0 Applications, Part Il 201

Index

flushing 86

size 89
PhoneNumberLookup 111
power modes 55
preferences

auto-off 57

multiple application preferences 113
PrefGetAppPreferences 113
PrefGetAppPreferencesVV10 114
PrefGetPreference 115
PrefGetPreferences 116
PrefOpenPreferenceDBV10 116
PrefSetAppPreferences 117
PrefSetAppPreferencesV10 118
PrefSetPreference 119
PrefSetPreferences 119
PwdExists 120
PwdRemove 120
PwdSet 121
PwdVerify 121

Q

quitting application 59

R

real-time clock 68

reinitializing dynamic memory heap 177
reminder dialog boxes 19

reset 177

ResLoadForm 112

ResLoadMenu 112

resource database (SysCurAppDatabase) 164
response time 58

running mode 56

S

searching for string 99
searching for substring 130
silk-screen buttons

EvtGetPenBtnList 88
silk-screened icons 60
sleep mode 55

and real-time clock 68
SndCreateMidiList 150

SndDoCmd 151
sndErrBadChannel 151
sndErrBadParam 151
sndErrQFull 151
SndGetDefaultVolume 152
Sndlnit 155
SndPlaySMF 152
SndPlaySystemSound 155
SndSetDefaultVolume 156
SndSysBeepType 155
soft reset 177
software-generated events 59, 61
sorting array elements 171
sound manager 35-52
sound manager functions 150-156
sprintf (StrPrintF) 130
StartApplication

and PrefGetPreferences 116
Startup sound 36
StrATol 122
StrCaselessCompare 122
StrCat 123
StrChr 123
StrCompare 124
StrCopy 124
StrDelocalizeNumber 125
string

searching 99
string manager 53
string manager functions 122-132
string resource

copying 162
StriToA 125
StriToH 126
StrLen 126
StrLocalizeNumber 127
StrNCaselessCompare 127
StrNCat 128
StrNCompare 129
StrNCopy 129
strokes

capturing 65

translating 90
StrPrintF 130

202 Developing Palm OS 3.0 Applications, Part I

StrStr 130

StrToLower 131

StrVVPrintF 131

substring, searching for 130
Sync application 58
SysAppLaunch 58, 156
sysAppLaunchCmdAlarmTriggered 19
sysAppLaunchCmdDisplayAlarm 19
SysAppLauncherDialog 157
SysBatterylnfo 158
SysBatterylnfo\VV20 159
SysBinarySearch 160
SysBroadcastActionCode 62, 162
SysCopyStringResource 162
SysCreateDataBaseL.ist 163
SysCreatePanelList 164
SysCurAppDatabase 62, 164
sysErrLibNotFound 174, 175
sysErrNoFreeLibSlots 175
sysErrNoFreeRAM 175
sysErrOutOfOwnerID 156
sysErrOutOfOwnerIDs 162
sysErrParamErr 156, 162
SysErrString 165

SysFatalAlert 165
SysFormPointerArrayToStrings 166
SysGetApplnfo 183
SysGetOSVersionString 166
SysGetRomToken 167
SysGetStackinfo 168
SysGraffitiReferenceDialog 168
SysGremlins 169
SysHandleEvent 59, 60, 170
SyslnsertionSort 170

Syslnstall 172
SysKeyboardDialog 173
SysKeyboardDialogV10 173
SysLibFind 174

SysLibLoad 175

SysQSort 176

SysRandom 177
sysRandomMax 177

SysReset 177
SysSetAutoOffTime 178
SysStringBylIndex 178
SysTaskDelay 179
system event manager 63-67
system events

checking availability 91
system keyboard display 173
system ticks 68

and Simulator 68

on Palm OS device 68
system version feature 26
SysTicksPerSecond 179
sysTicksPerSecond 69
SysUIAppSwitch 62, 180

T

TimAdjust 193
TimDateTimeToSeconds 68, 194
time manager 68
structures 69
TimeToAscii 196
TimGetSeconds 68, 194
TimGetTicks 69, 194
timing 69
TimSecondsToDateTime 68, 195
TimSetSeconds 68, 195
try-and-catch mechanism 23
example 24

U

UIAS 55, 57
User Interface Application Shell 55, 57
using modes efficiently 56

Vv

voltage warning threshol 158, 159
vsprintf (StVPrintF) 131

W
Warning sound 36

Index

Developing Palm OS 3.0 Applications, Part Il 203

Index

204 Developing Palm OS 3.0 Applications, Part I

	Table of Contents
	About This Document
	Palm OS SDK Documentation
	What This Guide Contains
	Conventions Used in This Guide

	Using Palm OS System Managers
	The Alarm Manager
	Alarm Manager Overview
	Alarm Queue
	Alarm Manager Processing
	Alarm Scenario

	Using the Alarm Manager
	Alarm Manager Function Summary

	The Error Manager
	Displaying Development Errors
	Using the Error Manager Macros
	Understanding the Try-and-Catch Mechanism
	Using the Try and Catch Mechanism
	Error Manager Function Summary

	The Feature Manager
	The System Version Feature
	Application-Defined Features
	Using the Feature Manager
	Feature Manager Function Summary

	File Streaming Application Program Interface
	Using the File Streaming API
	File Streaming Data Structures
	FileOpEnum
	FileOriginEnum
	Open Mode Constants

	File Streaming Function Summary

	The Sound Manager
	Synchronous and Asynchronous Sound
	Using the Sound Manager
	Adding a Standard MIDI File to a Database
	Saving References to Standard MIDI Files
	Retrieving a Standard MIDI File From a Database

	Sound Preferences Compatibility Information
	Using Sound Preferences on All Palm OS Devices
	Using Palm OS v. 1.0 Sound Prefs
	Using Palm OS v. 2.0 Sound Prefs
	Using Palm OS v. 3.0 Sound Prefs
	Ensuring Sound Preferences Compatibility

	Sound Manager Data Structures
	MIDI Record Type
	MIDI Record Header
	SndMidiListItemType
	SndCommandType
	SndCmdIDType
	SndSmfOptionsType
	SndSmfChanRangeType
	Sound Callback Functions

	Sound Manager Function Summary

	The String Manager
	String Manager Function Summary

	The System Manager
	System Boot and Reset
	System Reset Calls

	Power Management
	Palm OS Power Modes
	Guidelines for Application Developers
	Power Management Calls

	The Microkernel
	Application Support
	Launching and Cleanup
	Event Processing
	Interapplication Communication
	Retrieving Events
	Opening Applications Programmatically

	System Manager Function Summary

	The System Event Manager
	Event Translation: Pen Strokes to Key Events
	Pen Queue Management
	Key Queue Management
	Auto-Off Control
	System Event Manager Function Summary

	The Time Manager
	Using Real-Time Clock Functions
	Using System Ticks Functions
	Time Manager Structures
	Time Manager Function Summary

	Application Launcher

	Palm OS System Functions
	Alarm Manager API
	AlmGetAlarm
	AlmSetAlarm
	Functions for System Use Only
	AlmAlarmCallback
	AlmCancelAll
	AlmDisplayAlarm
	AlmEnableNotification
	AlmInit

	Error Manager Functions
	ErrDisplay
	ErrDisplayFileLineMsg
	ErrFatalDisplayIf
	ErrNonFatalDisplayIf
	ErrThrow

	Event Manager Functions
	EvtAddEventToQueue
	EvtAddUniqueEventToQueue
	EvtCopyEvent
	EvtDequeuePenPoint
	EvtDequeuePenStrokeInfo
	EvtEnableGraffiti
	EvtEnqueueKey
	EvtEventAvail
	EvtFlushKeyQueue
	EvtFlushNextPenStroke
	EvtFlushPenQueue
	EvtGetEvent
	EvtGetPen
	EvtGetPenBtnList
	EvtKeyQueueEmpty
	EvtKeyQueueSize
	EvtPenQueueSize
	EvtProcessSoftKeyStroke
	EvtResetAutoOffTimer
	EvtSysEventAvail
	EvtWakeup
	Functions for System Use Only
	EvtDequeueKeyEvent
	EvtEnqueuePenPoint
	EvtGetSysEvent
	EvtInitialize
	EvtSetKeyQueuePtr
	EvtSetPenQueuePtr
	EvtSysInit

	Feature Manager Functions
	FtrGet
	FtrGetByIndex
	FtrSet
	FtrUnregister
	Functions for System Use Only
	FtrInit

	Find Functions
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindStrInStr

	Float Manager Functions
	Using Floating Point Arithmetic
	Using 1.0 Floating-Point Functionality
	FplAdd
	FplAToF
	FplBase10Info
	FplDiv
	FplFloatToLong
	FplFloatToULong
	FplFree
	FplFToA
	FplInit
	FplLongToFloat
	FplMul
	FplSub

	Miscellaneous System Functions
	Crc16CalcBlock
	MdmDial
	MdmHangUp
	PhoneNumberLookup
	ResLoadForm
	ResLoadMenu

	System Preferences Functions
	PrefGetAppPreferences
	PrefGetAppPreferencesV10
	PrefGetPreference
	PrefGetPreferences
	PrefOpenPreferenceDBV10
	PrefSetAppPreferences
	PrefSetAppPreferencesV10
	PrefSetPreference
	PrefSetPreferences

	Password Functions
	PwdExists
	PwdRemove
	PwdSet
	PwdVerify

	String Manager Functions
	StrAToI
	StrCaselessCompare
	StrCat
	StrChr
	StrCompare
	StrCopy
	StrDelocalizeNumber
	StrIToA
	StrIToH
	StrLen
	StrLocalizeNumber
	StrNCaselessCompare
	StrNCat
	StrNCompare
	StrNCopy
	StrPrintF
	StrStr
	StrToLower
	StrVPrintF

	File Streaming Functions
	FileClearerr
	FileClose
	FileControl
	FileDelete
	FileDmRead
	FileEOF
	FileError
	FileFlush
	FileGetLastError
	FileOpen
	FileRead
	FileRewind
	FileSeek
	FileTell
	FileTruncate
	FileWrite
	Functions For System Use Only
	FileReadLow

	File Streaming Error Codes

	Sound Manager Functions
	SndCreateMidiList
	SndDoCmd
	SndGetDefaultVolume
	SndPlaySMF
	SndPlaySystemSound
	Functions for System Use Only
	SndInit
	SndSetDefaultVolume

	System Functions
	SysAppLaunch
	SysAppLauncherDialog
	SysBatteryInfo
	SysBatteryInfoV20
	SysBinarySearch
	SysBroadcastActionCode
	SysCopyStringResource
	SysCreateDataBaseList
	SysCreatePanelList
	SysCurAppDatabase
	SysErrString
	SysFatalAlert
	SysFormPointerArrayToStrings
	SysGetOSVersionString
	SysGetRomToken
	SysGetStackInfo
	SysGraffitiReferenceDialog
	SysGremlins
	SysHandleEvent
	SysInsertionSort
	SysInstall
	SysKeyboardDialog
	SysKeyboardDialogV10
	SysLibFind
	SysLibLoad
	SysQSort
	SysRandom
	SysReset
	SysSetAutoOffTime
	SysStringByIndex
	SysTaskDelay
	SysTicksPerSecond
	SysUIAppSwitch
	Functions for System Use Only
	SysAppExit
	SysAppInfoPtr
	SysAppStartup
	SysBatteryDialog
	SysCardImageDeleted
	SysCardImageInfo
	SysColdBoot
	SysCurAppInfoP
	SysDisableInts
	SysDoze
	SysEvGroupCreate
	SysGetAppInfo
	SysEvGroupRead
	SysEvGroupSignal
	SysEvGroupWait
	SysGetTrapAddress
	SysInit
	SysKernelInfo
	SysLaunchConsole
	SysLibInstall
	SysLibRemove
	SysLibTblEntry
	SysMailboxCreate
	SysMailboxDelete
	SysMailboxFlush
	SysMailboxSend
	SysMailboxWait
	SysNewOwnerID
	SysPowerOn
	SysRestoreStatus
	SysSetA5
	SysSetTrapAddress
	SysSleep
	SysTaskResume
	SysTaskSuspend
	SysUILaunch
	SysTaskWait
	SysTaskWaitClr
	SysTaskWake

	Time Manager Functions
	DateAdjust
	DateDaysToDate
	DateSecondsToDate
	DateToAscii
	DateToDays
	DateToDOWDMFormat
	DayOfMonth
	DayOfWeek
	DaysInMonth
	TimAdjust
	TimDateTimeToSeconds
	TimGetSeconds
	TimGetTicks
	TimSecondsToDateTime
	TimSetSeconds
	TimeToAscii
	Functions for System Use Only
	TimGetAlarm
	TimHandleInterrupt
	TimInit
	TimSetAlarm

	Index

