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Abstract

The subject of quantum computing brings together ideas from classical information theory,
computer science, and quantum physics. This review aims to summarize not just quantum
computing, but the whole subject of quantum information theory. Information can be
identified as the most general thing which must propagate from a cause to an effect. It
therefore has a fundamentally important role in the science of physics. However, the
mathematical treatment of information, especially information processing, is quite recent,
dating from the mid-20th century. This has meant that the full significance of information as
a basic concept in physics is only now being discovered. This is especially true in quantum
mechanics. The theory of quantum information and computing puts this significance on
a firm footing, and has led to some profound and exciting new insights into the natural
world. Among these are the use of quantum states to permit the secure transmission of
classical information (quantum cryptography), the use of quantum entanglement to permit
reliable transmission of quantum states (teleportation), the possibility of preserving quantum
coherence in the presence of irreversible noise processes (quantum error correction), and the
use of controlled quantum evolution for efficient computation (quantum computation). The
common theme of all these insights is the use of quantum entanglement as a computational
resource.

It turns out that information theory and quantum mechanics fit together very well.
In order to explain their relationship, this review begins with an introduction to classical
information theory and computer science, including Shannon’s theorem, error correcting
codes, Turing machines and computational complexity. The principles of quantum
mechanics are then outlined, and the Einstein, Podolsky and Rosen (EPR) experiment
described. The EPR–Bell correlations, and quantum entanglement in general, form the
essential new ingredient which distinguishes quantum from classical information theory
and, arguably, quantum from classical physics.

Basic quantum information ideas are next outlined, including qubits and data
compression, quantum gates, the ‘no cloning’ property and teleportation. Quantum
cryptography is briefly sketched. The universal quantum computer (QC) is described, based
on the Church–Turing principle and a network model of computation. Algorithms for such a
computer are discussed, especially those for finding the period of a function, and searching a
random list. Such algorithms prove that a QC of sufficiently precise construction is not only
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fundamentally different from any computer which can only manipulate classical information,
but can compute a small class of functions with greater efficiency. This implies that some
important computational tasks are impossible for any device apart from a QC.

To build a universal QC is well beyond the abilities of current technology. However,
the principles of quantum information physics can be tested on smaller devices. The
current experimental situation is reviewed, with emphasis on the linear ion trap, high-Q

optical cavities, and nuclear magnetic resonance methods. These allow coherent control
in a Hilbert space of eight dimensions (three qubits) and should be extendable up to a
thousand or more dimensions (10 qubits). Among other things, these systems will allow the
feasibility of quantum computing to be assessed. In fact such experiments are so difficult
that it seemed likely until recently that a practically useful QC (requiring, say, 1000 qubits)
was actually ruled out by considerations of experimental imprecision and the unavoidable
coupling between any system and its environment. However, a further fundamental part
of quantum information physics provides a solution to this impasse. This is quantum error
correction (QEC).

An introduction to QEC is provided. The evolution of the QC is restricted to a carefully
chosen subspace of its Hilbert space. Errors are almost certain to cause a departure from
this subspace. QEC provides a means to detect and undo such departures without upsetting
the quantum computation. This achieves the apparently impossible, since the computation
preserves quantum coherence even though during its course all the qubits in the computer
will have relaxed spontaneously many times.

The review concludes with an outline of the main features of quantum information
physics and avenues for future research.
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1. Introduction

The science of physics seeks to ask, and find precise answers to, basic questions about why
nature is as it is. Historically, the fundamental principles of physics have been concerned
with questions such as ‘what are things made of?’ and ‘why do things move as they
do?’ In hisPrincipia, Newton gave very wide-ranging answers to some of these questions.
By showing that the same mathamatical equations could describe the motions of everyday
objects and of planets, he showed that an everyday object such as a teapot is made of
essentially thesame sort of stuffas a planet: the motions of both can be described in terms
of their mass and the forces acting on them. Nowadays we would say that both move in such
a way as to conserve energy and momentum. In this way, physics allows us to abstract from
nature concepts such as energy or momentum which always obey fixed equations, although
the same energy might be expressed in many different ways: for example, an electron in
the large electron–positron collider at CERN, Geneva, can have the same kinetic energy as
a slug on a lettuce leaf.

Another thing which can be expressed in many different ways isinformation. For
example, the two statements ‘the quantum computer is very interesting’ and ‘l’ordinateur
quantique est très int́eressant’ have something in common, although they share no words.
The thing they have in common is theirinformation content. Essentially the same
information could be expressed in many other ways, for example by substituting numbers
for letters in a scheme such asa → 97, b → 98, c → 99 and so on, in which case the
English version of the above statement becomes 116 104 101 32 113 117 97 110 116 117
109 . . . . It is very significant that information can be expressed in different ways without
losing its essential nature, since this leads to the possibility of the automatic manipulation
of information: a machine need only be able to manipulate quite simple things like integers
in order to do surprisingly powerful information processing, from document preparation to
differential calculus, even to translating between human languages. We are familiar with
this now, because of the ubiquitous computer, but even fifty years ago such a widespread
significance of automated information processing was not foreseen.

However, there is one thing that all ways of expressing information must have in
common: they all use real physical things to do the job. Spoken words are conveyed by
air-pressure fluctuations, written ones by arrangements of ink molecules on paper, even
thoughts depend on neurons (Landauer 1991). The rallying cry of the information physicist
is ‘no information without physical representation!’ Conversely, the fact that information
is insensitive to exactly how it is expressed, and can be freely translated from one form
to another, makes it an obvious candidate for a fundamentally important role in physics,
like energy and momentum and other such abstractions. However, until the second half
of this century, the precise mathematical treatment of information, especially information
processing, was undiscovered, so the significance of information in physics was only hinted
at in concepts such as entropy in thermodynamics. It now appears that information may
have a much deeper significance. Historically, much of fundamental physics has been
concerned with discovering the fundamental particles of nature and the equations which
describe their motions and interactions. It now appears that a different programme may be
equally important: to discover the ways that nature allows, and prevents,information to
be expressed and manipulated, rather than particles to move. For example, the best way
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Figure 1. Maxwell’s demon. In this illustration the demon sets up a pressure difference by
only raising the partition when more gas molecules approach it from the left than from the right.
This can be done in a completely reversible manner, as long as the demon’s memory stores the
random results of its observations of the molecules. The demon’s memory thus gets hotter. The
irreversible step is not the acquisition of information, but the loss of information if the demon
later clears its memory.

to state exactly what can and cannot travel faster than light is to identify information as
the speed-limited entity. In quantum mechanics, it is highly significant that the state vector
must not contain, whether explicitly or implicitly, more information than can meaningfully
be associated with a given system. Among other things this produces the wavefunction
symmetry requirements which lead to Bose–Einstein and Fermi–Dirac statistics, the periodic
structure of atoms, etc.

The programme to re-investigate the fundamental principles of physics from the
standpoint of information theory is still in its infancy. However, it already appears to
be highly fruitful, and it is this ambitious programme that I aim to summarize.

Historically, the concept of information in physics does not have a clear-cut origin. An
important thread can be traced if we consider the paradox of Maxwell’s demon of 1871
(figure 1) (see also Brillouin 1956). Recall that Maxwell’s demon is a creature that opens
and closes a trap door between two compartments of a chamber containing gas, and pursues
the subversive policy of only opening the door when fast molecules approach it from the
right, or slow ones from the left. In this way the demon establishes a temperature difference
between the two compartments without doing any work, in violation of the second law of
thermodynamics, and consequently permitting a host of contradictions.

A number of attempts were made to exorcize Maxwell’s demon (see Bennett 1987), such
as arguments that the demon cannot gather information without doing work, or without
disturbing (and thus heating) the gas, both of which are untrue. Some were tempted to
propose that the second law of thermodynamics could indeed be violated by the actions of
an ‘intelligent being’. It was not until 1929 that Leo Szilard made progress by reducing
the problem to its essential components, in which the demon need merely identify whether
a single molecule is to the right or left of a sliding partition and its action allows a simple
heat engine, called Szilard’s engine, to be run. Szilard still had not solved the problem,
since his analysis was unclear about whether or not the act of measurement, whereby the
demon learns whether the molecule is to the left or the right, must involve an increase in
entropy.

A definitive and clear answer was not forthcoming, surprisingly, until a further 50 years
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had passed. In the intermediate years digital computers were developed, and the physical
implications of information gathering and processing were carefully considered. The
thermodynamic costs of elementary information manipulations were analysed by Landauer
and others during the 1960s (Landauer 1961, Keyes and Landauer 1970, Keyes 1970) and
those of general computations by Bennett, Fredkin, Toffoli and others during the 1970s
(Bennett 1973, Toffoli 1980, Fredkin and Toffoli 1982). It was found that almost anything
can in principle be done in a reversible manner, i.e. with no entropy cost at all (Bennett
and Landauer 1985). Bennett (1982) made explicit the relation between this work and
Maxwell’s paradox by proposing that the demon can indeed learn where the molecule is in
Szilard’s engine without doing any work or increasing any entropy in the environment, and
so obtain useful work during one stroke of the engine. However, the information about the
molecule’s location must then be present in the demon’s memory (figure 1). As more and
more strokes are performed, more and more information gathers in the demon’s memory.
To complete a thermodynamic cycle, the demon musteraseits memory, and it is during this
erasure operation that we identify an increase in entropy in the environment, as required by
the second law. This completes the essential physics of Maxwell’s demon; further subtleties
are discussed by Zurek (1989), Caves (1990) and Caveset al (1990).

The thread we just followed was instructive, but to provide a complete history of ideas
relevent to quantum computing is a formidable task. Our subject brings together what are
arguably two of the greatest revolutions in 20th-century science, namely quantum mechanics
and information science (including computer science). The relationship between these two
giants is illustrated in figure 2.

Classical information theory is founded on the definition of information. A warning is
in order here. Whereas the theory tries to capture much of the normal meaning of the term
‘information’, it can no more do justice to the full richness of that term in everyday language
than particle physics can encapsulate the everyday meaning of ‘charm’. ‘Information’ for
us will be an abstract term, defined in detail in section 2.1. Much of information theory
dates back to seminal work of Shannon in the 1940s (Slepian 1974). The observation
that information can be translated from one form to another is encapsulated and quantified
in Shannon’s noiseless coding theorem (1948), which quantifies the resources needed to
store or transmit a given body of information. Shannon also considered the fundamentally
important problem of communication in the presence of noise and established Shannon’s
main theorem (section 2.4) which is the central result of classical information theory. Error-
free communication even in the presence of noise is achieved by means of ‘error-correcting
codes’ and their study is a branch of mathematics in its own right. Indeed, the journal
IEEE Transactions on Information Theoryis almost totally taken up with the discovery and
analysis of error-correction by coding. Pioneering work in this area was done by Golay
(1949) and Hamming (1950).

The foundations of computer science were formulated at roughly the same time as
Shannon’s information theory and this is no coincidence. The father of computer science
is arguably Alan Turing (1912–1954) and its prophet is Charles Babbage (1791–1871).
Babbage conceived of most of the essential elements of a modern computer, though in
his day there was not the technology available to implement his ideas. A century passed
before Babbage’s analytical engine was improved upon when Turing described the universal
Turing machine in the mid 1930s. Turing’s genius (see Hodges 1983) was to clarify exactly
what a calculating machine might be capable of and to emphasize the role of programming,
i.e. software, even more than Babbage had done. The giants on whose shoulders Turing
stood in order to get a better view were chiefly the mathematicians David Hilbert and
Kurt Gödel. Hilbert had emphasized between the 1890s and 1930s the importance of
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Figure 2. Relationship between quantum mechanics and information theory. This diagram is
not intended to be a definitive statement, the placing of entries being to some extent subjective,
but it indicates many of the connections discussed in the article.

asking fundamental questions about the nature of mathematics. Instead of asking ‘is this
mathematical proposition true?’ Hilbert wanted to ask ‘is it the case that every mathematical
proposition can in principle be proved or disproved?’ This was unknown, but Hilbert’s
feeling, and that of most mathematicians, was that mathematics was indeed complete, so
that conjectures such as Goldbach’s (that every even number can be written as the sum of
two primes) could be proved or disproved somehow, although the logical steps might be as
yet undiscovered.

Gödel destroyed this hope by establishing the existence of mathematical propositions
which were undecidable, meaning that they could be neither proved nor disproved. The next
interesting question was whether it would be easy to identify such propositions. Progress
in mathematics had always relied on the use of creative imagination, yet with hindsight
mathematical proofs appear to be automatic, each step following inevitably from the one
before. Hilbert asked whether this ‘inevitable’ quality could be captured by a ‘mechanical’
process. In other words, was there a universal mathematical method, which would establish
the truth or otherwise of every mathematical assertion? After Gödel, Hilbert’s problem was
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re-phrased into that of establishing decidability rather than truth and this is what Turing
sought to address.

In the words of Newman, Turing’s bold innovation was to introduce ‘paper tape’ into
symbolic logic. In the search for an automatic process by which mathematical questions
could be decided, Turing envisaged a thoroughly mechanical device, in fact a kind of
glorified typewriter (figure 7). The importance of theTuring machine(Turing 1936) arises
from the fact that it is sufficiently complicated to address highly sophisticated mathematical
questions, but sufficiently simple to be subject to detailed analysis. Turing used his machine
as a theoretical construct to show that the assumed existence of a mechanical means
to establish decidability leads to a contradiction (see section 3.3). In other words, he
was initially concerned with quite abstract mathematics rather than practical computation.
However, by seriously establishing the idea of automating abstract mathematical proofs
rather than merely arithmatic, Turing greatly stimulated the development of general purpose
information processing. This was in the days when a ‘computer’ was a person doing
mathematics.

Modern computers are neither Turing machines nor Babbage engines, though they are
based on broadly similar principles, and their computational power is equivalent (in a
technical sense) to that of a Turing machine. I will not trace their development here, since
although this is a wonderful story, it would take too long to do justice to the many people
involved. Let us just remark that all of this development represents a great improvement in
speed and size, but does not involve any change in the essential idea of what a computer is,
or how it operates. Quantum mechanics, however, raises the possibility of such a change.

Quantum mechanics is the mathematical structure which embraces, in principle, the
whole of physics. We will not be directly concerned with gravity, high velocities, or
exotic elementary particles, so the standard non-relativistic quantum mechanics will suffice.
The significant feature of quantum theory for our purpose is not the precise details of the
equations of motion, but the fact that they treat quantum amplitudes, or state vectors in a
Hilbert space, rather than classical variables. It is this that allows new types of information
and computing.

There is a parallel between Hilbert’s questions about mathematics and the questions we
seek to pose in quantum information theory. Before Hilbert, almost all mathematical work
had been concerned with establishing or refuting particular hypotheses, but Hilbert wanted
to ask what general type of hypothesis was even amenable to mathematical proof. Similarly,
most research in quantum physics has been concerned with studying the evolution of specific
physical systems, but we want to ask what general type of evolution is even conceivable
under quantum-mechanical rules.

The first deep insight into quantum information theory came with Bell’s 1964 analysis
of the paradoxical thought-experiment proposed by Einstein, Podolsky and Rosen (EPR) in
1935. Bell’s inequality draws attention to the importance ofcorrelationsbetween separated
quantum systems which have interacted (directly or indirectly) in the past, but which no
longer influence one another. In essence his argument shows that the degree of correlation
which can be present in such systems exceeds that which could be predicted on the basis
of any law of physics which describes particles in terms of classical variables rather than
quantum states. Bell’s argument was clarified by Bohm (1951), Bohm and Aharonov (1957)
and Clauseret al (1969) and experimental tests were carried out in the 1970s (see Clauser
and Shimony (1978) and references therein). Improvements in such experiments are largely
concerned with preventing the possibility of any interaction between the separated quantum
systems, and a significant step forward was made in the experiment of Aspectet al (1982),
(see also Aspect 1991) since in their work any purported interaction would have either to
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travel faster than light, or possess other almost equally implausible qualities.
The next link between quantum mechanics and information theory came about when it

was realized that simple properties of quantum systems, such as the unavoidable disturbance
involved in measurement, could be put to practical use, inquantum cryptography(Wiesner
1983, Bennettet al 1982, Bennett and Brassard 1984); for a recent review see Brassard
and Crepeau (1996). Quantum cryptography covers several ideas, of which the most firmly
established is quantum key distribution. This is an ingenious method in which transmitted
quantum states are used to perform a very particular communication task: to establish at
two separated locations a pair of identical, but otherwise random, sequences of binary digits,
without allowing any third party to learn the sequence. This is very useful because such
a random sequence can be used as a cryptographic key to permit secure communication.
The significant feature is that the principles of quantum mechanics guarantee a type of
conservation of quantum information, so that if the necessary quantum information arrives
at the parties wishing to establish a random key, they can be sure it has not gone elsewhere,
such as to a spy. Thus the whole problem of compromised keys, which fills the annals of
espionage, is avoided by taking advantage of the structure of the natural world.

While quantum cryptography was being analysed and demonstrated, the quantum
computer (QC) was undergoing a quiet birth. Since quantum mechanics underlies the
behaviour of all systems, including those we call classical (‘even a screwdriver is quantum
mechanical’, Landauer (1995)) it was not obvious how to conceive of a distinctively
quantum-mechanical computer, i.e. one which did not merely reproduce the action of a
classical Turing machine. Obviously it is not sufficient merely to identify a quantum-
mechanical system whose evolution could be interpreted as a computation; one must prove
a much stronger result than this. Conversely, we know that classical computers can simulate,
by their computations, the evolution of any quantum system. . . with one reservation: no
classical process will allow one to prepare separated systems whose correlations break the
Bell inequality. It appears from this that the EPR–Bell correlations are the quintessential
quantum-mechanical property (Feynman 1982).

In order to think about computation from a quantum-mechanical point of view, the
first ideas involved converting the action of a Turing machine into an equivalent reversible
process, and then inventing a Hamiltonian which would cause a quantum system to evolve in
a way which mimicked a reversible Turing machine. This depended on the work of Bennett
(1973); see also Lecerf (1963) who had shown that a universal classical computing machine
(such as Turing’s) could be made reversible while retaining its simplicity. Benioff (1980,
1982a, b) and others proposed such Turing-like Hamiltonians in the early 1980s. Although
Benioff’s ideas did not allow the full analysis of quantum computation, they showed that
unitary quantum evolution is at least as powerful computationally as a classical computer.

A different approach was taken by Feynman (1982, 1986) who considered the possibility
not of universal computation, but of universalsimulation—i.e. a purpose-built quantum
system which could simulate thephysical behaviourof any other. Clearly, such a simulator
would be a universal computer too, since any computer must be a physical system. Feynman
gave arguments which suggested that quantum evolution could be used to compute certain
problems more efficiently than any classical computer, but his device was not sufficiently
specified to be called a computer, since he assumed that any interaction between adjacent
2-state systems could be ‘ordered’, without saying how.

In 1985 an important step forward was taken by Deutsch. Deutsch’s proposal is widely
considered to represent the first blueprint for a QC, in that it is sufficiently specific and
simple to allow real machines to be contemplated, but sufficiently versatile to be a universal
quantum simulator, though both points are debatable. Deutsch’s system is essentially a line
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of 2-state systems, and looks more like a register machine than a Turing machine (both are
universal classical computing machines). Deutsch proved that if the 2-state systems could
be made to evolve by means of a specific small set of simple operations, thenany unitary
evolution could be produced, and therefore the evolution could be made to simulate that
of any physical system. He also discussed how to produce Turing-like behaviour using the
same ideas.

Deutsch’s simple operations are now called quantum ‘gates’, since they play a role
analogous to that of binary logic gates in classical computers. Various authors have
investigated the minimal class of gates which are sufficient for quantum computation.

The two questionable aspects of Deutsch’s proposal are its efficiency and realizability.
The question of efficiency is absolutely fundamental in computer science and on it the
concept of ‘universality’ turns. Auniversal computer is one that cannot only reproduce
(i.e. simulate) the action of any other, but can do so without running too slowly. The
‘too slowly’ here is defined in terms of the number of computational steps required: this
number must not increase exponentially with the size of the input (the precise meaning
will be explained in section 3.1). Deutsch’s simulator is not universal in this strict sense,
though it was shown to be efficient for simulating a wide class of quantum systems by
Lloyd (1996). However, Deutsch’s work has established the concepts of quantum networks
(Deutsch 1989) and quantum logic gates, which are extremely important in that they allow
us to think clearly about quantum computation.

In the early 1990s several authors (Deutsch and Jozsa 1992, Berthiaume and Brassard
1992a, b, Bernstein and Vazirani 1993) sought computational tasks which could be solved
by a QC more efficiently thanany classical computer. Such a quantum algorithm would
play a conceptual role similar to that of Bell’s inequality, in defining something of the
essential nature of quantum mechanics. Initially only very small differences in performance
were found, in which quantum mechanics permitted an answer to be found with certainty, as
long as the quantum system was noise-free, where a probabilistic classical computer could
achieve an answer ‘only’ with high probability. An important advance was made by Simon
(1994), who described an efficient quantum algorithm for a (somewhat abstract) problem
for which no efficient solution was possible classically, even by probabilistic methods. This
inspired Shor (1994) who astonished the community by describing an algorithm which was
not only efficient on a QC, but also addressed a central problem in computer science: that
of factorizing large integers.

Shor discussed both factorization and discrete logarithms, making use of a quantum
Fourier-transform method discovered by Coppersmith (1994) and Deutsch (1994,
unpublished). Further important quantum algorithms were discovered by Grover (1997)
and Kitaev (1995).

Just as with classical computation and information theory, once theoretical ideas about
computation had got under way, an effort was made to establish the essential nature of
quantum information—the task analogous to Shannon’s work. The difficulty here can be
seen by considering the simplest quantum system, a 2-state system such as a spin half in
a magnetic field. The quantum state of a spin is a continuous quantity defined by two real
numbers, so in principle it can store an infinite amount of classical information. However,
a measurement of a spin will only provide a single 2-valued answer (spin up/spin down)—
there is no way to gain access to the infinite information which appears to be there, therefore
it is incorrect to consider the information content in those terms. This is reminiscent of
the renormalization problem in quantum electrodynamics. So, how much information can
a 2-state quantum system store? The answer, provided by Jozsa and Schumacher (1994)
and Schumacher (1995), isone 2-state system’s worth! Of course Schumacher and Jozsa
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did more than propose this simple answer, rather they showed that the 2-state system plays
the role in quantum information theory analogous to that of the bit in classical information
theory, in that the quantum information content ofanyquantum system can be meaningfully
measured as the minimum number of 2-state systems, now called quantum bits or qubits,
which would be needed to store or transmit the system’s state with high accuracy.

Let us return to the question of realizability of quantum computation. It is an elementary,
but fundamentally important, observation that the quantum interference effects which permit
algorithms such as Shor’s are extremely fragile: the QC is ultrasensitive to experimental
noise and impression. It is not true that early workers were unaware of this difficulty, rather
their first aim was to establish whether a QC had any fundamental significance at all. Armed
with Shor’s algorithm, it now appears that such a fundamental significance is established, by
the following argument: either nature does allow a device to be run with sufficient precision
to perform Shor’s algorithm for large integers (greater than, say, a googol, 10100), or there
are fundamental natural limits to precision in real systems. Both eventualities represent an
important insight into the laws of nature.

At this point, ideas of quantum information and quantum computing come together.
For, a QC can be made much less sensitive to noise by means of a new idea which comes
directly from the marriage of quantum mechanics with classical information theory, namely
quantum error correction(QEC). Although the phrase ‘error correction’ is a natural one and
was used with reference to QCs prior to 1996, it was only in that year that two important
papers, of Calderbank and Shor, and independently Steane, established a general framework
whereby quantum information processing can be used to combat a very wide class of noise
processes in a properly designed quantum system. Much progress has since been made in
generalizing these ideas (Knill and Laflamme 1997, Ekert and Macchiavello 1996, Bennett
et al 1996b, Gottesman 1996, Calderbanket al 1997). An important development was the
demonstration by Shor (1996) and Kitaev (1996) that correction can be achieved even when
the corrective operations are themselves imperfect. Such methods lead to a general concept
of ‘fault tolerant’ computing, of which a helpful review is provided by Preskill (1997).

If, as seems almost certain, quantum computation will only work in conjunction with
QEC, it appears that the relationship between quantum information theory and QCs is even
more intimate than that between Shannon’s information theory and classical computers.
Error correction does not in itself guarantee accurate quantum computation, since it cannot
combat all types of noise, but the fact that it is possible at all is a significant development.

A computer which only exists on paper will not actually perform any computations and
in the end the only way to resolve the issue of feasibility in QC science is to build a QC. To
this end, a number of authors proposed computer designs based on Deutsch’s idea, but with
the physical details more fully worked out (Teichet al 1988, Lloyd 1993, Bermanet al 1994,
DiVincenzo 1995b). The great challenge is to find a sufficiently complex system whose
evolution is nevertheless both coherent (i.e. unitary) and controllable. It is not sufficient that
only some aspects of a system should be quantum mechanical, as in solid-state ‘quantum
dots’, or that there is an implicit assumption of unfeasible precision or cooling, which is
often the case for proposals using solid-state devices. Cirac and Zoller (1995) proposed the
use of a linear ion trap, which was a significant improvement in feasibility, since heroic
efforts in the ion-trapping community had already achieved the necessary precision and
low temperature in experimental work, especially the group of Wineland who demonstrated
cooling to the ground state of an ion trap in the same year (Diedrichet al 1989, Monroeet
al 1995a, b). More recently, Gershenfeld and Chuang (1997) and Coryet al (1996, 1997)
have shown that nuclear magnetic resonance (NMR) techniques can be adapted to fulfil the
requirements of quantum computation, making this approach also very promising. Other
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recent proposals of Privmanet al (1997) and Loss and DiVincenzo (1997) may also be
feasible.

As things stand, no QC has been built, nor looks likely to be built in the author’s
lifetime, if we measure it in terms of Shor’s algorithm, and ask for factoring of large
numbers. However, if we ask instead for a device in which quantum-information ideas can
be explored, then only a few quantum bits are required and this will certainly be achieved in
the near future. Simple 2-bit operations have been carried out in many physics experiments,
notably magnetic resonance, and work with three to ten qubits now seems feasible. Notable
recent experiments in this regard are those of Bruneet al (1994), Monroeet al (1995b),
Turchetteet al (1995) and Mattleet al (1996).

2. Classical information theory

This and the next section will summarize the classical theory of information and computing.
This is textbook material (Minsky 1967, Hamming 1986) but is included here since it forms
a background to quantum information and computing and the article is aimed at physicists
to whom the ideas may be new.

2.1. Measures of information

The most basic problem in classical information theory is to obtain a measure of information,
that is, of amount of information. Suppose I tell you the value of a numberX. How much
information have you gained? That will depend on what you already knew aboutX. For
example, if you already knewX was equal to 2, you would learn nothing, no information,
from my revelation. On the other hand, if previously your only knowledge was thatX was
given by the throw of a die, then to learn its value is to gain information. We have met here
a basic paradoxical property, which is thatinformation is often a measure ofignorance: the
information content (or ‘self-information’) ofX is defined to be the information you would
gain if you learned the value ofX.

If X is a random variable which has valuex with probabilityp(x), then the information
content ofX is defined to be

S({p(x)}) = −
∑
x

p(x) log2p(x). (1)

Note that the logarithm is taken to base 2, and thatS is always positive since probabilities
are bounded byp(x) 6 1. S is a function of theprobability distribition of values ofX.
It is important to remember this, since in what follows we will adopt the standard practice
of using the notationS(X) for S({p(x)}). It is understood thatS(X) does not mean a
function ofX, but rather the information content of the variableX. The quantityS(X) is
also referred to as an entropy, for obvious reasons.

If we already know thatX = 2, thenp(2) = 1 and there are no other terms in the sum,
leading toS = 0, soX has no information content. If, on the other hand,X is given by
the throw of a die, thenp(x) = 1

6 for x ∈ {1, 2, 3, 4, 5, 6} so S = − log2
1
6 ' 2.58. If X

can takeN different values, then the information content (or entropy) ofX is maximized
when the probability distributionp is flat, with everyp(x) = 1/N (for example a fair die
yields S ' 2.58, but a loaded die withp(6) = 1

2, p(1 . . .5) = 1
10 yields S ' 2.16). This is

consistent with the requirement that the information (what we would gain if we learnedX)
is maximum when our prior knowledge ofX is minimum.

Thus the maximum information which could in principle be stored by a variable which
can take onN different values is log2(N). The logarithms are taken to base 2 rather than
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some other base by convention. The choice dictates the unit of information:S(X) = 1
whenX can take two values with equal probability. A two-valued or binary variable can
thus contain one unit of information. This unit is called abit. The two values of a bit are
typically written as the binary digits 0 and 1.

In the case of a binary variable, we can definep to be the probability thatX = 1, then
the probability thatX = 0 is 1− p and the information can be written as a function ofp

alone:

H(p) = −p log2p − (1− p) log2(1− p). (2)

This function is called theentropy function, 06 H(p) 6 1.
In what follows, the subscript 2 will be dropped on logarithms, it is assumed that all

logarithms are to base 2 unless otherwise indicated.
The probability thatY = y given thatX = x is writtenp(y|x). Theconditional entropy

S(Y |X) is defined by

S(Y |X) = −
∑
x

p(x)
∑
y

p(y|x) logp(y|x) (3)

= −
∑
x

∑
y

p(x, y) logp(y|x) (4)

where the second line is deduced usingp(x, y) = p(x)p(y|x) (this is the probability that
X = x and Y = y). By inspection of the definition, we see thatS(Y |X) is a measure of
how much information on average would remain inY if we were to learnX. Note that
S(Y |X) 6 S(Y ) always andS(Y |X) 6= S(X|Y ) usually.

The conditional entropy is important mainly as a stepping stone to the next quantity,
the mutual information, defined by

I (X : Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(5)

= S(X)− S(X|Y ). (6)

From the definition,I (X : Y ) is a measure of how muchX and Y contain information
about each other†. If X andY are independent thenp(x, y) = p(x)p(y) so I (X : Y ) = 0.
The relationships between the basic measures of information are indicated in figure 3. The
reader may like to prove as an exercise thatS(X, Y ), the information content ofX andY
(the information we would gain if, initially knowing neither, we learned the value of both
X andY ) satisfiesS(X, Y ) = S(X)+ S(Y )− I (X : Y ).

Information can disappear, but it cannot spring spontaneously from nowhere. This
important fact finds mathematical expression in thedata processing inequality:

if X→ Y → Z thenI (X : Z) 6 I (X : Y ). (7)

The symbolX → Y → Z means thatX, Y andZ form a process (a Markov chain) in
whichZ depends onY but not directly onX: p(x, y, z) = p(x)p(y|x)p(z|y). The content
of the data processing inequality is that the ‘data processor’Y can pass on toZ no more
information aboutX than it received.

† Many authors writeI (X;Y ) rather thanI (X : Y ). I prefer the latter since the symmetry of the colon reflects
the fact thatI (X : Y ) = I (Y : X).
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Figure 3. Relationship between various measures of classical information.

2.2. Data compression

Having pulled the definition of information content, equation (1), out of a hat, our aim is
now to prove that this is a good measure of information. It is not obvious at first sight
even how to think about such a task. One of the main contributions of classical information
theory is to provide useful ways to think about information. We will describe a simple
situation in order to illustrate the methods. Let us suppose one person, traditionally called
Alice, knows the value ofX and she wishes to communicate it to Bob. We restrict ourselves
to the simple case thatX has only two possible values: either ‘yes’ or ‘no’. We say that
Alice is a ‘source’ with an ‘alphabet’ of two symbols. Alice communicates by sending
binary digits (noughts and ones) to Bob. We will measure the information content ofX by
counting how many bits Alice must send,on average, to allow Bob to learnX. Obviously,
she could just send 0 for ‘no’ and 1 for ‘yes’, giving a ‘bit rate’ of one bit perX value
communicated. However, what ifX were an essentially random variable, except that it is
more likely to be ‘no’ than ‘yes’? (think of the output of decisions from a grant funding
body, for example). In this case, Alice can communicate more efficiently by adopting the
following procedure.

Let p be the probability thatX = 1 and 1− p be the probability thatX = 0. Alice
waits untiln values ofX are available to be sent, wheren will be large. The mean number
of ones in such a sequence ofn values isnp, and it is likely that the number of ones in
any given sequence is close to this mean. Supposenp is an integer, then the probability of
obtaining any given sequence containingnp ones is

pnp(1− p)n−np = 2−nH(p). (8)

The reader should satisfy him or herself that the two sides of this equation are indeed equal:
the right-hand side hints at how the argument can be generalized. Such a sequence is called
a typical sequence. To be specific, we define the set of typical sequences to be all sequences
such that

2−n(H(p)+ε) 6 p(sequence) 6 2−n(H(p)−ε). (9)

Now, it can be shown that the probability that Alice’sn values actually form a typical
sequence is greater than 1−ε, for sufficiently largen, no matter how smallε is. This implies
that Alice need not communicaten bits to Bob in order for him to learnn decisions. She
need only tell Bobwhich typical sequenceshe has. They must agree together beforehand
how the typical sequences are to be labelled: for example, they may agree to number
them in order of increasing binary value. Alice just sends the label, not the sequence
itself. To deduce how well this works, it can be shown that the typical sequences all have
equal probability and there are 2nH(p) of them. To communicate one of 2nH(p) possibilities,
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Figure 4. The standard communication channel (‘the information theorist’s coat of arms’).
The source (Alice) produces information which is manipulated (‘encoded’) and then sent over
the channel. At the receiver (Bob) the received values are ‘decoded’ and the information thus
extracted.

clealy Alice must sendnH(p) bits. Also, Alice cannot do better than this (i.e. send fewer
bits) since the typical sequences are equiprobable: there is nothing to be gained by further
manipulating the information. Therefore, the information content of each value ofX in the
original sequence must beH(p), which proves (1).

The mathematical details skipped over in the above argument all stem from the law of
large numbers, which states that, given arbitrarily smallε, δ

P (|m− np| < nε) > 1− δ (10)

for sufficiently largen, wherem is the number of ones obtained in a sequence ofn values.
For large enoughn, the number of onesm will differ from the meannp by an amount
arbitrarily small compared withn. For example, in our case the noughts and ones will be
distributed according to the binomial distribution

P(n,m) = C(n,m)pm(1− p)n−m (11)

' 1

σ
√

2π
e−(m−np)

2/2σ 2
(12)

where the Gaussian form is obtained in the limitn, np → ∞, with the standard deviation
σ = √np(1− p), andC(n,m) = n!/m!(n−m)!.

The above argument has already yielded a significant practical result associated with
(1). This is that to communicaten values ofX, we need only sendnS(X) 6 n bits down
a communication channel. This idea is referred to asdata compressionand is also called
Shannon’s noiseless coding theorem.

The typical sequences idea has given a means to calculate information content, but it is
not the best way to compress information in practice, because Alice must wait for a large
number of decisions to accumulate before she communicates anything to Bob. A better
method is for Alice to accumulate a few decisions, say four, and communicate this as a
single ‘message’ as best she can. Huffman derived an optimal method whereby Alice sends
short strings to communicate the most likely messages, and longer ones to communicate
the least likely messages, see table 1 for an example. The translation process is referred to
as ‘encoding’ and ‘decoding’ (figure 4); this terminology does not imply any wish to keep
information secret.

For the casep = 1
4 Shannon’s noiseless coding theorem tells us that the best possible

data compression technique would communicate each message of fourX values by sending
on average 4H 1

4 ' 3.245 bits. The Huffman code in table 1 gives on average 3.273 bits
per message. This is quite close to the minimum, showing that practical methods like
Huffman’s are powerful.

Data compression is a concept of great practical importance. It is used in
telecommunications, for example to compress the information required to convey television
pictures and data storage in computers. From the point of view of an engineer designing
a communication channel, data compression can appear miraculous. Suppose we have set
up a telephone link to a mountainous area, but the communication rate is not high enough
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Table 1. Huffman and Hamming codes. The left column shows the sixteen possible 4-bit
messages, the other columns show the encoded version of each message. The Huffman code is
for data compression: the most likely messages have the shortest encoded forms; the code is
given for the case that each message bit is three times more likely to be zero than one. The
Hamming code is an error-correcting code: every codeword differs from all the others in at
least three places, therefore any single error can be corrected. The Hamming code is also linear:
all the words are given by linear combinations of 1010101, 0110011, 0001111, 1111111. They
satisfy the parity checks 1010101, 0110011, 0001111.

Message Huffman Hamming

0000 10 0000000
0001 000 1010101
0010 001 0110011
0011 11000 1100110
0100 010 0001111
0101 11001 1011010
0110 11010 0111100
0111 1111000 1101001
1000 011 1111111
1001 11011 0101010
1010 11100 1001100
1011 111111 0011001
1100 11101 1110000
1101 111110 0100101
1110 111101 1000011
1111 1111001 0010110

to send, say, the pixels of a live video image. The old-style engineering option would be
to replace the telephone link with a faster one, but information theory suggests instead the
possibility of using the same link, but adding data processing at either end (data compression
and decompression). It comes as a great surprise that the usefulness of a cable can thus be
improved by tinkering with the information instead of the cable.

2.3. The binary symmetric channel

So far we have considered the case of communication down a perfect, i.e. noise-free channel.
We have gained two main results of practical value: a measure of the best possible data
compression (Shannon’s noiseless coding theorem) and a practical method to compress
data (Huffman coding). We now turn to the important question of communication in the
presence of noise. As in the last section, we will analyse the simplest case in order to
illustrate principles which are in fact more general.

Suppose we have a binary channel, i.e. one which allows Alice to send noughts and
ones to Bob. The noise-free channel conveys 0→ 0 and 1→ 1, but a noisy channel might
sometimes cause 0 to become 1 and vice versa. There is an infinite variety of different
types of noise. For example, the erroneous ‘bit flip’ 0→ 1 might be just as likely as 1→ 0
or the channel might have a tendency to ‘relax’ towards 0, in which case 1→ 0 happens
but 0→ 1 does not. Also, such errors might occur independently from bit to bit, or occur
in bursts.

A very important type of noise is one which affects different bits independently, and
causes both 0→ 1 and 1→ 0 errors. This is important because it captures the essential
features of many processes encountered in realistic situations. If the two errors 0→ 1 and
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1→ 0 are equally likely, then the noisy channel is called a ‘binary symmetric channel’.
The binary symmetric channel has a single parameter,p, which is the error probability per
bit sent. Suppose the message sent into the channel by Alice isX, and the noisy message
which Bob receives isY . Bob is then faced with the task of deducingX as best he can from
Y . If X consists of a single bit, then Bob will make use of the conditional probabilities

p(x = 0|y = 0) = p(x = 1|y = 1) = 1− p
p(x = 0|y = 1) = p(x = 1|y = 0) = p

giving S(X|Y ) = H(p) using equations (3) and (2). Therefore, from the definition (6) of
mutual information, we have

I (X : Y ) = S(X)−H(p). (13)

Clearly, the presence of noise in the channel limits the information about Alice’sX contained
in Bob’s receivedY . Also, because of the data processing inequality, equation (7), Bob
cannot increase his information aboutX by manipulatingY . However, (13) shows that
Alice and Bob can communicate better ifS(X) is large. The general insight is that the
information communicated depends both on the source and the properties of the channel.
It would be useful to have a measure of the channel alone, to tell us how well it conveys
information. This quantity is called thecapacity of the channel and it is defined to be
the maximum possible mutual informationI (X : Y ) between the input and output of the
channel, maximized over all possible sources:

channel capacityC ≡ max
{p(x)}

I (X : Y ). (14)

Channel capacity is measured in units of ‘bits out per symbol in’ and for binary channels
must lie between zero and one.

It is all very well to have a definition, but (14) does not allow us to compare channels
very easily, since we have to perform the maximization over input strategies, which is
nontrivial. To establish the capacityC(p) of the binary symmetric channel is a basic
problem in information theory, but fortunately this case is quite simple. From equations
(13) and (14) one may see that the answer is

C(p) = 1−H(p) (15)

obtained whenS(X) = 1 (i.e.P(x = 0) = P(x = 1) = 1
2).

2.4. Error-correcting codes

So far we have investigated how much information gets through a noisy channel and
how much is lost. Alice cannot convey to Bob more information thanC(p) per symbol
communicated. However, suppose Bob is busy defusing a bomb and Alice is shouting
from a distance which wire to cut: she will not say ‘the blue wire’ just once and hope that
Bob heard correctly. She will repeat the message many times and Bob will wait until he
is sure to have got it right. Thus error-free communication can be achieved even over a
noisy channel. In this example one obtains the benefit of reduced error rate at the sacrifice
of reduced information rate. The next stage of our information theoretic programme is to
identify more powerful techniques to circumvent noise (Hamming 1986, Hill 1986, Jones
1979, MacWilliams and Sloane 1977).

We will need the following concepts. The set{0, 1} is considered as a group (a Galois
field GF(2)) where the operations+,−,×,÷ are carried out modulo 2 (thus, 1+ 1 = 0).
An n-bit binary word is a vector ofn components, for example 011 is the vector(0, 1, 1).
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A set of such vectors forms a vector space under addition, since for example 011+ 101
means(0, 1, 1)+ (1, 0, 1) = (0+ 1, 1+ 0, 1+ 1) = (1, 1, 0) = 110 by the standard rules of
vector addition. This is equivalent to the exclusive-or operation carried out bitwise between
the two binary words.

The effect of noise on a wordu can be expressedu → u′ = u + e, where
the error vectore indicates which bits inu were flipped by the noise. For example,
u = 1001101→ u′ = 1101110 can be expressedu′ = u + 0100011. An error correcting
codeC is a set of words such that

u+ e 6= v + f ∀u, v ∈ C (u 6= v) ∀e, f ∈ E (16)

whereE is the set of errors correctable byC, which includes the case of no error,e = 0. To
use such a code, Alice and Bob agree on which codewordu corresponds to which message,
and Alice only ever sends codewords down the channel. Since the channel is noisy, Bob
receives notu but u+ e. However, Bob can deduceu unambiguously fromu+ e since by
condition (16), no other codewordv sent by Alice could have caused Bob to receiveu+ e.

An example error-correcting code is shown in the right-hand column of table 1. This
is a [7, 4, 3] Hamming code, named after its discoverer. The notation [n, k, d] means that
the codewords aren bits long, there are 2k of them, and they all differ from each other
in at leastd places. Because of the latter feature, the condition (16) is satisfied for any
error which affects at most one bit. In other words the setE of correctable errors is
{0000000, 1000000, 0100000, 0010000, 0001000, 0000100, 0000010, 0000001}. Note that
E can have at most 2n−k members. The ratiok/n is called therate of the code, since each
block of n transmitted bits conveysk bits of information, thusk/n bits per bit.

The parameterd is called the ‘minimum distance’ of the code, and is important when
encoding for noise which affects successive bits independently, as in the binary symmetric
channel. A code of minumum distanced can correct all errors affecting less thand/2
bits of the transmitted codeword and for independent noise this is themost likely set of
errors. In fact, the probability that ann-bit word receivesm errors is given by the binomial
distribution (11), so if the code can correct more than the mean number of errorsnp, the
correction is highly likely to succeed.

The central result of classical information theory is that powerful error correcting codes
exist.

Shannon’s theorem.If the ratek/n < C(p) andn is sufficiently large, there exists a binary
code allowing transmission with an arbitrarily small error probability.

The error probability here is the probability that an uncorrectable error occurs, causing
Bob to misinterpret the received word. Shannon’s theorem is highly surprising, since it
implies that it is not necessary to engineer very low-noise communication channels, an
expensive and difficult task. Instead, we can compensate noise by error correction coding
and decoding, that is, by information processing! The meaning of Shannon’s theorem is
illustrated by figure 5.

The main problem of coding theory is to identify codes with large ratek/n and large
distanced. These two conditions are mutually incompatible, so a compromise is needed.
The problem is notoriously difficult and has no general solution. To make connection with
quantum error correction, we will need to mention one important concept, that of theparity
check matrix. An error-correcting code is called linear if it is closed under addition, i.e.
u + v ∈ C ∀u, v ∈ C. Such a code is completely specified by its parity-check matrixH ,
which is a set of(n − k) linearly independentn-bit words satisfyingH · u = 0 ∀u ∈ C.
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Figure 5. Illustration of Shannon’s theorem. Alice sendsn = 100 bits over a noisy channel, in
order to communicatek bits of information to Bob. The figure shows the probability that Bob
interprets the received data correctly, as a function ofk/n, when the error probability per bit
is p = 0.25. The channel capacity isC = 1− H(0.25) ' 0.19. Broken curve: Alice sends
each bit repeatedn/k times. Full curve: Alice uses the best linear error-correcting code of rate
k/n. The dotted curve gives the performance of error-correcting codes with largern, to illustrate
Shannon’s theorem.

The important property is encapsulated by the following equation:

H · (u+ e) = (H · u)+ (H · e) = H · e. (17)

This states that if Bob evaluatesH ·u′ for his noisy received wordu′ = u+e, he will obtain
the same answerH · e, no matter what wordu Alice sent him! If this evaluation were done
automatically, Bob could learnH · e, called theerror syndrome, without learningu. If Bob
can deduce the errore from H · e, which one can show is possible for all correctable errors,
then he can correct the message (by subtractinge from it) without ever learning what it
was! In quantum error correction, this is the origin of the reason one can correct a quantum
state without disturbing it.

3. Classical theory of computation

We now turn to the theory of computation. This is mostly concerned with the questions
‘what is computable?’ and ‘what resources are necessary?’

The fundamental resources required for computing are a means to store and to
manipulate symbols. The important questions are such things as how complicated must
the symbols be, how many will we need, how complicated must the manipulations be, and
how many of them will we need?

The general insight is that computation is deemedhard or inefficient if the amount
of resources required rises exponentially with a measure of the size of the problem to be
addressed. The size of the problem is given by the amount ofinformation required to
specify the problem. Applying this idea at the most basic level, we find that a computer
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Figure 6. A classical computer can be built from a network of logic gates.

must be able to manipulate binary symbols, not just unary symbols†, otherwise the number
of memory locations needed would grow exponentially with the amount of information to
be manipulated. On the other hand, it is not necessary to work in decimal notation (10
symbols) or any other notation with an ‘alphabet’ of more than two symbols. This greatly
simplifies computer design and analysis.

To manipulaten binary symbols, it is not necessary to manipulate them all at once,
since it can be shown that any transformation can be brought about by manipulating the
binary symbols one at a time or in pairs. A binary ‘logic gate’ takes two bitsx, y as inputs,
and calculates a functionf (x, y). Sincef can be 0 or 1, and there are four possible inputs,
there are 16 possible functionsf . This set of 16 different logic gates is called a ‘universal
set’, since by combining such gates in series, any transformation ofn bits can be carried
out. Futhermore, the action of some of the 16 gates can be reproduced by combining others,
so we do not need all 16, and in fact only one, theNAND gate, is necessary (NAND is NOT

AND, for which the output is 0 if and only if both inputs are 1).
By concatenating logic gates, we can manipulaten-bit symbols (see figure 6). This

general approach is called the network model of computation, and is useful for our purposes
because it suggests the model of quantum computation which is currently most feasible
experimentally. In this model, the essential components of a computer are a set of bits,
many copies of the universal logic gate, and connecting wires.

3.1. Universal computer; Turing machine

The word ‘universal’ has a further significance in relation to computers. Turing showed that
it is possible to construct auniversalcomputer, which can simulate the action of any other,
in the following sense. Let us writeT (x) for the output of a Turing machineT (figure 7)
acting on input tapex. Now, a Turing machine can be completely specified by writing
down how it responds to 0 and 1 on the input tape, for every possible internal configuration
of the machine (of which there are a finite number). This specification can itself be written
as a binary numberd[T ]. Turing showed that there exists a machineU , called a universal
Turing machine, with the properties

U(d[T ], x) = T (x) (18)

and the number of steps taken byU to simulate each step ofT is only a polynomial (not
exponential) function of the length ofd[T ]. In other words, if we provideU with an input
tape containing both a description ofT and the inputx, thenU will compute the same
function asT would have done, forany machineT , without an exponential slowdown.

To complete the argument, it can be shown that other models of computation, such as the
network model, arecomputationally equivalentto the Turing model: they permit the same

† Unary notation has a single symbol, 1. The positive integers are written 1, 11, 111, 1111, . . ..
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Figure 7. The Turing machine. This is a conceptual mechanical device which can be shown
to be capable of efficiently simulating all classical computational methods. The machine has a
finite set of internal states and a fixed design. It reads one binary symbol at a time, supplied
on a tape. The machine’s action on reading a given symbols depends only on that symbol and
the internal stateG. The action consists in overwriting a new symbols′ on the current tape
location, changing the state toG′ and moving the tape one place in directiond (left or right).
The internal construction of the machine can therefore be specified by a finite fixed list of rules
of the form (s,G→ s′,G′, d). One special internal state is the ‘halt’ state: once in this state
the machine ceases further activity. An input ‘programme’ on the tape is transformed by the
machine into an output result printed on the tape.

functions to be computed, with the same computational efficiency (see next section). Thus
the concept of the univeral machine establishes that a certain finite degree of complexity
of construction is sufficient to allow very general information processing. This is the
fundamental result of computer science. Indeed, the power of the Turing machine and its
cousins is so great that Church (1936) and Turing (1936) framed the ‘Church–Turing thesis’,
to the effect that

every function ‘which would naturally be regarded as computable’ can be computed
by the universal Turing machine.

This thesis is unproven, but has survived many attempts to find a counterexample,
making it a very powerful result. To it we owe the versatility of the modern general-
purpose computer, since ‘computable functions’ include tasks such as word processing,
process control, and so on. The QC, to be described in section 6, will throw new light on
this central thesis.

3.2. Computational complexity

Once we have established the idea of a universal computer, computational tasks can be
classified in terms of their difficulty in the following manner. A given algorithm is deemed
to address not just one instance of a problem, such as ‘find the square of 237’, but one
class of problem, such as ‘givenx, find its square’. The amount of information given to
the computer in order to specify the problem isL = logx, i.e. the number of bits needed
to store the value ofx. The computational complexityof the problem is determined by the
number of stepss a Turing machine must make in order to complete any algorithmic method
to solve the problem. In the network model, the complexity is determined by the number
of logic gates required. If an algorithm exists withs given by any polynomial function of
L (e.g. s ∝ L3 + L) then the problem is deemed tractable and is placed in the complexity
class ‘P’. If s rises exponentially withl (e.g. s ∝ 2L = x) then the problem is hard and is
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in another complexity class. It is often easier to verify a solution, that is, to test whether or
not it is correct, than to find one. The class ‘NP’ is the set of problems for which solutions
can be verified in polynomial time. ObviouslyP ∈ NP, and one would guess that there are
problems inNP which are not inP, (i.e. NP 6= P) though surprisingly the latter has never
been proved, since it is very hard to rule out the possible existence of as yet undiscovered
algorithms. However, the important point is that the membership of these classes does not
depend on the model of computation, i.e. the physical realization of the computer, since
the Turing machine can simulate any other computer with only a polynomial, rather than
exponential slowdown.

An important example of an intractable problem is that of factorization: given a
composite (i.e. non-prime) numberx, the task is to find one of its factors. Ifx is even,
or a multiple of any small number, then it is easy to find a factor. The interesting case is
when the prime factors ofx are all themselves large. In this case there is no known simple
method. The best known method, thenumber field sieve(Menezeset al 1997) requires
a number of computational steps of orders ∼ exp(2L1/3(lnL)2/3) whereL = ln x. By
devoting a substantial machine network to this task, one can today factor a number of 130
decimal digits (Crandall 1997), i.e.L ' 300, givings ∼ 1018. This is time-consuming but
possible (for example 42 days at 1012 operations per second). However, if we doubleL, s
increases to∼ 1025, so now the problem is intractable: it would take a million years with
current technology, or would require computers running a million times faster than current
ones. The lesson is an important one: a computationally ‘hard’ problem is one which in
practice is not merely difficult but impossible to solve.

The factorization problem has acquired great practical importance because it is at the
heart of widely used cyptographic systems such as that of Rivestet al (1979) (see Hellman
1979). For, given a messageM (in the form of a long binary number), it is easy to calculate
an encrypted versionE = Ms modc wheres andc are well chosen large integers which can
be made public. To decrypt the message, the receiver calculatesEt modc which is equal
to M for a value oft which can be quickly deduced froms and the factors ofc (Schroeder
1984). In practicec = pq is chosen to be the product of two large primesp, q known
only to the user who publishedc, so only that user can read the messages—unless someone
manages to factorizec. It is a very useful feature that no secret keys need be distributed in
such a system: the ‘key’c, s allowing encryption is public knowledge.

3.3. Uncomputable functions

There is an even stronger way in which a task may be impossible for a computer. In the
quest to solve some problem, we could ‘live with’ a slow algorithm, but what if one does not
exist at all? Such problems are termeduncomputable. The most important example is the
‘halting problem’, a rather beautiful result. A feature of computers familiar to programmers
is that they may sometimes be thrown into a never-ending loop. Consider, for example, the
instruction ‘whilex > 2, dividex by 1’ for x initially greater than 2. We can see that this
algorithm will never halt, without actually running it. More interesting from a mathematical
point of view is an algorithm such as ‘whilex is equal to the sum of two primes, add 2
to x, otherwise printx and halt’, beginning atx = 8. The algorithm is certainly feasible
since all pairs of primes less thanx can be found and added systematically. Will such an
algorithm ever halt? If so, then a counterexample to the Goldbach conjecture exists. Using
such techniques, a vast section of mathematical and physical theory could be reduced to the
question ‘would such and such an algorithm halt if we were to run it?’ If we could find a
general way to establish whether or not algorithms will halt, we would have an extremely
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powerful mathematical tool. In a certain sense, it would solve all of mathematics!
Let us suppose that it is possible to find a general algorithm which will work out whether

any Turing machine will halt on any input. Such an algorithm solves the problem ‘given
x and d[T ], would Turing machineT halt if it were fedx as input?’. Hered[T ] is the
description ofT . If such an algorithm exists, then it is possible to make a Turing machine
TH which halts if and only ifT (d[T ]) does not halt, whered[T ] is the description ofT .
HereTH takes as inputd[T ], which is sufficient to tellTH about both the Turing machine
T and the input toT . Hence we have

TH (d[T ]) halts↔ T (d[T ]) does not halt. (19)

So far everything is okay. However, what if we feedTH the description of itself,d[TH ]?
Then

TH (d[TH ]) halts↔ TH (d[TH ]) does not halt (20)

which is a contradiction. By this argument Turing showed that there is no automatic
means to establish whether Turing machines will halt in general: the ‘halting problem’ is
uncomputable. This implies that mathematics, and information processing in general, is a
rich body of different ideas which cannot all be summarized in one grand algorithm. This
liberating observation is closely related to Gödel’s theorem.

4. Quantum versus classical physics

In order to think about quantum information theory, let us first state the principles of non-
relativisitic quantum mechanics, as follows (Shankar 1980).

(1) The state of an isolated systemQ is represented by a vector|ψ(t)〉 in a Hilbert
space.

(2) Variables such as position and momentum are termed observables and are represented
by Hermitian operators. The position and momentum operatorsX,P have the following
matrix elements in the eigenbasis ofX:

〈x|X|x ′〉 = xδ(x − x ′)
〈x|P |x ′〉 = −ih̄δ′(x − x ′)

(3) The state vector obeys the Schrödinger equation

ih̄
d

dt
|ψ(t)〉 = H|ψ(t)〉 (21)

whereH is the quantum Hamiltonian operator.
(4) Measurement postulate.
The fourth postulate, which has not been made explicit, is a subject of some debate,

since quite different interpretive approaches lead to the same predictions, and the concept
of ‘measurement’ is fraught with ambiguities in quantum mechanics (Wheeler and Zurek
1983, Bell 1987, Peres 1993). A statement which is valid for most practical purposes is that
certain physical interactions are recognizably ‘measurements’ and their effect on the state
vector |ψ〉 is to change it to an eigenstate|k〉 of the variable being measured, the value of
k being randomly chosen with probabilityP ∝ |〈k|ψ〉|2. The change|ψ〉 → |k〉 can be
expressed by the projection operator(|k〉〈k|)/〈k|ψ〉.

Note that according to the above equations, the evolution of an isolated quantum system
is alwaysunitary, in other words|ψ(t)〉 = U(t)|ψ(0)〉 whereU(t) = exp(−i

∫
H dt/h̄) is a

unitary operator,UU † = I . This is true, but there is a difficulty that there is no such thing as
a truly isolated system (i.e. one which experiences no interactions with any other systems),



140 A Steane

except possibly the whole universe. Therefore there is always some approximation involved
in using the Schr̈odinger equation to describe real systems.

One way to handle this approximation is to speak of the systemQ and its environmentT .
The evolution ofQ is primarily that given by its Schrödinger equation, but the interaction
betweenQ and T has, in part, the character of a measurement ofQ. This produces a
non-unitary contribution to the evolution ofQ (since projections are not unitary) and this
ubiquitous phenomenon is calleddecoherence. I have underlined these elementary ideas
because they are central in what follows.

We can now begin to bring together ideas of physics and information processing. It is
clear that much of the wonderful behaviour we see around us in nature could be understood
as a form of information processing, and conversely our computers are able to simulate,
by their processing, many of the patterns of nature. The obvious, if somewhat imprecise,
questions are

(1) ‘can nature usefully be regarded as essentially an information processor?’
(2) ‘could a computer simulate the whole of nature?’
The principles of quantum mechanics suggest that the answer to the first quesion isyes†.

For, the state vector|ψ〉 so central to quantum mechanics is a concept very much like those
of information science: it is an abstract entity which contains exactly all the information
about the systemQ. The word ‘exactly’ here is a reminder that not only is|ψ〉 a complete
description ofQ, it is also one that does not contain any extraneous information which
cannot meaningfully be associated withQ. The importance of this in quantum statistics of
Fermi and Bose gases was mentioned in the introduction.

The second question can be made more precise by converting the Church–Turing thesis
into a principle of physics;

every finitely realizable physical system can be simulated arbitrarily closely by a
universal model computing machine operating by finite means.

This statement is based on that of Deutsch (1985). The idea is to propose that a
principle such as this is not derived from quantum mechanics, but rather underpins it, like
other principles such as that of conservation of energy. The qualifications introduced by
‘finitely realizable’ and ‘finite means’ are important in order to state something useful.

The new version of the Church–Turing thesis (now called the ‘Church–Turing principle’)
does not refer to Turing machines. This is important because there are fundamental
differences between the very nature of the Turing machine and the principles of quantum
mechanics. One is described in terms of operations on classical bits, the other in terms
of evolution of quantum states. Hence there is the possibility that the universal Turing
machine, and hence all classical computers, might not be able to simulate some of the
behaviour to be found in nature. Conversely, it may be physically possible (i.e. not ruled
out by the laws of nature) to realize a new type of computation essentially different from
that of classical computer science. This is the central aim of quantum computing.

4.1. EPR paradox, Bell’s inequality

In 1935 EPR drew attention to an important feature of non-relativistic quantum mechanics.
Their argument, and Bell’s analysis, can now be recognized as one of the seeds from which

† This does not necessarily imply that such language captures everthing that can be said about nature, merely that
this is a useful abstraction at the descriptive level of physics. I do not believe any physical ‘laws’ could be adequate
to completely describe human behaviour, for example, since they are sufficiently approximate or non-prescriptive
to leave us room for manoeuvre (Polkinghorne 1994).
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quantum information theory has grown. The EPR paradox should be familiar to any physics
graduate and I shall not repeat the argument in detail. However, the main points will provide
a useful way into quantum information concepts.

The EPR thought experiment can be reduced in essence to an experiment involving
pairs of 2-state quantum systems (Bohm 1951, Bohm and Aharonov 1957). Let us consider
a pair of spin-half particlesA andB, writing the (mz = + 1

2) spin ‘up’ state|↑〉 and the
(mz = − 1

2) spin ‘down’ state|↓〉. The particles are prepared initially in the singlet state
(|↑〉|↓〉 − |↓〉|↑〉)/√2, and they subsequently fly apart, propagating in opposite directions
along they-axis. Alice and Bob are widely separated and they receive particleA andB
respectively. EPR were concerned with whether quantum mechanics provides a complete
description of the particles, or whether something was left out, some property of the spin
angular momentasA, sB which quantum theory failed to describe. Such a property has
since become known as a ‘hidden variable’. They argued that something was left out,
because this experiment allows one to predict with certainty the result of measuring any
component ofsB , without causing any disturbance ofB. Therefore all the components of
sB have definite values, say EPR, and the quantum theory only provides an incomplete
description. To make the certain prediction without disturbingB, one chooses any axisη
along which one wishes to knowB ’s angular momentum, and then measures notB but
A, using a Stern–Gerlach apparatus aligned alongη. Since the singlet state carries no net
angular momentum, one can be sure that the corresponding measurement onB would yield
the opposite result to the one obtained forA.

The EPR paper is important because it is carefully argued and the fallacy is hard to
unearth. The fallacy can be exposed in one of two ways: one can say either that Alice’s
measurement does influence Bob’s particle, or (which I prefer) that the quantum state vector
|φ〉 is not an intrinsic property of a quantum system, but an expression for the information
content of a quantum variable. In a singlet state there is mutual information betweenA

andB, so the information content ofB changes when we learn something aboutA. So far
there is no difference from the behaviour of classical information, so nothing surprising has
occurred.

A more thorough analysis of the EPR experiment yields a big surprise. This was
discovered by Bell (1964, 1966). Suppose Alice and Bob measure the spin component ofA

andB along different axesηA andηB in thex–z plane. Each measurement yields an answer
+ or−. Quantum theory and experiment agree that the probability for the two measurements
to yield the same result is sin2((φA − φB)/2), whereφA (φB) is the angle betweenηA (ηB)
and thez axis. However, there is no way to assignlocal properties, that is properties ofA
andB independently, which lead to this high a correlation, in which the results are certain
to be opposite whenφA = φB , certain to be equal whenφA = φB + 180◦ and also, for
example, have a sin2(60◦) = 3

4 chance of being equal whenφA − φB = 120◦. Feynman
(1982) gives a particularly clear analysis. AtφA−φB = 120◦ the highest correlation which
local hidden variables could produce is2

3.
The Bell–EPR argument allows us to identify a task which is physically possible,

but which no classical computer could perform: when repeatedly given inputsφA, φB
at completely separated locations, respond quickly (i.e. too quick to allow light-speed
communication between the locations) with yes/no responses which are perfectly correlated
when φA = φB + 180◦, anticorrelated whenφA = φB and more than∼ 70% correlated
whenφA − φB = 120◦.

Experimental tests of Bell’s argument were carried out in the 1970s and 1980s and the
quantum theory was verified (Clauser and Shimony 1978, Aspectet al 1982); for more
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recent work see Aspect (1991), Kwiatet al (1995) and references therein. This was a
significant new probe into the logical structure of quantum mechanics. The argument can
be made even stronger by considering a more complicated system. In particular, for three
spins prepared in a state such as(|↑〉|↑〉|↑〉 + |↓〉|↓〉|↓〉)/√2, Greenberger, Horne and
Zeilinger (1989) (GHZ) showed that a single measurement along a horizontal axis for two
particles, and along a vertical axis for the third, will yield with certainty a result which is
the exact opposite of what a local hidden-variable theory would predict. A wider discussion
and references are provided by Greenbergeret al (1990), Mermin (1990).

The Bell–EPR correlations show that quantum mechanics permits at least one simple
task which is beyond the capabilities of classical computers and they hint at a new type of
mutual information (Schumacher and Nielsen 1996). In order to pursue these ideas, we will
need to construct a complete theory of quantum information.

5. Quantum information

Just as in the discussion of classical information theory, quantum information ideas are best
introduced by stating them and then showing afterwards how they link together. Quantum
communication is treated in a special issue ofJ. Mod. Opt., volume 41 (1994); reviews
and references for quantum cryptography are given by Bennettet al (1992), Hugheset
al (1995), Phoenix and Townsend (1995), Brassard and Crepeau (1996) and Ekert (1997).
Spiller (1996) reviews both communication and computing.

5.1. Qubits

The elementary unit of quantum information is thequbit (Schumacher 1995). A single qubit
can be envisaged as a 2-state system such as a spin-half or a 2-level atom (see figure 12),
but when we measure quantum information in qubits we are really doing something more
abstract: a quantum system is said to haven qubits if it has a Hilbert space of 2n dimensions
and so has available 2n mutually orthogonalquantum states (recall thatn classical bits can
represent up to 2n different things). This definition of the qubit will be elaborated in
section 5.6.

We will write two orthogonal states of a single qubit as{|0〉, |1〉}. More generally,
2n mutually orthogonal states ofn qubits can be written{|i〉}, where i is an n-
bit binary number. For example, for three qubits we have{|000〉, |001〉, |010〉, |011〉,
|100〉, |101〉, |110〉, |111〉}.

5.2. Quantum gates

Simple unitary operations on qubits are called quantum ‘logic gates’ (Deutsch 1985, 1989).
For example, if a qubit evolves as|0〉 → |0〉, |1〉 → exp(iωt)|1〉, then after timet we may
say that the operation, or ‘gate’

P(θ) =
(

1 0
0 eiθ

)
(22)

has been applied to the qubit, whereθ = ωt . This can also be writtenP(θ) =
|0〉〈0| + exp(iθ)|1〉〈1|. Here are some other elementary quantum gates:

I ≡ |0〉〈0| + |1〉〈1| = identity (23)

X ≡ |0〉〈1| + |1〉〈0| = NOT (24)
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Z ≡ P(π) (25)

Y ≡ XZ (26)

H ≡ 1√
2

[(|0〉 + |1〉)〈0| + (|0〉 − |1〉)〈1|]. (27)

These all act on a single qubit, and can be achieved by the action of some Hamiltonian in
Schr̈odinger’s equation, since they are all unitary operators†. There are an infinite number
of single-qubit quantum gates, in contrast to classical information theory, where only two
logic gates are possible for a single bit, namely the identity and the logicalNOT operation.
The quantumNOT gate carries|0〉 to |1〉 and vice versa, and so is analagous to a classical
NOT. This gate is also calledX since it is the Pauliσx operator. Note that the set{I,X, Y, Z}
is a group under multiplication.

Of all the possible unitary operators acting on a pair of qubits, an interesting subset is
those which can be written|0〉〈0| ⊗ I + |1〉〈1| ⊗ U , whereI is the single-qubit identity
operation, andU is some other single-qubit gate. Such a 2-qubit gate is called a ‘controlled
U ’ gate, since the actionI or U on the second qubit is controlled by whether the first qubit
is in the state|0〉 or |1〉. For example, the effect of controlled-NOT (‘CNOT’) is

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉.

(28)

Here the second qubit undergoes aNOT if and only if the first qubit is in the state|1〉. This
list of state changes is the analogue of the truth table for a classical binary logic gate. The
effect of controlled-NOT acting on a state|a〉|b〉 can be writtena → a, b→ a ⊕ b, where
⊕ signifies the exclusive or (XOR) operation. For this reason, this gate is also called the
XOR gate.

Other logical operations require further qubits. For example, theAND operation is
achieved by use of the 3-qubit ‘controlled–controlled-NOT’ gate, in which the third qubit
experiencesNOT if and only if both the others are in the state|1〉. This gate is named
a Toffoli gate, after Toffoli (1980) who showed that the classical version is universal for
classical reversible computation. The effect on a state|a〉|b〉|0〉 is a→ a, b→ b, 0→ a ·b.
In other words if the third qubit is prepared in|0〉 then this gate computes theAND of the
first two qubits. The use of three qubits is necessary in order to permit the whole operation
to be unitary and thus allowed in quantum-mechanical evolution.

It is an amusing excercise to find the combinations of gates which perform elementary
arithmetical operations such as binary addition and multiplication. Many basic constructions
are given by Barencoet al (1995b), further general design considerations are discussed by
Vedral et al (1996) and Beckmanet al (1996).

The action of a sequence of quantum gates can be written in operator notation, for
exampleX1H2XOR1,3|φ〉 where|φ〉 is some state of three qubits and the subscripts on the
operators indicate to which qubits they apply. However, once more than a few quantum
gates are involved, this notation is rather obscure and can usefully be replaced by a diagram
known as a quantum network—see figure 8. These diagrams will be used hereafter.

† The letterH is adopted for the final gate here because its effect is aHadamardtransformation. This is not to
be confused with the HamiltonianH.
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Figure 8. Example ‘quantum network’. Each horizontal line represents one qubit evolving in
time from left to right. A symbol on one line represents a single-qubit gate. Symbols on two
qubits connected by a vertical line represent a 2-qubit gate operating on those two qubits. The
network shown carries out the operationX1H2XOR1,3|φ〉. The⊕ symbol representsX (NOT),
the encircledH is theH gate, the filled circle linked to⊕ is controlled-NOT.

5.3. No cloning

No cloning theorem.An unknown quantum state cannot be cloned.

This states that it is impossible to generate copies of a quantum state reliably, unless
the state is already known (i.e. unless there exists classical information which specifies
it). Proof: to generate a copy of a quantum state|α〉, we must cause a pair of quantum
systems to undergo the evolutionU(|α〉|0〉) = |α〉|α〉 whereU is the unitary evolution
operator. If this is to work for any state, thenU must not depend onα, and therefore
U(|β〉|0〉) = |β〉|β〉 for |β〉 6= |α〉. However, if we consider the state|γ 〉 = (|α〉+ |β〉)/√2,
we haveU(|γ 〉|0〉) = (|α〉|α〉 + |β〉|β〉)/√2 6= |γ 〉|γ 〉 so the cloning operation fails. This
argument applies to any purported cloning method (Wooters and Zurek 1982, Dieks 1982).

Note that any given ‘cloning’ operationU can work on some states (|α〉 and |β〉 in the
above example) though sinceU is trace-preserving, two different clonable states must be
orthogonal,〈α| β〉 = 0. Unless we already know that the state to be copied is one of these
states, we cannot guarantee that the chosenU will correctly clone it. This is in contrast to
classical information, where machines like photocopiers can easily copy whatever classical
information is sent to them. The controlled-NOT or XOR operation of equation (28) is a
copying operation for the states|0〉 and|1〉, but not for states such as|+〉 ≡ (|0〉+ |1〉)/√2
and |−〉 ≡ (|0〉 − |1〉)/√2.

The no-cloning theorem and the EPR paradox together reveal a rather subtle way in
which non-relativistic quantum mechanics is a consistent theory. For, if cloning were
possible, then EPR correlations could be used to communicate faster than light, which leads
to a contradiction (an effect preceding a cause) once the principles of special relativity are
taken into account. To see this, observe that by generating many clones, and then measuring
them in different bases, Bob could deduce unambiguously whether his member of an EPR
pair is in a state of the basis{|0〉, |1〉} or of the basis{|+〉, |−〉}. Alice would communicate
instantaneously by forcing the EPR pair into one basis or the other through her choice of
measurement axis (Glauber 1986).

5.4. Dense coding

We will discuss the following statement.

Quantum entanglement is an information resource.

Qubits can be used to store and transmit classical information. To transmit a classical
bit string 00101, for example, Alice can send five qubits prepared in the state|00101〉. The
receiver Bob can extract the information by measuring each qubit in the basis{|0〉, |1〉} (i.e.
these are the eigenstates of the measured observable). The measurement results yield the



Quantum computing 145

classical bit string with no ambiguity. No more than one classical bit can be communicated
for each qubit sent.

Figure 9. Basic quantum communication concepts. The figure gives quantum networks for (a)
dense coding, (b) teleportation and (c) data compression. The spatial separation of Alice and
Bob is in the vertical direction; time evolves from left to right in these diagrams. The small
boxes represent measurements, the broken curves represent classical information.

Suppose now that Alice and Bob are in possession of an entangled pair of qubits, in the
state|00〉 + |11〉 (we will usually drop normalization factors such as

√
2 from now on, to

keep the notation uncluttered). Alice and Bob need never have communicated: we imagine
a mechanical central facility generating entangled pairs and sending one qubit to each of
Alice and Bob, who store them (see figure 9(a)). In this situation, Alice can communicate
two classical bits by sending Bob onlyone qubit (namely her half of the entangled pair).
This idea due to Wiesner (Bennett and Wiesner 1992) is called ‘dense coding’, since only
one quantum bit travels from Alice to Bob in order to convey two classical bits. Two
quantum bits are involved, but Alice only ever sees one of them. The method relies on the
following fact: the four mutually orthogonal states|00〉 + |11〉, |00〉 − |11〉, |01〉 + |10〉,
|01〉 − |10〉 can be generated from each other by operations on a single qubit. This set of
states is called the Bell basis, since they exhibit the strongest possible Bell–EPR correlations
(Braunsteinet al 1992). Starting from|00〉 + |11〉, Alice can generate any of the Bell basis
states by operating on her qubit with one of the operators{I,X, Y, Z}. Since there are
four possibilities, her choice of operation represents two bits of classical information. She
then sends her qubit to Bob, who must deduce which Bell basis state the qubits are in.
This he does by operating on the pair with theXOR gate and measuring the target bit, thus
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distinguishing|00〉±|11〉 from |01〉±|10〉. To find the sign in the superposition, he operates
with H on the remaining qubit and measures it. Hence Bob obtains two classical bits with
no ambiguity.

Dense coding is difficult to implement and so has no practical value merely as a standard
communication method. However, it can permit secure communication: the qubit sent
by Alice will only yield the two classical information bits to someone in possession of
the entangled partner qubit. More generally, dense coding is an example of the statement
which began this section. It reveals a relationship between classical information, qubits, and
the information content of quantum entanglement (Barenco and Ekert 1995). A laboratory
demonstration of the main features is described by Mattleet al (1996), Weinfurter (1994)
and Braunstein and Mann (1995) discuss some of the methods employed, based on a source
of EPR photon pairs from parametric down-conversion.

5.5. Quantum teleportation

It is possible to transmit qubits without sending qubits!

Suppose Alice wishes to communicate to Bob a single qubit in the state|φ〉. If Alice
already knows what state she has, for example|φ〉 = |0〉, she can communicate it to Bob
by sending just classical information, e.g. ‘Dear Bob, I have the state|0〉. Regards, Alice.’
However, if |φ〉 is unknown there is no way for Alice to learn it with certainty: any
measurement she may perform may change the state and she cannot clone it and measure
the copies. Hence it appears that the only way to transmit|φ〉 to Bob is to send him the
physical qubit (i.e. the electron or atom or whatever), or possibly to swap the state into
another quantum system and send that. In either case a quantum system is transmitted.

Quantum teleportation (Bennettet al 1993, Bennett 1995) permits a way around this
limitation. As in dense coding, we will use quantum entanglement as an information
resource. Suppose Alice and Bob possess an entangled pair in the state|00〉 + |11〉. Alice
wishes to transmit to Bob a qubit in an unknown state|φ〉. Without loss of generality, we
can write|φ〉 = a|0〉 + b|1〉 wherea andb are unknown coefficients. Then the initial state
of all three qubits is

a|000〉 + b|100〉 + a|011〉 + b|111〉. (29)

Alice now measures in the Bell basis the first two qubits, i.e. the unknown one and her
member of the entangled pair. The network to do this is shown in figure 9(b). After Alice
has applied theXOR and Hadamard gates, and just before she measures her qubits, the state
is

|00〉(a|0〉 + b|1〉)+ |01〉(a|1〉 + b|0〉)+ |10〉(a|0〉 − b|1〉)+ |11〉(a|1〉 − b|0〉). (30)

Alice’s measurements collapse the state onto one of four different possibilities, and yield two
classical bits. The two bits are sent to Bob, who uses them to learn which of the operators
{I,X,Z, Y } he must apply to his qubit in order to place it in the statea|0〉 + b|1〉 = |φ〉.
Thus Bob ends up with the qubit (i.e. the quantum information, not the actual quantum
system) which Alice wished to transmit.

Note that the quantum information can only arrive at Bob if it disappears from Alice
(no cloning). Also, quantum information is complete information:|φ〉 is the complete
description of Alice’s qubit. The use of the word ‘teleportation’ draws attention to these
two facts. Teleportation becomes an especially important idea when we come to consider
communication in the presence of noise, section 9.
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5.6. Quantum data compression

Having introduced the qubit, we now wish to show that it is a useful measure of quantum
information content. The proof of this is due to Jozsa and Schumacher (1994) and
Schumacher (1995), building on work of Kholevo (1973) and Levitin (1987). To begin
the argument, we first need a quantity which expresses how much information you would
gain if you were to learn the quantum state of some systemQ. A suitable quantity is the
Von Neumann entropy

S(ρ) = −Tr ρ logρ (31)

where Tr is the trace operation andρ is the density operator describing an ensemble of
states of the quantum system. This is to be compared with the classical Shannon entropy,
equation (1). Suppose a classical random variableX has a probability distributionp(x). If a
quantum system is prepared in a state|x〉 dictated by the value ofX, then the density matrix
is
∑

x p(x)|x〉〈x|, where the states|x〉 need not be orthogonal. It can be shown (Kholevo
1973, Levitin 1987) thatS(ρ) is an upper limit on the classical mutual informationI (X : Y )
betweenX and the resultY of a measurement on the system.

To make a connection with qubits, we consider the resources needed to store or transmit
the state of a quantum systemq of density matrixρ. The idea is to collectn � 1 such
systems, and transfer (‘encode’) the joint state into some smaller system. The smaller system
is transmitted down the channel and at the receiving end the joint state is ‘decoded’ inton

systemsq ′ of the same type asq (see figure 9(c)). The final density matrix of eachq ′ is ρ ′

and the whole process is deemed successful ifρ ′ is sufficiently close toρ. The measure of
the similarity between two density matrices is thefidelity defined by

f (ρ, ρ ′) =
(

Tr
√
ρ1/2ρ ′ρ1/2

)2
. (32)

This can be interpreted as the probability thatq ′ passes a test which ascertained if it was
in the stateρ. Whenρ andρ ′ are both pure states,|φ〉〈φ| and |φ′〉〈φ′|, the fidelity is none
other than the familiar overlap:f = |〈φ|φ′〉|2.

Our aim is to find the smallest transmitted system which permitsf = 1− ε for ε � 1.
The argument is analogous to the ‘typical sequences’ idea used in section 2.2. Restricting
ourselves for simplicity to 2-state systems, the total state ofn systems is represented by
a vector in a Hilbert space of 2n dimensions. However, if the von Neumann entropy
S(ρ) < 1 then it is highly likely (i.e. tends to certainty in the limit of largen) that, in
any given realization, the state vector actually falls in atypical subspaceof Hilbert space.
Schumacher and Jozsa showed that the dimension of the typical subspace is 2nS(ρ). Hence
only nS(ρ) qubits are required to represent the quantum information faithfully and the qubit
(i.e. the logarithm of the dimensionality of Hilbert space) is a useful measure of quantum
information. Furthermore, the encoding and decoding operation is ‘blind’: it does not
depend on knowledge of the exact states being transmitted.

Schumacher and Josza’s result is powerful because it is general: no assumptions are
made about the exact nature of the quantum states involved. In particular, they need not
be orthogonal. If the states to be transmitted were mutually orthogonal, the whole problem
would reduce to one of classical information.

The ‘encoding’ and ‘decoding’ required to achieve such quantum data compression and
decompression is technologically very demanding. It cannot at present be done at all using
photons. However, it is the ultimate compression allowed by the laws of physics. The
details of the required quantum networks have been deduced by Cleve and DiVincenzo
(1996).
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As well as the essential concept of information, other classical ideas such as Huffman
coding have their quantum counterparts. Furthermore, Schumacher and Nielson (1996)
derive a quantity which they call ‘coherent information’ which is a measure of mutual
information for quantum systems. It includes that part of the mutual information between
entangled systems which cannot be accounted for classically. This is a helpful way to
understand the Bell–EPR correlations.

5.7. Quantum cryptography

No overview of quantum information is complete without a mention of quantum
cryptography. This area stems from an unpublished paper of Wiesner written around 1970
(Wiesner 1983). It includes various ideas whereby the properties of quantum systems are
used to achieve useful cryptographic tasks, such as secure (i.e. secret) communication.
The subject may be divided into quantumkey distributionand a collection of other ideas
broadly related tobit commitment. Quantum key distribution will be outlined below. Bit
commitment refers to the scenario in which Alice must make some decision, such as a
vote, in such a way that Bob can be sure that Alice fixed her vote before a given time, but
where Bob can only learn Alice’s vote at some later time which she chooses. A classical,
cumbersome method to achieve bit commitment is for Alice to write down her vote and place
it in a safe which she gives to Bob. When she wishes Bob, later, to learn the information,
she gives him the key to the safe. A typical quantum protocol is a carefully constructed
variation on the idea that Alice provides Bob with a prepared qubit, and only later tells him
in what basis it was prepared.

The early contributions to the field of quantum cryptography were listed in the
introduction, further references may be found in the reviews mentioned at the beginning
of this section. Cryptography has the unusual feature that it is not possible to prove by
experiment that a cryptographic procedure is secure: who knows whether a spy or cheating
person managed to beat the system? Instead, the users’ confidence in the methods must rely
on mathematical proofs of security and it is here that much important work has been done.
There is now strong evidence that proofs can be established for the security of correctly
implemented quantum key distribution. However, the bit commitment idea, long thought to
be secure through quantum methods, was recently proved to be insecure (Mayers 1997, Lo
and Chau 1997) because the participants can cheat by making use of quantum entanglement.

Quantum key distribution is a method in which quantum states are used to establish
a random secret key for cryptography. The essential ideas are as follows: Alice and Bob
are, as usual, widely seperated and wish to communicate. Alice sends to Bob 2n qubits,
each prepared in one of the states|0〉, |1〉, |+〉, |−〉, randomly chosen†. Bob measures his
received bits, choosing the measurement basis randomly between{|0〉, |1〉} and {|+〉, |−〉}.
Next, Alice and Bob inform each other publicly (i.e. anyone can listen in) of the basis they
used to prepare or measure each qubit. They find out on which occasions they by chance
used the same basis, which happens on average half the time and retain just those results. In
the absence of errors or interference, they now share the same random string ofn classical
bits (they agree for example to associate|0〉 and |+〉 with 0; |1〉 and |−〉 with 1). This
classical bit string is often called theraw quantum transmission, RQT.

So far nothing has been gained by using qubits. The important feature is, however, that
it is impossible for anyone to learn Bob’s measurement results by observing the qubitsen
route, without leaving evidence of their presence. The crudest way for an eavesdropper Eve

† Many other methods are possible, we adopt this one merely to illustrate the concepts.
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to attempt to discover the key would be for her to intercept the qubits and measure them,
then pass them on to Bob. On average half the time Eve guesses Alice’s basis correctly
and thus does not disturb the qubit. However, Eve’s correct guesses do not coincide with
Bob’s, so Eve learns the state of half of then qubits which Alice and Bob later decide to
trust and disturbs the other half, for example sending to Bob|+〉 for Alice’s |0〉. Half of
those disturbed will be projected by Bob’s measurement back onto the original state sent
by Alice, so overall Eve corruptsn/4 bits of the RQT.

Alice and Bob can now detect Eve’s presence simply by randomly choosingn/2 bits of
the RQT and announcing publicly the values they have. If they agree on all these bits, then
they can trust that no eavesdropper was present, since the probability that Eve was present
and they happened to choosen/2 uncorrupted bits is( 3

4)
n/2 ' 10−125 for n = 1000. The

n/2 undisclosed bits form the secret key.
In practice the protocol is more complicated since Eve might adopt other strategies (e.g.

not intercept all the qubits) and noise will currupt some of the qubits even in the absence of
an eavesdropper. Instead of rejecting the key if many of the disclosed bits differ, Alice and
Bob retain it as long as they find the error rate to be well below 25%. They then process
the key in two steps. The first is to detect and remove errors, which is done by publicly
comparing parity checks on publicly chosen random subsets of the bits, while discarding bits
to prevent increasing Eve’s information. The second step is to decrease Eve’s knowledge
of the key, by distilling from it a smaller key, composed of parity values calculated from
the original key. In this way a key of aroundn/4 bits is obtained, of which Eve probably
knows less than 10−6 of one bit (Bennettet al 1992).

The protocol just described is not the only one possible. Another approach (Ekert 1991)
involves the use of EPR pairs, which Alice and Bob measure along one of three different
axes. To rule out eavesdropping they check for Bell–EPR correlations in their results.

The great thing about quantum key distribution is that it is feasible with current
technology. A pioneering experiment (Bennett and Brassard 1989) demonstrated the
principle, and much progress has been made since then. Hugheset al (1995) and Phoenix
and Townsend (1995) summarized the state of affairs two years ago and recently Zbinden
et al (1997) have reported excellent key distribution through 23 km of standard telecom
fibre under lake Geneva. The qubits are stored in the polarization states of laser pulses,
i.e. coherent states of light, with on average 0.1 photons per pulse. This low light level is
necessary so that pulses containing more than one photon are unlikely. Such pulses would
provide duplicate qubits, and hence a means for an evesdropper to go undetected. The
system achieves a bit error rate of 1.35%, which is low enough to guarantee privacy in the
full protocol. The data transmission rate is rather low: MHz as opposed to the GHz rates
common in classical communications, but the system is very reliable.

Such spectacular experimental mastery is in contrast to the subject of the next section.

6. The universal quantum computer

We now have sufficient concepts to understand the jewel at the heart of quantum information
theory, namely, the quantum computer (QC). Ekert and Jozsa (1996) and Barenco (1996)
give introductory reviews concentrating on the QC and factorization; a review with emphasis
on practicalities is provided by Spiller (1996). Introductory material is also provided by
DiVincenzo (1995b) and Shor (1996).

The QC is first and foremost a machine which is a theoretical construct, like a thought
experiment, whose purpose is to allow quantum information processing to be formally
analysed. In particular it establishes the Church–Turing principle introduced in section 4.
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A prescription for a QC follows, based on that of Deutsch (1985, 1989).
A QC is a set ofn qubits in which the following operations are experimentally feasible.
(1) Each qubit can be prepared in some known state|0〉.
(2) Each qubit can be measured in the basis{|0〉, |1〉}.
(3) A universal quantum gate (or set of gates) can be applied at will to any fixed-size

subset of the qubits.
(4) The qubits do not evolve other than via the above transformations.
This prescription is incomplete in certain technical ways to be discussed, but it

encompasses the main ideas. The model of computation we have in mind is a network
model, in which logic gates are applied sequentially to a set of bits (here, quantum bits).
In an electronic classical computer, logic gates are spread out in space on a circuit board,
but in the QC we typically imagine the logic gates to be interactions turned on and off in
time, with the qubits at fixed positions, as in a quantum network diagram (figures 8 and
12). Other models of quantum computation can be conceived, such as a cellular-automaton
model (Margolus 1986, 1990).

6.1. Universal gate

The universal quantum gate is the quantum equivalent of the classical universal gate, namely
a gate which by its repeated use on different combinations of bits can generate the action
of any other gate. What is the set of all possible quantum gates, however? To answer this,
we appeal to the principles of quantum mechanics (Schrödinger’s equation) and answer
that since all quantum evolution is unitary, it is sufficient to be able to generateall unitary
transformationsof the n qubits in the computer. This might seem a tall order, since we
have a continuous and therefore infinite set. However, it turns out that quite simple quantum
gates can be universal, as Deutsch showed in 1985.

The simplest way to think about universal gates is to consider the pair of gatesV (θ, φ)

and controlled-not (orXOR), whereV (θ, φ) is a general rotation of a single qubit, i.e.

V (θ, φ) =
(

cos(θ/2) −ie−iφ sin(θ/2)
−ieiφ sin(θ/2) cos(θ/2)

)
. (33)

It can be shown that anyn × n unitary matrix can be formed by composing 2-qubitXOR

gates and single-qubit rotations. Therefore, this pair of operations is universal for quantum
computation. A purist may argue thatV (θ, φ) is an infinite set of gates since the parameters
θ and φ are continuous, but it suffices to choose two particular irrational angles forθ

and φ, and the resulting single gate can generate all single-qubit rotations by repeated
application; however, a practical system need not use such laborious methods. TheXOR

and rotation operations can be combined to make a controlled rotation which is a single
universal gate. Such universal quantum gates were discussed by Deutschet al (1995), Lloyd
(1995), DiVincenzo (1995a) and Barenco (1995).

It is remarkable that 2-qubit gates are sufficient for quantum computation. This is why
the quantum gate is a powerful and important concept.

6.2. Church–Turing principle

Having presented the QC, it is necessary to argue for its universality, i.e. that it fulfils
the Church–Turing principle as claimed. The two-step argument is very simple. First, the
state of any finite quantum system is simply a vector in Hilbert space, and therefore can be
represented to arbitrary precision by a finite number of qubits. Second, the evolution of any
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finite quantum system is a unitary transformation of the state and therefore can be simulated
on the QC, which can generate any unitary transformation with arbitrary precision.

A point of principle is raised by Myers (1997), who points out that there is a difficulty
with computational tasks for which the number of steps for completion cannot be predicted.
We cannot in general observe the QC to find out if it has halted, in contrast to a classical
computer. However, we will only be concerned with tasks where either the number of
steps is predictable, or the QC can signal completion by setting a dedicated qubit which
is otherwise not involved in the computation (Deutsch 1985). This is a very broad class
of problems. Nielsen and Chuang (1997) consider the use of afixed quantum gate array,
showing that there is no array which, operating on qubits representing both data and program,
can perform any unitary transformation on the data. However, we consider a machine in
which a classical computer controls the quantum gates applied to a quantum register, so
any gate array can be ‘ordered’ by a classical program to the classical computer.

The QC is certainly an interesting theoretical tool. However, there hangs over it a
large and important question mark: what about imperfection? The prescription given above
is written as if measurements and gates can be applied with arbitrary precision, which is
unphysical, as is the fourth requirement (no extraneous evolution). The prescription can be
made realistic by attaching to each of the four requirements a statement about the degree
of allowable imprecision. This is a subject of ongoing research and we will take it up in
section 9. Meanwhile, let us investigate more specifically what a sufficiently well made QC
might do.

7. Quantum algorithms

It is well known that classical computers are able to calculate the behaviour of quantum
systems, so we have not yet demonstrated that a QC can do anything which a classical
computer cannot. Indeed, since our theories of physics always involve equations which we
can write down and manipulate, it seems highly unlikely that quantum mechanics, or any
future physical theory, would permit computational problems to be addressed which are not
in principle solvable on a large enough classical Turing machine. However, as we saw in
section 3.2, those words ‘large enough’ and also ‘fast enough’, are centrally important in
computer science. Problems which are computationally ‘hard’ can be impossible in practice.
In technical language, while quantum computing does not enlarge the set of computational
problems which can be addressed (compared with classical computing), it does introduce the
possibility of new complexity classes. Put more simply, tasks for which classical computers
are too slow may be solvable with QCs.

7.1. Simulation of physical systems

The first and most obvious application of a QC is that of simulating some other quantum
system. To simulate a state vector in a 2n-dimensional Hilbert space, a classical computer
needs to manipulate vectors containing of order 2n complex numbers, whereas a QC requires
just n qubits, making it much more efficient in storage space. To simulate evolution,
in general both the classical and QCs will be inefficient. A classical computer must
manipulate matrices containing of order 22n elements, which requires a number of operations
(multiplication, addition) exponentially large inn, while a QC must build unitary operations
in 2n-dimensional Hilbert space, which usually requires an exponentially large number of
elementary quantum logic gates. Therefore the QC is not guaranteed to simulateevery
physical system efficiently. However, it can be shown that it can simulate a large class
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Figure 10. Quantum network for Shor’s period-finding algorithm. Here each horizontal line is
a quantum register rather than a single qubit. The circles at the left represent the preparation
of the input state|0〉. The encircled ft represents the Fourier transform (see text), and the box
linking the two registers represents a network to performUf . The algorithm finishes with a
measurement of thex regisiter.

of quantum systems efficiently, including many for which there is no efficient classical
algorithm, such as many-body systems with local interactions (Lloyd 1996, Zalka 1996,
Wiesner 1996, Meyer 1997, Lidar and Biham 1997, Abrams and Lloyd 1997, Boghosian
and Taylor 1997).

7.2. Period finding and Shor’s factorization algorithm

So far we have discussed simulation of nature, which is a rather restricted type of
computation. We would like to let the QC loose on more general problems, but it has so far
proved hard to find ones on which it performs better than classical computers. However,
the fact that there exist such problems at all is a profound insight into physics and has
stimulated much of the recent interest in the field.

Currently one of the most important quantum algorithms is that for finding the period
of a function. Suppose a functionf (x) is periodic with periodr, i.e. f (x) = f (x + r).
Suppose further thatf (x) can be efficiently computed fromx, and all we know initially
is thatN/2 < r < N for someN . Assuming there is no analytic technique to deduce the
period off (x), the best we can do on a classical computer is to calculatef (x) for of order
N/2 values ofx, and find out when the function repeats itself (for well-behaved functions
only O(

√
N) values may be needed on average). This is inefficient since the number of

operations is exponential in the input size logN (the information required to specifyN ).
The task can be solved efficiently on a QC by the elegant method shown in figure 10,

due to Shor (1994), building on Simon (1994). The QC requires 2n qubits, plus a further
0(n) for workspace, wheren = d2 logNe (the notationdxe means the nearest integer greater
thanx). These are divided into two ‘registers’, each ofn qubits. They will be referred to
as thex andy registers; both are initially prepared in the state|0〉 (i.e. all n qubits in states
|0〉). Next, the operationH is applied to each qubit in thex register, making the total state

1√
w

w−1∑
x=0

|x〉|0〉 (34)

wherew = 2n. This operation is referred to as a Fourier transform in figure 10, for reasons
that will shortly become apparent. The notation|x〉 means a state such as|0011010〉, where
0011010 is the integerx in binary notation. In this context the basis{|0〉, |1〉} is referred to
as the ‘computational basis’. It is convenient (though not of course necessary) to use this
basis when describing the computer.

Next, a network of logic gates is applied to bothx and y regisiters, to perform the
transformationUf |x〉|0〉 = |x〉|f (x)〉. Note that this transformation can be unitary because
the input state|x〉|0〉 is in one to one correspondance with the output state|x〉|f (x)〉, so the
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Figure 11. Evolution of the quantum state in Shor’s algorithm. The quantum state is indicated
schematically by identifying the non-zero contributions to the superposition. Thus a general
state

∑
cx,y |x〉|y〉 is indicated by placing a filled square at all those coordinates(x, y) on the

diagram for whichcx,y 6= 0. (a) Equation (35). (b) Equation (38).

process is reversible. Now, applyingUf to the state given in equation (34), we obtain

1√
w

w−1∑
x=0

|x〉|f (x)〉. (35)

This state is illustrated in figure 11(a). At this point something rather wonderful has taken
place: the value off (x) has been calculated forw = 2n values ofx, all in one go! This
feature is referred to asquantum parallelismand represents a huge parallelism because
of the exponential dependence onn (imagine having 2100, i.e. 1000 000 times Avagadro’s
number, of classical processors!)

Although the 2n evaluations off (x) are in some sense ‘present’ in the quantum state
in equation (35), unfortunately we cannot gain direct access to them since a measurement
(in the computational basis) of they register, which is the next step in the algorithm, will
only reveal one value off (x)†. Suppose the value obtained isf (x) = u. The y register
state collapses onto|u〉, and the total state becomes

1√
M

M−1∑
j=0

|du + jr〉|u〉 (36)

wheredu + jr, for j = 0, 1, 2 . . .M − 1, are all the values ofx for which f (x) = u. In
other words the periodicity off (x) means that thex register remains in a superposition of
M ' w/r states, at values ofx separated by the periodr. Note that the offsetdu of the set
of x values depends on the valueu obtained in the measurement of they register.

† It is not strictly necessary to measure they register, but this simplifies the description.
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It now remains to extract the periodicity of the state in thex register. This is done by
applying a Fourier transform and then measuring the state. The discrete Fourier transform
employed is the following unitary process:

UFT |x〉 = 1√
w

w−1∑
k=0

ei2πkx/w|k〉. (37)

Note that equation (34) is an example of this, operating on the initial state|0〉. The
quantum network to applyUFT is based on the fast Fourier transform algorithm (see, e.g.
Knuth (1981)). The quantum version was worked out by Coppersmith (1994) and Deutsch
(1994, unpublished) independently, a clear presentation may also be found in Ekert and
Josza (1996), Barenco (1996)†. Before applyingUFT to equation (36) we will make the
simplifying assumption thatr dividesw exactly, soM = w/r. The essential ideas are not
affected by this restriction; when it is relaxed some added complications must be taken into
account (Shor 1994, 1995a, Ekert and Josza 1996).

The y register no longer concerns us, so we will just consider thex state from
equation (36):

UFT
1√
w/r

w/r−1∑
j=0

|du + jr〉 = 1√
r

∑
k

f̃ (k)|k〉 (38)

where

|f̃ (k)| =
{

1 if k is a multiple ofw/r

0 otherwise.
(39)

This state is illustrated in figure 11(b). The final state of thex register is now measured
and we see that the value obtained must be a multiple ofw/r. It remains to deducer from
this. We havex = λw/r whereλ is unknown. Ifλ and r have no common factors, then
we cancelx/w down to an irreducible fraction and thus obtainλ and r. If λ and r have
a common factor, which is unlikely for larger, then the algorithm fails. In this case, the
whole algorithm must be repeated from the start. After a number of repetitions no greater
than∼ logr, and usually much less than this, the probability of success can be shown to
be arbitrarily close to 1 (Ekert and Josza 1996).

The quantum period-finding algorithm we have described is efficient as long asUf , the
evaluation off (x), is efficient. The total number of elementary logic gates required is a
polynomial rather than exponential function ofn. As was emphasized in section 3.2, this
makes all the difference between tractable and intractable in practice, for sufficiently large
n.

To add the icing on the cake, it can be remarked that the important factorization problem
mentioned in section 3.2 can be reduced to one of finding the period of a simple function.
This and all the above ingredients were first brought together by Shor (1994), who thus
showed that the factorization problem is tractable on an ideal QC. The function to be
evaluated in this case isf (x) = ax modN whereN is the number to be factorized, and
a < N is chosen randomly. One can show using elementary number theory (Ekert and
Josza 1996) that for most choices ofa, the periodr is even andar/2± 1 shares a common
factor withN . The common factor (which is of course a factorN ) can then be deduced

† An exact quantum Fourier transform would require rotation operations of precision exponential inn, which raises
a problem with the efficiency of Shor’s algorithm. However, an approximate version of the Fourier transform is
sufficient (Barencoet al 1996).
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rapidly using a classical algorithm due to Euclid (about 300 BC; see, e.g. Hardy and Wright
1979).

To evaluatef (x) efficiently, repeated squaring (moduloN ) is used, giving powers
((a2)2)2 . . .. Such selected powers ofa, corresponding to the binary expansion ofa, are then
multiplied together. Complete networks for the whole of Shor’s algorithm were described
by Miquel et al (1996), Vedralet al (1996) and Beckmanet al (1996). They require of
order 300(logN)3 logic gates. Therefore, to factorize numbers of order 10130, i.e. at the
limit of current classical methods, would require∼ 2× 1010 gates per run, or 7 h if the
‘switching rate’ is one megaHertz†. Considering how difficult it is to make a QC, this offers
no advantage over classical computation. However, if we double the number of digits to
260 then the problem is intractable classically (see section 3.2), while the ideal QC takes
just eight times longer than before. The existence of such a powerful method is an exciting
and profound new insight into quantum theory.

The period-finding algorithm appears at first sight like a conjuring trick: it is not quite
clear how the QC managed to produce the period like a rabbit out of a hat. Examining
figure 11 and equations (34)–(38), I would say that the most important features are contained
in equation (35). They are not only thequantum parallelismalready mentioned, but also
quantum entanglementand, finally, quantum interference. Each value off (x) retains a link
with the value ofx which produced it, through the entanglement of thex andy registers
in equation (35). The ‘magic’ happens when a measurement of they register produces
the special state|ψ〉 (equation (36)) in thex register, and it is quantum entanglement
which permits this (see also Jozsa 1997a). The final Fourier transform can be regarded as
an interference between the various superposed states in thex register (compare with the
action of a diffraction grating).

Interference effects can be used for computational purposes with classical light fields,
or water waves for that matter, so interference is not in itself the essentially quantum
feature. Rather, the exponentially large number of interfering states, and the entanglement,
are features which do not arise in classical systems.

7.3. Grover’s search algorithm

Despite considerable efforts in the quantum computing community, the number of useful
quantum algorithms which have been discovered remains small. They consist mainly of
variants on the period-finding algorithm presented above and another quite different task:
that of searching an unstructured list. Grover (1997) presented a quantum algorithm for the
following problem: given an unstructured list of items{xi}, find a particular itemxj = t .
Think, for example, of looking for a particular telephone number in the telephone directory
(for someone whose name you do not know). It is not hard to prove that classical algorithms
can do no better than searching through the list, requiring on averageN/2 steps, for a list of
N items. Grover’s algorithm requires of order

√
N steps. The task remains computationally

hard: it is not transferred to a new complexity class, but it is remarkable that such a
seemingly hopeless task can be speeded up at all. The ‘quantum speed-up’∼ √N/2 is
greater than that achieved by Shor’s factorization algorithm (∼ exp(2(lnN)1/3)) and would
be important for the huge sets (N ' 1016) which can arise, for example, in code-breaking
problems (Brassard 1997).

An important further point was proved by Bennettet al (1997), namely that Grover’s
algorithm is optimal: no quantum algorithm can do better thanO(

√
N).

† The algorithm might need to be run logr ∼ 60 times to ensure at least one successful run, but the average
number of runs required will be much less than this.
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A brief sketch of Grover’s algorithm is as follows. Each item has a labeli, and we
must be able to test in a unitary way whether any item is the one we are seeking. In other
words there must exist a unitary operatorS such thatS|i〉 = |i〉 if i 6= j , andS|j〉 = −|j〉,
wherej is the label of the special item. For example, the test might establish whetheri is
the solution of some hard computational problem†. The method begins by placing a single
quantum register in a superposition of all computational states, as in the period-finding
algorithm (equation (34)). Define

|9(θ)〉 ≡ sinθ |j〉 + cosθ√
N − 1

∑
i 6=j
|i〉 (40)

where j is the label of the elementt = xj to be found. The initially prepared state is
an equally weighted superposition,|9(θ0)〉 where sinθ0 = 1/

√
N . Now applyS, which

reverses the sign of the one special element of the superposition, then Fourier transform,
change the sign of all components except|0〉, and Fourier transform back again. These
operations represent a subtle interference effect which achieves the following transformation:

UG|9(θ)〉 = |9(θ + φ)〉 (41)

where sinφ = 2
√
N − 1/N . The coefficient of the special element is now slightly larger

than that of all the other elements. The method proceeds simply by applyingUG m times,
wherem ' (π/4)√N . The slow rotation bringsθ very close toπ/2, so the quantum state
becomes almost precisely equal to|j〉. After them iterations the state is measured and the
value j obtained (with error probabilityO(1/N)). If UG is applied too many times, the
success probability diminishes, so it is important to knowm, which was deduced by Boyer
et al (1996). Kristen Fuchs compares the technique with cooking a soufflé. The state is
placed in the ‘quantum oven’ and the desired answer rises slowly. You must open the oven
at the right time, neither too soon nor too late, to guarantee success. Otherwise the soufflé
will fall—the state collapses to the wrong answer.

The two algorithms I have presented are the easiest to describe and illustrate many of
the methods of quantum computation. However, just what further methods may exist is an
open question. Kitaev (1996) has shown how to solve the factorization and related problems
using a technique fundamentally different from Shor’s. His ideas have some similarities to
Grover’s. Kitaev’s method is helpfully clarified by Jozsa (1997b) who also brings out the
common features of several quantum algorithms based on Fourier transforms. The quantum
programmer’s toolbox is thus slowly growing. It seems safe to predict, however, that the
class of problems for which QCs out-perform classical ones is a special and therefore small
class. On the other hand, any problem for which finding solutions is hard, but testing a
candidate solution is easy, can as a last resort be solved by an exhaustive search and here
Grover’s algorithm may prove very useful.

8. Experimental quantum information processors

The most elementary quantum logical operations have been demonstrated in many physics
experiments during the past 50 years. For example, theNOT operation (X) is no more than
a stimulated transition between two energy levels|0〉 and|1〉. The importantXOR operation
can also be identified as a driven transition in a four-level system. However, if we wish
to contemplate a QC it is necessary to find a system which is sufficiently controllable to
allow quantum logic gates to be applied at will, yet is sufficiently complicated to store many
qubits of quantum information.

† That is, an ‘NP’ problem for which finding a solution is hard, but testing a proposed solution is easy.
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Figure 12. Ion-trap quantum information processor. A string of singly charged atoms is stored
in a linear ion trap. The ions are separated by∼ 20 µm by their mutual repulsion. Each ion is
addressed by a pair of laser beams which coherently drive both Raman transitions in the ions,
and also transitions in the state of motion of the string. The motional degree of freedom serves
as a single-qubit ‘bus’ to transport quantum information among the ions. State preparation is by
optical pumping and laser cooling; readout is by electron shelving and resonance fluorescence,
which enables the state of each ion to be measured with high signal to noise ratio.

It is very hard to find such systems. One might hope to fabricate quantum devices on
solid state microchips—this is the logical progression of the microfabrication techniques
which have allowed classical computers to become so powerful. However, quantum
computation relies on complicated interference effects and the great problem in realizing
it is the problem of noise. No quantum system is really isolated and the coupling to the
environment produces decoherence which destroys the quantum computation. In solid state
devices the environment is the substrate and the coupling to this environment is strong,
producing typical decoherence times of the order of picoseconds. It is important to realize
that it is not enough to have two different states|0〉 and|1〉 which are themselves stable (for
example states of different current in a superconductor): we require also that superpositions
such as|0〉+ |1〉 preserve their phase, and this is typically where the decoherence timescale
is so short.

At present there are two candidate systems which should permit quantum computation
on 10 to 40 qubits. These are the proposal of Cirac and Zoller (1995) using a line of singly
charged atoms confined and cooled in vacuum in an ion trap and the proposal of Gershenfeld
and Chuang (1997), and simultaneously Coryet al (1996), using the methods of bulk NMR.
In both cases the proposals rely on the impressive efforts of a large community of researchers
which developed the experimental techniques. Previous proposals for experimental quantum
computation (Lloyd 1993, Bermanet al 1994, Barencoet al 1995a, DiVincenzo 1995b)
touched on some of the important methods but were not experimentally feasible. Further
recent proposals (Privmanet al 1997, Loss and DiVincenzo 1997) may become feasible in
the near future.

8.1. Ion trap

The ion-trap method is illustrated in figure 12 and described in detail by Steane (1997b).
A string of ions is confined by a combination of oscillating and static electric fields in a
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linear ‘Paul trap’ in high vacuum (10−8 Pa). A single laser beam is split by beam splitters
and acousto-optic modulators into many beam pairs, one pair illuminating each ion. Each
ion has two long-lived states, for example different levels of the ground-state hyperfine
structure (the lifetime of such states against spontaneous decay can exceed thousands of
years). Let us refer to these two states as|g〉 and |e〉; they are orthogonal and so together
represent one qubit. Each laser beam pair can drive coherent Raman transitions between the
internal states of the relevant ion. This allows any single-qubit quantum gate to be applied
to any ion, but not 2-qubit gates. The latter requires an interaction between ions and this is
provided by their Coulomb repulsion. However, exactly how to use this interaction is far
from obvious; it required the important insight of Cirac and Zoller.

Light carries not only energy but also momentum, so whenever a laser beam pair
interacts with an ion, it exchanges momentum with the ion. In fact, the mutual repulsion
of the ions means that the whole string of ions movesen massewhen the motion is
quantized (M̈ossbauer effect). The motion of the ion string is quantized because the
ion string is confined in the potential provided by the Paul trap. The quantum states of
motion correspond to the different degrees of excitation (‘phonons’) of the normal modes
of vibration of the string. In particular we focus on the ground state of the motion|n = 0〉
and the lowest excited state|n = 1〉 of the fundamental mode. To achieve, for example,
controlled-Z between ionx and iony, we start with the motion in the ground state|n = 0〉.
A pulse of the laser beams on ionx drives the transition|n = 0〉|g〉x → |n = 0〉|g〉x ,
|n = 0〉|e〉x → |n = 1〉|g〉x , so the ion finishes in the ground state, and the motion finishes
in the initial state of the ion: this is a ‘swap’ operation. Next a pulse of the laser beams on
ion y drives the transition

|n = 0〉|g〉y → |n = 0〉|g〉y
|n = 0〉|e〉y → |n = 0〉|e〉y
|n = 1〉|g〉y → |n = 1〉|g〉y
|n = 1〉|e〉y →−|n = 1〉|e〉y.

Finally, we repeat the initial pulse on ionx. The overall effect of the three pulses is

|n = 0〉|g〉x |g〉y → |n = 0〉|g〉x |g〉y
|n = 0〉|g〉x |e〉y → |n = 0〉|g〉x |e〉y
|n = 0〉|e〉x |g〉y → |n = 0〉|e〉x |g〉y
|n = 0〉|e〉x |e〉y →−|n = 0〉|e〉x |e〉y

which is exactly a controlled-Z betweenx andy. Each laser pulse must have a precisely
controlled frequency and duration. The controlled-Z gate and the single-qubit gates together
provide a universal set, so we can perform arbitrary transformations of the joint state of all
the ions!

To complete the prescription for a QC (section 6), we must be able to prepare the
initial state and measure the final state. The first is possible through the methods of optical
pumping and laser cooling, the second through the ‘quantum jump’ or ‘electron shelving’
measurement technique. All these are powerful techniques developed in the atomic physics
community over the past 20 years. However, the combination of all the techniques at once
has only been achieved in a single experiment, which demonstrated preparation, quantum
gates, and measurement for just a single trapped ion (Monroeet al 1995b).

The chief experimental difficulty in the ion-trap method is to cool the string of ions to the
ground state of the trap (a submicroKelvin temperature). The chief source of decoherence
is the heating of this motion owing to the coupling between the charged ion string and
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Figure 13. Bulk nuclear spin resonance quantum information processor. A liquid of∼ 1020

‘designer’ molecules is placed in a sensitive magnetometer, which can both generate oscillating
magnetic fields and also detect the precession of the mean magnetic moment of the liquid. The
situation is somewhat like having 1020 independent processors, but the initial state is one of
thermal equilibrium, and only the average final state can be detected. The quantum information
is stored and manipulated in the nuclear spin states. The spin-state energy levels of a given
nucleus are influenced by neighbouring nuclei in the molecule, which enablesXOR gates to
be applied. They are little influenced by anything else, owing to the small size of a nuclear
magnetic moment, which means the inevitable dephasing of the processors with respect to each
other is relatively slow. This dephasing can be undone by ‘spin echo’ methods.

noise voltages in the electrodes (Steane 1997b, Winelandet al 1997). It is unknown just
how much the heating can be reduced. A conservative statement is that in the next few
years 100 quantum gates could be applied to a few ions without losing coherence. In the
longer term one may hope for an order of magnitude increase in both figures. It seems
clear that an ion-trap processor will never achieve sufficient storage capacity and coherence
to permit factorization of hundred-digit numbers. However, it would be fascinating to try a
quantum algorithm on just a few qubits (4–10) and thus to observe the principles of quantum
information processing at work. We will discuss in section 9 methods which should allow
the number of coherent gate operations to be greatly increased.

8.2. Nuclear magnetic resonance

The proposal using NMR is illustrated in figure 13. The quantum processor in this case is
a molecule containing a ‘backbone’ of about ten atoms, with other atoms such as hydrogen
attached so as to use up all the chemical bonds. It is the nuclei which interest us. Each
has a magnetic moment associated with the nuclear spin and the spin states provide the
qubits. The molecule is placed in a large magnetic field, and the spin states of the nuclei
are manipulated by applying oscillating magnetic fields in pulses of controlled duration.

So far, so good. The problem is that the spin state of the nuclei of a single molecule
can be neither prepared nor measured. To circumvent this problem, we use not a single
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molecule, but a cup of liquid containing some 1020 molecules! We then measure the average
spin state, which can be achieved since the average oscillating magnetic moment of all the
nuclei is large enough to produce a detectable magnetic field. Some subtleties enter at
this point. Each of the molecules in the liquid has a very slightly different local magnetic
field, influenced by other molecules in the vicinity, so each ‘quantum processor’ evolves
slightly differently. This problem is circumvented by the spin-echo technique, a standard
tool in NMR which allows the effects of free evolution of the spins to be reversed, without
reversing the effect of the quantum gates. However, this increases the difficulty of applying
long sequences of quantum gates.

The remaining problem is to prepare the initial state. The cup of liquid is in thermal
equilibrium to begin with, so the different spin states have occupation probabilities given by
the Boltzman distribution. One makes use of the fact that spin states are close in energy, and
so have nearly equal occupations initially. Thus the density matrixρ of theO(1020) nuclear
spins is very close to the identity matrixI . It is the smalldifference1 = ρ − I which
can be used to store quantum information. Although1 is not the density matrix of any
quantum system, it nevertheless transforms under well-chosen field pulses in the same way
as a density matrix would, and hence can be considered to represent an effective QC. The
reader is referred to Gershenfeld and Chuang (1997) for a detailed description, including
the further subtlety that an effective pure state must be distilled out of1 by means of a
pulse sequence which performs quantum data compression.

NMR experiments have for some years routinely achieved spin-state manipulations
and measurements equivalent in complexity to those required for quantum information
processing on a few qubits, therefore the first few-qubit quantum processors will be NMR
systems. The method does not scale very well as the number of qubits is increased, however.
For example, withn qubits the measured signal scales as 2−n. Also the possibility to
measure the state is limited, since only the average state of many processors is detectable.
This restricts the ability to apply QEC (section 9), and complicates the design of quantum
algorithms.

8.3. High-Q optical cavities

Both systems we have described permit simple quantum information processing, but not
quantum communication. However, in a very high-quality optical cavity, a strong coupling
can be achieved between a single atom or ion and a single mode of the electromagnetic
field. This coupling can be used to apply quantum gates between the field mode and the
ion, thus opening the way to transferring quantum information between separated ion traps,
via high-Q optical cavities and optical fibres (Ciracet al 1997). Such experiments are now
being contemplated. The required strong coupling between a cavity field and an atom has
been demonstrated by Bruneet al (1994) and Turchetteet al (1995). An electromagnetic
field mode can also be used to couple ions within a single trap, providing a faster alternative
to the phonon method (Pellizzariet al 1995).

9. Quantum error correction

In section 7 we discussed some beautiful quantum algorithms. Their power only rivals
classical computers, however, on quite large problems, requiring thousands of qubits and
billions of quantum gates (with the possible exception of algorithms for simulation of
physical systems). In section 8 we examined some experimental systems, and found that
we can only contemplate ‘computers’ of a few tens of qubits and perhaps some thousands
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of gates. Such systems are not ‘computers’ at all because they are not sufficiently versatile:
they should at best be called modest quantum information processors. Whence came this
huge disparity between the hope and the reality?

The problem is that the prescription for the universal QC, section 6, is unphysical in
its fourth requirement. There is no such thing as a perfect quantum gate, nor is there such
a thing as an isolated system. One may hope that it is possible in principle to achieve any
degree of perfection in a real device, but in practice this is an impossible dream. Gates such
asXOR rely on a coupling between separated qubits, but if qubits are coupled to each other,
they will unavoidably be coupled to something else as well (Plenio and Knight 1996). A
rough guide is that it is very hard to find a system in which the loss of coherence is smaller
than one part in a million each time aXOR gate is applied. This means the decoherence
is roughly 107 times too fast to allow factorization of a 130 digit number! It is an open
question whether the laws of physics offer any intrinsic lower limit to the decoherence
rate, but it is safe to say that it would be simpler to speed up classical computation by a
factor of 106 than to achieve such low decoherence in a large QC. Such arguments were
eloquently put forward by Haroche and Raimond (1996). Their work and that of others
such as Landauer (1995, 1996) sounds a helpful note of caution. More detailed treatments
of decoherence in QCs are given by Unruh (1995), Palmaet al (1996) and Chuanget al
(1995). Large numerical studies are described by Miquelet al (1996) and Barencoet al
(1997).

Classical computers are reliable not because they are perfectly engineered, but because
they are insensitive to noise. One way to understand this is to examine in detail a device
such as a flip-flop, or even a humble mechanical switch. Their stability is based on a
combination of amplification and dissipation: a small departure of a mechanical switch
from ‘on’ or ‘off’ results in a large restoring force from the spring. Amplifiers do the
corresponding job in a flip-flop. The restoring force is not sufficient alone, however: with
a conservative force, the switch would oscillate between ‘on’ and ‘off’. It is important also
to have damping, supplied by an inelastic collision which generates heat in the case of a
mechanical switch and by resistors in the electronic flip-flop. However, these methods are
ruled out for a QC by the fundamental principles of quantum mechanics. The no-cloning
theorem means amplification of unknown quantum states is impossible and dissipation is
incompatible with unitary evolution.

Such fundamental considerations lead to the widely accepted belief that quantum
mechanics rules out the possibility to stabilize a QC against the effects of random noise.
A repeated projection of the computer’s state by well-chosen measurements is not in itself
sufficient (Berthiaumeet al 1994, Miquelet. al 1997). However, by careful application of
information theory one can find a way around this impasse. The idea is to adapt the error
correction methods of classical information theory to the quantum situation.

QEC was established as an important and general method by Steane (1996b) and
independently Calderbank and Shor (1996). Some of the ideas had been introduced
previously by Shor (1995b) and Steane (1996a). They are related to the ‘entanglement
purification’ introduced by Bennettet al (1996a) and independently Deutschet al (1996).
The theory of QEC was further advanced by Knill and Laflamme (1997), Ekert and
Macchiavello (1996), Bennettet al (1996b). The latter paper describes the optimal 5-
qubit code also independently discovered by Laflammeet al (1996). Gottesman (1996)
and Calderbanket al (1997) discovered a general group-theoretic framework, introducing
the important concept of the stabilizer, which also enabled many more codes to be found
(Calderbanket al 1996, Steane 1996c, d). Quantum coding theory reached a further level
of maturity with the discovery by Shor and Laflamme (1997) of a quantum analogue to the
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MacWilliams identities of classical coding theory.
QEC uses networks of quantum gates and measurements and at first is was not clear

whether these networks had themselves to be perfect in order for the method to work. An
important step forward was taken by Shor (1996) and Kitaev (1996) who showed how
to make error correcting networks tolerant of errors within the network. In other words,
such ‘fault tolerant’ networks remove more noise than they introduce. Shor’s methods
were generalized by DiVincenzo and Shor (1996) and made more efficient by Steane
(1997a, c). Knill and Laflamme (1996) introduced the idea of ‘concatenated’ coding, which
is a recursive coding method. It has the advantage of allowing arbitrarily long quantum
computations as long as the noise per elementary operation is below a finite threshold,
at the cost of inefficient use of quantum memory (so requiring a large computer). This
threshold result was derived by several authors (Knillet al 1996, Aharonov and Ben-Or
1996, Gottesmanet al 1996). Further fault tolerant methods are described by Knillet al
(1997), Gottesman (1997), Kitaev (1997).

The discovery of QEC was roughly simultaneous with that of a related idea which also
permits noise-free transmission of quantum states over a noisy quantum channel. This is the
‘entanglement purification’ (Bennettet al 1996a, Deutschet al 1996). The central idea here
is for Alice to generate many entangled pairs of qubits, sending one of each pair down the
noisy channel to Bob. Bob and Alice store their qubits, and perform simple parity checking
measurements: for example, Bob’s performsXOR between a given qubit and the next he
receives, then measures just the target qubit. Alice does the same on her qubits, and they
compare results. If they agree, the unmeasured qubits are (by chance) closer than average
to the desired state|00〉+ |11〉. If they disagree, the qubits are rejected. By recursive use of
such checks, a few ‘good’ entangled pairs are distilled out of the many noisy ones. Once
in possession of a good entangled state, Alice and Bob can communicate by teleportation.
A thorough discussion is given by Bennettet al (1996b).

Using similar ideas, with important improvements, van Enket al (1997) have recently
shown how quantum information might be reliably transmitted between atoms in separated
high-Q optical cavities via imperfect optical fibres, using imperfect gate operations.

I will now outline the main principles of QEC.
Let us write down the worst possible thing which could happen to a single qubit: a

completely general interaction between a qubit and its environment is

|ei〉(a|0〉 + b|1〉)→ a(c00|e00〉|0〉 + c01|e01〉|1〉)+ b(c10|e10〉|1〉 + c11|e11〉|0〉) (42)

where|e...〉 denotes states of the environment andc... are coefficients depending on the noise.
The first significant point is to note that this general interaction can be written

|ei〉|φ〉 → (|eI 〉I + |eX〉X + |eY 〉Y + |eZ〉Z)|φ〉 (43)

where |φ〉 = a|0〉 + b|1〉 is the initial state of the qubit, and|eI 〉 = c00|e00〉 + c10|e10〉,
|eX〉 = c01|e01〉 + c11|e11〉, etc. Note that these environment states are not necessarily
normalized. Equation (43) tells us that we have essentially three types of error to correct
on each qubit:X, Y andZ errors. These are ‘bit flip’ (X) errors, phase errors (Z) or both
(Y = XZ).

Suppose our computerq is to manipulatek qubits of quantum information. Let a
general state of thek qubits be|φ〉. We first make the computer larger, introducing a
further n− k qubits, initially in the state|0〉. Call the enlarged systemqc. An ‘encoding’
operation is performed:E(|φ〉|0〉) = |φE〉. Now, let noise affect then qubits ofqc. Without
loss of generality, the noise can be written as a sum of ‘error operators’M, where each
error operator is a tensor product ofn operators (one for each qubit), taken from the set
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{I,X, Y, Z}. For exampleM = I1X2I3Y4Z5X6I7 for the casen = 7. A general noisy state
is ∑

s

|es〉Ms |φE〉. (44)

Now we introduce even more qubits: a furthern − k, prepared in the state|0〉a. This
additional set is called an ‘ancilla’. For any given encodingE, there exists asyndrome
extraction operationA, operating on the joint system ofqc and a, whose effect is
A(Ms |φE〉|0〉a) = (Ms |φE〉)|s〉a ∀Ms ∈ S. The setS is the set of correctable errors, which
depends on the encoding. In the notation|s〉a, s is just a binary number which indicates
which error operatorMs we are dealing with, so the states|s〉a are mutually orthogonal.
Suppose for simplicity that the general noisy state (44) only containsMs ∈ S, then the joint
state of environment,qc anda after syndrome extraction is∑

s

|es〉(Ms |φE〉)|s〉a. (45)

We now measure the ancilla state, and something rather wonderful happens: the whole state
collapses onto|es〉(Ms |φE〉)|s〉a, for some particular value ofs. Now, instead of general
noise, we have just one particular error operatorMs to worry about. Furthermore, the
measurement tells us the values (the ‘error syndrome’) from which we can deduce which
Ms we have! Armed with this knowledge, we applyM−1

s to qc by means of a few quantum
gates (X, Z or Y ), thus producing the final state|es〉|φE〉|s〉a. In other words, we have
recovered the noise-free state ofqc! The final environment state is immaterial, and we can
re-prepare the ancilla in|0〉a for further use.

The only assumption in the above was that the noise in equation (44) only contains
error operators in the correctable setS. In practice, the noise includes both members and
non-members ofS, and the important quantity is the probability that the state collapses
onto a correctable one when the syndrome is extracted. It is here that the theory of error-
correcting codes enters in: our task is to find encoding and extraction operationsE,A such
that the setS of correctable errors includes all the errors most likely to occur. This is a
very difficult problem.

It is a general truth that to permit efficient stabilization against noise, we have to know
something about the noise we wish to suppress. The most obvious quasi-realistic assumption
is that of uncorrelated stochastic noise. That is, at a given time or place the noise might
have any effect, but the effects on different qubits, or on the same qubit at different times,
are uncorrelated. This is the quantum equivalent of the binary symetric channel, section 2.3.
By assuming uncorrelated stochastic noise we can place all possible error operatorsM in
a heirarchy of probability: those affecting few qubits (i.e. only a few terms in the tensor
product are different fromI ) are most likely, while those affecting many qubits at once
are unlikely. Our aim will be to find quantum error correcting codes (QECCs) such that
all errors affecting up tot qubits will be correctable. Such a QECC is termed a ‘t-error
correcting code’.

The simplest code construction (that discovered by Calderbank and Shor and Steane)
goes as follows. First we note that a classical error-correcting code, such as the Hamming
code shown in table 1, can be used to correctX errors. The proof relies on equation (17)
which permits the syndrome extractionA to produce an ancilla state|s〉 which depends only
on the errorMs and not on the computer’s state|φ〉. This suggests that we storek quantum
bits by means of the 2k mutually orthogonaln-qubit states|i〉, where the binary number
i is a member of a classical error-correcting codeC, see section 2.4. This will not allow
correction ofZ errors, however. Observe that sinceZ = HXH , the correction ofZ errors



164 A Steane

is equivalent to rotating the state of each qubit byH , correctingX errors, and rotating back
again. This rotation is called a Hadamard transform; it is just a change in basis. The next
ingredient is to note the following special property (Steane 1996a):

H̃
∑
i∈C
|i〉 = 1√

2k

∑
j∈C⊥
|j〉 (46)

where H̃ ≡ H1H2H3 . . . Hn. In words, this says that if we make a quantum state by
superposing all the members of a classical error-correcting codeC, then the Hadamard-
transformed state is just a superposition of all the members of the dual codeC⊥. From this
it follows, after some further steps, that it is possible to correct bothX andZ errors (and
therefore alsoY errors) if we use quantum states of the form given in equation (46), as long
as bothC andC⊥ are good classical error-correcting codes, i.e. both have good correction
abilities.

The simplest QECC constructed by the above recipe requiresn = 7 qubits to store a
single (k = 1) qubit of useful quantum information. The two orthogonal states required to
store the information are built from the Hamming code shown in table 1:

|0E〉 ≡ |0000000〉 + |1010101〉 + |0110011〉 + |1100110〉
+|0001111〉 + |1011010〉 + |0111100〉 + |1101001〉 (47)

|1E〉 ≡ |1111111〉 + |0101010〉 + |1001100〉 + |0011001〉
+|1110000〉 + |0100101〉 + |1000011〉 + |0010110〉. (48)

Such a QECC has the following remarkable property. Imagine I store a general (unknown)
state of a single qubit into a spin statea|0E〉 + b|1E〉 of seven spin-half particles. I then
allow you to do anything at all to any one of the seven spins. I could nevertheless extract
my original qubit stateexactly. Therefore the large perturbation you introduced did nothing
at all to the stored quantum information!

More powerful QECCs can be obtained from more powerful classical codes, and there
exist quantum code constructions more efficient than the one just outlined. Suppose we
storek qubits inton. There are 3n ways for a single qubit to be in error, since the error
might be one ofX, Y or Z. The number of syndrome bits isn− k, so if every single-qubit
error and the error-free case is to have a different syndrome, we require 2n−k > 3n + 1.
For k = 1 this lower limit is filled exactly byn = 5 and indeed such a 5-qubit single-error
correcting code exists (Laflammeet al 1996, Bennettet al 1996b).

More generally, the remarkable fact is that for fixedk/n, codes exist for whicht/n is
bounded from below asn→∞ (Calderbank and Shor 1996, Steane 1996b, Calderbanket al
1997). This leads to a quantum version of Shannon’s theorem (section 2.4), though an exact
definition of the capacity of a quantum channel remains unclear (Schumacher and Nielsen
1996, Barnumet al 1996, Lloyd 1997, Bennettet al 1996b, Knill and Laflamme 1997).
For finite n, the probability that the noise produces uncorrectable errors scales roughly as
(nε)t+1, whereε � 1 is the probability of an arbitrary error on each qubit. This represents
an extremely powerful noise suppression. We need to be able to reduceε to a sufficiently
small value by passive means, and then QEC does the rest. For example, consider the case
ε ' 0.001. Withn = 23 there exisits a code correcting allt = 3-qubit errors (Golay 1949,
Steane 1996c). The probability that uncorrectable noise occurs is∼ 0.0234 ' 3× 10−7,
thus the noise is suppressed by more than three orders of magnitude.

So far I have described QEC as if the ancilla and the many quantum gates and
measurements involved were themselves noise free. Obviously we must drop this
assumption if we want to form a realistic impression of what might be possible in quantum
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Figure 14. Fault tolerant syndrome extraction, for the QECC given in equations (47) and (48).
The upper seven qubits areqc, the lower are the ancillaa. All gates, measurements and free
evolution are assumed to be noisy. OnlyH and 2-qubitXOR gates are used; when severalXORs
have the same control or target bit they are shown superimposed, NB this is a non-standard
notation. The first part of the network, up until the sevenH gates, preparesa in |0E〉, and also
verifiesa: a small box represents a single-qubit measurement. If any measurement gives 1, the
preparation is restarted. TheH gates transform the state ofa to |0E〉 + |1E〉. Finally, the seven
XOR gates betweenqc and a carry out a singleXOR in the encoded basis{|0E〉, |1E〉}. This
operation carriesX errors fromqc into a, andZ errors froma into qc. TheX errors inqc can
be deduced from the result of measuringa. A further network is needed to identifyZ errors.
Such correction never makesqc completely noise free, but when applied between computational
steps it reduces the accumulation of errors to an acceptable level.

computing. Shor (1996) and Kitaev (1996) discovered ways in which all the required
operations can be arranged so that the correction suppresses more noise than it introduces.
The essential ideas are to verify states wherever possible, to restrict the propagation of
errors by careful network design and to repeat the syndrome extraction: for each group
of qubitsqc, the syndrome is extracted several times andqc is only corrected oncet + 1
mutually consistent syndromes are obtained. Figure 14 illustrates a fault-tolerant syndrome
extraction network, i.e. one which restricts the propagation of errors. Note thata is verified
before it is used and each qubit inqc only interacts with one qubit ina.

In fault-tolerant computing, we cannot apply arbitrary rotations of a logical qubit,
equation (33), in a single step. However, particular rotations through irrational angles can
be carried out and thus general rotations are generated to an arbitrary degree of precision
through repetition. Note that the set of computational gates is now discrete rather than
continuous.

Recently the requirements for reliable quantum computing using fault-tolerant QEC
have been estimated (Preskill 1997, Steane 1997c). They are formidable. For example,
a computation beyond the capabilities of the best classical computers might require 1000
qubits and 1010 quantum gates. Without QEC, this would require a noise level of order
10−13 per qubit per gate, which we can rule out as impossible. With QEC, the computer
would have to be made 10 or perhaps one hundred times larger and many thousands of gates
would be involved in the correctors for each elementary step in the computation. However,
much more noise could be tolerated: up to about 10−5 per qubit per gate (i.e. in any of the
gates, including those in the correctors) (Steane 1997c). This is daunting but possible.
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The error-correction methods briefly described here are not the only type possible. If we
know more about the noise, then humbler methods requiring just a few qubits can be quite
powerful. Such a method was proposed by Ciracet al (1996) to deal with the principle
noise source in an ion trap, which is changes of the motional state during gate operations.
Also, some joint states of several qubits can have reduced noise if the environment affects
all qubits together. For example the two states|01〉± |10〉 are unchanged by environmental
coupling of the form|e0〉I1I2+|e1〉X1X2. (Palmaet al 1996, Chuang and Yamamoto 1997).
Such states offer a calm eye within the storm of decoherence, in which quantum information
can be manipulated with relative impunity. A practical computer would probably use a
combination of methods.

10. Discussion

The idea of ‘quantum computing’ has fired many imaginations simply because the words
themselves suggest something strange but powerful, as if the physicists have come up with
a second revolution in information processing to herald the next millenium. This is a false
impression. Quantum computing will not replace classical computing for similar reasons
that quantum physics does not replace classical physics: no one ever consulted Heisenberg
in order to design a house and no one takes their car to be mended by a quantum mechanic.
If large QCs are ever made, they will be used to address just those special tasks which
benefit from quantum information processing.

A more lasting reason to be excited about quantum computing is that it is a new and
insightful way to think about the fundamental laws of physics. The quantum computing
community remains fairly small at present, yet the pace of progress has been fast and
accelerating in the last few years. The ideas of classical information theory seem to fit into
quantum mechanics like a hand into a glove, giving us the feeling that we are uncovering
something profound about nature. Shannon’s noiseless coding theorem leads to Schumacher
and Josza’s quantum coding theorem and the significance of the qubit as a useful measure
of information. This enables us to keep track of quantum information and to be confident
that it is independent of the details of the system in which it is stored. This is necessary to
underpin other concepts such as error correction and computing. The classical theory of error
correction leads to the discovery of QEC. This allows a physical process previously thought
to be impossible, namely the almost perfect recovery of a general quantum state, undoing
even irreversible processes such as relaxation by spontaneous emission. For example, during
a long error-corrected quantum computation, using fault-tolerant methods, every qubit in
the computer might decay a million times and yet the coherence of the quantum information
be preserved.

Hilbert’s questions regarding the logical structure of mathematics encourage us to ask
a new type of question about the laws of physics. In looking at Schrödinger’s equation,
we can neglect whether it is describing an electron or a planet and just ask about the state
manipulations it permits. The language of information and computer science enables us
to frame such questions. Even such a simple idea as the quantum gate, the cousin of the
classical binary logic gate, turns out to be very useful, because it enables us to think clearly
about quantum-state manipulations which would otherwise seem extremely complicated
or impractical. Such ideas open the way to the design of quantum algorithms such as
those of Shor, Grover and Kitaev. These show that quantum mechanics allows information
processing of a kind ruled out in classical physics. It relies on the propagation of a quantum
state through a huge (exponentially large) number of dimensions of Hilbert space. The
computation result arises from a controlled interference among many computational paths,
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which even after we have examined the mathematical description, still seems wonderful and
surprising.

The intrinsic difficulty of quantum computation lies in the sensitivity of large-scale
interference to noise and imprecision. A point often raised against the QC is that it is
essentially an analogue rather than a digital device and has many limitations as a result.
This is a misconception. It is true that any quantum system has a continuous state space, but
so has any classical system, including the circuits of a digital computer. The fault-tolerant
methods used to permit error correction in a QC restrict the set of quantum gates to a
discrete set, therefore the ‘legal’ states of the QC are discrete, just as in a classical digital
computer. The really important difference between analogue and digital computing is that
to increase the precision of a result arrived at by analogue means, one must re-engineer the
whole computer, whereas with digital methods one need merely increase the number of bits
and operations. The fault-tolerant QC has more in common with a digital than an analogue
device.

Shor’s algorithm for the factorization problem stimulated a lot of interest in part because
of the connection with data encryption. However, I feel that the significance of Shor’s
algorithm is not primarily in its possible use for factoring large integers in the distant
future. Rather, it has acted as a stimulus to the field, proving the existence of a powerful
new type of computing made possible by controlled quantum evolution, and exhibiting
some of the new methods. At present, the most practically significant achievement in the
general area of quantum information physics is not in computing at all, but in quantum key
distribution.

The title ‘quantum computer’ will remain a misnomer for any experimental device
realized in the next twenty years. It is an abuse of language to call even a pocket calculator
a ‘computer’, because the word has come to be reserved for general-purpose machines
which more or less realize Turing’s concept of the universal machine. The same ought to
be true for QCs if we do not want to mislead people. However, small quantum information
processors may serve useful roles. For example, concepts learned from quantum information
theory may permit the discovery of useful new spectroscopic methods in nuclear magnetic
resonance. Quantum key distribution could be made more secure and made possible over
larger distances, if small ‘relay stations’ could be built which applied purification or error-
correction methods. The relay station could be an ion trap combined with a high-Q cavity,
which is realizable with current technology. It will surely not be long before a quantum
state is teleported from one laboratory to another, a very exciting prospect.

The great intrinsic value of a large QC is offset by the difficulty of making one.
However, few would argue that this prize does not at least merit a lot of effort to find
out just how unattainable, or hopefully attainable, it is. One of the chief uses of a processor
which could manipulate a few quantum bits may be to help us better understand decoherence
in quantum mechanics. This will be amenable to experimental investigation during the next
few years: rather than waiting in hope, there is useful work to be done now.

On the theoretical side, there are two major open questions: the nature of quantum
algorithms, and the limits on reliability of quantum computing. It is not yet clear what
is the essential nature of quantum computing and what general class of computational
problem is amenable to efficient solution by quantum methods. Is there a whole mine of
useful quantum algorithms waiting to be delved, or will the supply dry up with the few
nuggets we have so far discovered? Can significant computational power be achieved with
less than 100 qubits? This is by no means ruled out, since it is hard to simulate even
20 qubits by classical means. Concerning reliability, great progress has been made, so
that we can now be cautiously optimistic that quantum computing is not an impossible
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dream. We can identify requirementssufficient to guarantee reliable computing, involving
for example uncorrelated stochastic noise of order 10−5 per gate and a QC 100 times larger
than the logical machine embedded within it. However, can quantum decoherence be relied
upon to have the properties assumed in such an estimate, and if not then can error correction
methods still be found? Conversely, once we know more about the noise, it may be possible
to identify considerably less taxing requirements for reliable computing.

To conclude with, I would like to propose a more wide-ranging theoretical task: to
arrive at a set of principles like energy and momentum conservation, but which apply
to information, and from which much of quantum mechanics could be derived. Two
tests of such ideas would be whether the EPR–Bell correlations thus became transparent,
and whether they rendered obvious the proper use of terms such as ‘measurement’ and
‘knowledge’.

I hope that quantum information physics will be recognized as a valuable part of
fundamental physics. The quest to bring together Turing machines, information, number
theory and quantum physics is for me, and I hope will be for readers of this review, one of
the most fascinating cultural endeavours one could have the good fortune to encounter.
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