
A Fully Reversible Asymptotically Zero Energy Microprocessor �Carlin Vieri, M. Josephine Ammer, Michael Frank,Norman Margolus, Tom KnightMIT Arti�cial Intelligence Laboratory, Cambridge MA 02139, USAMay 1, 1998AbstractReversibility is the only way to compute with asymptotically zero power, and is a novelapproach to low power, low energy computing. Recent implementations of reversible and adi-abatic [15, 7] logic in standard cmos silicon processes have motivated further research intoreversible computing. The application of reversible computing techniques to reduce energydissipation of current generation cmos circuits has so far been found to be limited, but thetechniques used to design reversible computers are interesting in and of themselves, and othertechnologies, such as Josephson Junctions and quantum computers as well as future cmos tech-nologies, may require fully reversible logic. This paper discusses the design of a fully reversiblemicroprocessor architecture.Computing with reversible logic is the only way to avoid dissipating the energy associatedwith bit erasure. Low energy techniques such as voltage scaling lower the cost of erasing infor-mation. Techniques such as clock gating e�ectively reduce the number of bits erased. Reversibletechniques have already been used to lower the cost of bit erasure for nodes that have a high costof erasure, but this work is directed at saving every bit, computing fully reversibly. The goal isto convert a conventional risc processor to completely reversible operation. This investigationindicates where bit erasure happens in a conventional machine and the varying di�culty acrossdatapath modules of computing without erasing bits.The initial motivation for reversible computing research came from an investigation of fun-damental limits of energy dissipation during computation [8]. The link between entropy in theinformation science sense and entropy in the thermodynamics sense, exhibited by Maxwell'sdemon [9], requires a minimum energy dissipation of kBT ln 2, where kB is Boltzmann's con-stant, when a bit is erased. Erasing a bit is a logically irreversible operation with a physicallyirreversible e�ect. A reversible computer avoids bit erasure.Judicious application of reversibility in adiabatic circuits has already proven its usefulness inreducing energy dissipation [2]. This paper examines the complexity and di�culty in avoidingbit erasure entirely and discusses a set of techniques for designing reversible systems.1 IntroductionPower and energy dissipation in modern microprocessors is obviously a concern in a great numberof applications. Riding the technology curve to deep submicron devices, multi-gigahertz operating�This work is supported by arpa contracts DABT63-95-C-01301

frequencies, and low supply voltages provides high performance and some reduction in dissipationif appropriate design styles are used, but for applications with a more strict dissipation budget ortechnology constraints, more unusual techniques may be necessary in the future.Adiabatic or energy recovery circuit styles have begun to show promise in this regard. Motivatedby the result from thermodynamics that bit erasure is the only computing operation associatedwith required energy dissipation, various techniques that either try to avoid bit erasure or try tobring the cost of bit erasure closer to the theoretical minimum have been implemented. To trulyavoid bit erasure, and therefore perform computation that has no theoretical minimum dissipation,the computing engine must be reversible. Losses not associated with bit erasure are essentiallyfrictional, such as the non-zero resistance of \on" transistors, and may be reduced through circuitdesign techniques such as optimally sized transistors, silicon processing techniques such as silicidedconductors, and by moving charge through the circuit quasistatically such as constant currentramps in adiabatic circuits.This paper discusses the engineering requirements of building a fully reversible processor. Fullyreversible means that both the instruction set and the underlying circuit implementation will bereversible. Such a processor theoretically requires asymptotically zero dissipation, with dissipationfalling to zero as the clock period is increased to in�nity. This assumes that an appropriate energy-recycling, constant-current power supply could be developed. The ISI \blip circuit" [1], stepwisecapacitor charging [10], and MIT's transmission line clock drivers, are steps toward this end. Thispaper assumes that the clock drivers exist and the datapath currently being constructed usesYounis and Knight's [14] three-phase scrl logic family in all circuits. Any complete analysis ofpower dissipation in an adiabatic circuit must include the dissipation in the power supply andcontrol logic. This paper focuses on the architectural and circuit level engineering of a reversiblesystem rather than the actual dissipation of such a system.2 Why Build a Reversible ProcessorA fully reversible processor must implement a reversible instruction set in a reversible circuitimplementation. A reversible instruction set is one in which both the previous and next instructionsare known for each instruction in a correctly written assembly language program. The dynamicinstruction stream may be executed both forwards and backwards. The instruction set describedhere is a modi�cation of the one designed in Vieri's master's thesis [13].A reversible circuit implementation is one in which, in the asymptotic limit, charge
ows throughthe circuit in a thermodynamically reversible way at all times. This is only possible if the circuitis performing a logically reversible operation in which no information is lost. A logically reversibleoperation is one in which values produced as output uniquely determine the inputs used to generatethat output. Performing exclusively logically reversible operations is a necessary but insu�cientcondition for thermodynamically reversible operation. When performed using an adiabatic circuittopology, the operation is thermodynamically reversible.Performing circuit-level operations in a thermodynamically reversible way allows the energy dissi-pation to asymptotically fall to zero in the limit of in�nitely slow operation. Conventional cmoscircuits have a minimum dissipation associated with each compute operation that changes the2

state of the output node, regardless of operation frequency. So-called \adiabatic" techniques, inwhich the dissipation per compute operation is proportional to the operation frequency, have shownthemselves to be useful in practical applications [11, 2].As mentioned above, adiabatic operation requires that the circuits perform logically reversibleoperations. If one attempts to implement a conventional instruction set in a reversible logic family,reversibility will be broken at the circuit level when the instruction set speci�es an irreversibleoperation. This break in reversibility translates to a required energy dissipation.3 The Pendulum Instruction SetThe particular implementation discussed here is known as the Pendulum processor. The Pendulumprocessor was originally based on the elegantly simple MIPS risc architecture [6]. The register-to-register operations, �xed instruction length, and simple memory access instructions make ita good starting point for a radically di�erent approach to instruction set design. For ease ofimplementation, and of course to maintain reversibility, the instruction set has been substantiallymodi�ed. It retains the general purpose register structure and �xed length instructions, however.The Pendulum processor supports a number of traditional instructions with additional restrictionsto ensure reversibility. The instruction set includes conventional register to register operations suchas add and logical and, shift and rotate operations, operations on immediate values such as addimmediate and or immediate, conditional branches such as branch on equal to zero and branch onless than zero, and a single memory access operation, exchange. The direction of the processor ischanged using conditional branch-and-change-direction instructions.3.1 Register to Register OperationsConventional general purpose register processors read two operands, stored in two possibly di�erentregisters, and perform some operation to produce a result. The result may be stored either inthe location of one of the operands, overwriting that operand, or some other location, overwritingwhatever value was previously stored there. This produces two di�culties for a reversible processor.First, writing a result over a previously stored value is irreversible since the information stored thereis lost. Second, mapping from the information space of two operands to the space of two operandsand a result will quickly �ll the available memory. However, if the result is stored in the locationoriginally used for one of the operands, the computation takes two operands as input and outputsone operand and a result. This space optimization is not required for reversibility if the processorcan always store the result without overwriting some other value, but it is a useful convention formanaging resources.An astutely designed instruction set will inherently avoid producing garbage information whileretaining as much
exibility and power for the programmer. This leads to the distinction betweenexpanding and non-expanding operations. Both types of instruction are reversible; the distinctionis made only in how much memory these instructions consume when executed.3

All non-expanding two operand instructions in the Pendulum instruction set take the form:Rsd F(Rsd; Rs) (1)where Rsd is the source of one operand and the destination for the result, and Rs is the source ofthe second operand.By contrast, logical and is not reversible if only the result and one operand are retained. Exceptfor the special case of the saved operand having every bit position set to one, the second operandcan not be recovered accurately and must be stored separately. Since operations like and, includinglogical or and shift operations require additional memory space after execution, they are termedexpanding operations. The problem then arises of how store that extra information. If the twooperands continue to be stored in their original location, the result must be stored in a new location.It is still not permissible for the result to overwrite a previously stored value, so the result mayeither be stored in a location that is known to be clear or combined with the previously stored valuein a reversible way. The logical xor operation is reversible, so the Pendulum processor stores theresult by combining it in a logical xor with the value stored in the destination register, formingandx, orx and so on. Logical andx and all other expanding two operand instructions take theform: Rd F(Rs; Rt)� P (2)where Rs and Rt are the two operand registers, Rd is the destination register, and P is the valueoriginally stored in Rd.Constructing a datapath capable of executing an instruction stream forwards and backwards issimpli�ed if instructions perform the same operation in both directions. Addition, which appearssimple, is complicated by the fact that the ALU performs addition when executing in one directionand subtraction when reversing. The expanding operations are their own inverses, sinceP = F(Rs; Rt)�Rd (3)Non-expanding operations could take the same form as the expanding operations, performing addxand so on, simplifying the ALU, but programming then becomes fairly di�cult. Only expandingoperations, which require additional storage space, are implemented to consume that space.Converting a conventional register to register instruction execution scheme to reversible operation isrelatively simple. The restriction on which registers can be operands is minor, and implementationof an scrl ALU is not particularly di�cult. While a conventional processor erases a signi�cantnumber of bits in these operations, preserving them is not di�cult.3.2 Memory AccessA reversible memory system, named xram, has been fabricated in a 0.5�m cmos silicon process.The system was intended to be a prototype of the Pendulum register �le. Reversible memorysystem design is discussed in more depth elsewhere [12], and this section draws heavily on previouswork by this group.From a system point of view, the only additional requirement of a reversible memory, beyond atraditional memory system's function, is that it not erase bits when it is read from and written to.4

The memory must of course perform as a random access memory, allowing bits to be stored andretrieved. Bit erasure can happen as a fundamental side e�ect of the operation of the memory oras a function of the particular implementation. For example, one can imagine a memory in whichthe externally visible values being stored and retrieved are never lost but the implementation ofthe memory is such that intermediate bits are erased internally.A traditional sram architecture is based on read/write operations. An address is presented to thememory and, based on a read/write and possibly an enable signal, a word of data is read from orwritten to the memory array. Data may be read from any location an arbitrary number of times,and data written to a location overwrites that location's previously stored data.Reading a value does not at �rst seem to be an irreversible operation. Reading from a standardmemory creates a copy of the stored value and sends it to another part of the computing system.An arbitrary number of copies may be created this way. If, in a reversible system, the overallsystem can properly manage these copies, the memory need not be concerned with them. Thelarger system will, however, probably exhaust its ability to store or recover the bits generated bythe production of an arbitrary number of copies. So it is a desirable feature of a reversible memorynot to be a limitless source of bits when used in a larger system. It must be emphasized, however,that copy itself is not an irreversible operation.A conventional memory performs explicit bit erasure during writes because the previously storedvalue is overwritten and lost. A reversible memory must save those bits somehow. The speci�cmechanism for this may vary. For example, reads may be performed destructively, as in a dram,to avoid producing copies of the data. The information is moved out of the memory rather thanbeing copied from it.During writes, the value which would be overwritten could be pushed o� to a separate location,either automatically or explicitly under programmer control. This only postpones the problem untillater since any �nite capacity storage will be �lled eventually.If the separate location is accessible to the programmer, however, that data may either be useful orit may be possible to recover the space by undoing earlier operations. So if a write is preceded by adestructive read, the old information is moved out of the memory and into the rest of the system,and the new information replaces it in the memory. The old value has been exchanged for thenew value. This type of eXchange memory architecture, or xram, is the memory access techniqueused in the Pendulum register �le and for data and instruction memory access. The instruction setsupports a single exchange instruction which speci�es a register containing the memory address tobe exchanged and a register containing the value to be stored to memory and in which the memoryvalue will be placed.The essential insight of the xram is that performing a read and then a write to the same memorylocation does not lose any information. One data word is moved out of the memory, leaving anempty slot for a new value to be moved in. In general, moving data rather than copying is a validtechnique in reversible computing for avoiding bit erasure on the one hand and avoiding producinglarge amounts of garbage information on the other.
5

3.3 Control Flow OperationsIf programs consisted solely of register to register and memory access operations, programmingand implementation would be relatively simple. Unfortunately, conditional branches are crucialto creating useful programs. The processor must be able to follow arbitrary loops, subroutinecalls, and recursion during forward and reverse operation. A great deal of information is lost inconventional processors during branches, and adding structures to retain this information is verydi�cult.Any instruction in a conventional machine implicitly or explicitly designates the next instructionin the program. Branch instructions specify if a branch is to be taken, and if so, what the target is.Non-branch instructions implicitly specify the instruction at the next instruction memory addresslocation. To follow a series of sequential instructions backwards is trivial; merely decrement theprogram counter rather than incrementing it. Following a series of arbitrary jumps and branchesbackwards in a traditional processor is impossible: the information necessary to follow a jumpor branch backwards is lost when the branch is taken. A reversible computer must store enoughinformation, either explicity in the instruction stream or elsewhere, to retrace program executionbackwards.Space does not permit a discussion of possible techniques for performing jumps and branchesreversibly, but the literature contains a number of examples that di�er from the scheme presentedhere [4, 13, 5]. The discussion below refers only to the particular scheme used in the current versionof the Pendulum processor.Pendulum branch instructions specify the condition to be evaluated, either equal to zero or lessthan zero, the register containing the value to be evaluated, and a register containing the targetaddress. The instruction at the target address must be able to point back to the branch address andknow if the branch was taken or if the target location was reached through sequential operation.For proper operation, each branch instruction must target an identical copy of itself.When a branch condition is true, an internal branch bit is toggled. If the branch bit is falseand the branch condition is true, the program counter update (PCU) unit exchanges the value ofthe program counter and the target address. The target address must hold an identical branchinstruction which toggles the branch bit and sequential operation resumes. The address of the �rstbranch instruction is stored in the register �le so that during reverse operation the branch can beexecuted properly.4 Instruction Fetch and DecodeReading from the instruction memory su�ers from the same di�culty as reading from the datamemory. Each copy created when an instruction is read must be \uncopied." If instruction fetchoperations are performed by moving instructions rather than copying them, they must be returnedto the instruction memory when the instruction has �nished executing.After the instruction is read (or moved) from the instruction memory, the opcode is decoded anda number of datapath control signals are generated. Just before the instruction is moved back to6

the instruction memory, these control signals must be \ungenerated" by encoding the instruction.A certain symmetry is therefore enforced with respect to instruction fetch and decode. An instruc-tion is moved from the instruction memory to the instruction decode unit. The resulting datapathcontrol signals direct operation of the execution and memory access units. After execution, thecontrol signals are used to restore the original instruction encoding, and the instruction may thenbe returned to the instruction memory.The processor must be able to return the instruction to its original location, so its address mustbe passed through the datapath and made available at the end of instruction execution. Sincethe address of the next instruction must also be available at the end of instruction execution,the Pendulum processor has two instruction address paths. One path contains the address of theinstruction being executed, and the program counter update unit uses it to compute the addressof the next instruction. The second path contains the address of the previous instruction and thePCU uses it to compute the address of the current instruction. The output of the PCU is thenthe next instruction address and the current instruction address, which are the values required toreturn the current instruction to the instruction memory and read out the next instruction.Performing these computations during branching instructions is very di�cult, especially when theprocessor is changing direction. Traditional processors throw away every instruction executed, andensuring that the instructions are returned to the instruction memory is di�cult.5 ConclusionsThis approach to low power computing is clearly impractical in the near-term. All the primaryblocks of a traditional risc processor erase bits, and retaining those bits presents varying levels ofdi�culty to the designer. These challenges present the opportunity to reexamine conventional riscarchitecture in terms of bit erasure during operation. Register to register operations and memoryaccess are relatively easy to convert to reversibility, but control
ow and, surprisingly, instructionfetch and decode, are decidedly non-trivial. This knowledge may be used in traditional processordesign to target datapath blocks for energy dissipation reduction.References[1] W. Athas, L. Svensson, and N. Tzartzanis. A resonant signal driver for two-phase, almost-non-overlapping clocks. In International Symposium on Circuits and Systems, 1996.[2] W. Athas, N. Tzartzanis, L. Svensson, L. Peterson, H. Li, X. Jiang, P. Wang, and W-C. Liu.AC-1: A clock-powered microprocessor. In International Symposium on Low Power Electronicsand Design, pages 18{20, 1997.[3] C. S. Calude, J. Casti, and M. J. Dinneen, editors. Unconventional Models of Computation.Springer-Verlag, 1998. 7

[4] Michael P. Frank. Modi�cations to PISA architecture to support guaranteed reversibility andother fetures. Online draft memo, July 1997. http://www.ai.mit.edu/~mpf/rc/memos/M07/M07_revarch.html.[5] J. Storrs Hall. A reversible instruction set architecture and algorithms. In Physics and Com-putation, pages 128{134, November 1994.[6] Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.[7] J. G. Koller and W. C. Athas. Adiabatic switching, low energy computing, and the physics ofstoring and erasing information. In Physics of Computation Workshop, 1992.[8] R. Landauer. Irreversibility and heat generation in the computing process. IBM J. Researchand Development, 5:183{191, 1961.[9] J. C. Maxwell. Theory of Heat. Longmans, Green & Co., London, 4th edition, 1875.[10] L.\J." Svensson and J.G. Koller. Adiabatic charging without inductors. Technical ReportACMOS-TR-3a, USC Information Sciences Institute, February 1994.[11] Nestoras Tzartzanis and William C. Athas. Energy recovery for the design of high-speed, lowpower static RAMs. In International Symposium on Low Power Electronics and Design, pages55{60, 1996.[12] Carlin Vieri, M. Josephine Ammer, Amory Wake�eld, Lars \Johnny" Svensson, William Athas,and Thomas F. Knight, Jr. Designing reversible memory. In Calude et al. [3], pages 386{405.[13] Carlin J. Vieri. Pendulum: A reversible computer architecture. Master's thesis, MIT Arti�cialIntelligence Laboratory, 1995.[14] Saed G. Younis and Thomas F.. Knight, Jr. Practical implementation of charge recoveringasymptotically zero power CMOS. In Proceedings of the 1993 Symposium in Integrated Systems,pages 234{250. MIT Press, 1993.[15] Saed G. Younis and Thomas F. Knight, Jr. Asymptotically zero energy split-level chargerecovery logic. In International Workshop on Low Power Design, pages 177{182, 1994.

8

