
First-Order Linear Differential Equations

Linear equations are probably the most important class of differential
equations. They will be the main focus of this course.

Definition. The general first-order linear ODE has the form:

A(t)
dx
dt

+ B(t)x(t) = C(t). (1)

We’ll see that we often need to put it in the form:

dx
dt

+ p(t)x(t) = q(t) (2)

We’ll call (??) standard form. We can always convert (??) to standard form
by dividing by A(t).

1 Terminology and Notation

The functions A(t), B(t) in (??) and p(t) in (??) are called the coefficients
of the ODE. If A and B (or p) are constant we say the equation is a constant
coefficient DE.

We use the familiar notations x′ or ẋ for the derivative of x. With some
exceptions, we’ll use ẋ to mean the derivative with respect to time and x′

for other types of derivatives.

2 Homogeneous/Inhomogeneous

If C(t) = 0 in (??) the resulting equation:

A(t)ẋ + B(t)x = 0

is called homogeneous1. Likewise for ẋ + p(t)x = 0.

1Homogeneous is not the same as homogenous (or homogenized). The syllable “ge”
has a long e and is stressed in homogeneous, while the syllable “mo” is stressed in ho-
mogenous.
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Otherwise the equation is inhomogeneous.

In the next session we will see a general analytic method for solving
first-order linear ODE’s. For now, note that if A, B and C are constant then
the equation is separable:

A dx
C− Bx

= dt.

3 Examples

We start with two examples that are modeled by first-order linear ODE’s.

Example 1. In session 1 we modeled an oryx population x with natural
growth rate k and harvest rate h:

ẋ = kx− h, or ẋ− kx = −h.

Double check sesssion number. – HB

Figure 1: Oryx. Image courtesy of Cape Town Craig on flickr.

These examples doen’t have “solutions” as such. – HB We repeat the argument
leading to this model. We start with the population x(t) at time t. A nat-
ural growth rate k means that after a short time ∆t we would expect there
to be approximately kx(t)∆t more oryx. However, in that same time h∆t
oryx are harvested. So we have the net change in the oryx population:

∆x ≈ kx(t)∆t− h∆t =⇒ ∆x
∆t
≈ kx(t)− h.
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Now, letting the time interval ∆t approach 0 we get the ODE dx
dt =

kx(t)− h.

Note: if the rates k and h vary with time, the modeling process will lead
to the same differential equation:

dx
dt

= k(t)x(t)− h(t) or
dx
dt
− k(t)x(t) = −h(t).

Example 2. Bank account: I have a bank account. It has x(t) dollars in
it. x is a function of time. I can deposit money in the account and make
withdrawals from it. The bank pays me rent for the money in my account.
This is called interest.

In the old days a bank would pay interest at the end of the month on the
balance at the beginning of the month. We can model this mathematically.

With ∆t = 1/12, the statement at the end of the month will read:

x(t + ∆t) = x(t) + Ix(t)∆t + [deposits−withdrawals between t and t + ∆t].

I has units (year)−1 . These days I is typically very small, say 1% = 0.01.
You don’t get 1% each month! you get 1/12 of that.

You can think of a withdrawal as a negative deposit, so I will call ev-
erything a deposit.

Nowadays interest is usually computed daily. This is a step on the path
to the enlightenment afforded by calculus, in which ∆t→ 0.

In order to reach enlightenment, I want to record deposits minus with-
drawals as a rate, in dollars per year. Suppose I contribute $100 sometime
every month, and make no withdrawals. My total deposits up to time t –
my "cumulative total" deposit Q(t) – has a graph like the one in Figure ??.

In keeping with letting ∆t → 0, we should imagine that I am making
this contribution continually at the constant rate of $1200/year. Then the
graph of Q(t) is a straight line with slope 1/1200, shown in Figure ??. The
derivative Q′(t) = q(t) is constant.

In general, say I deposit at the rate of q(t) dollars per year. The value
of q(t) might vary over time, and might be negative from time to time,
because withdrawals are merely negative deposits.
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Figure 2: With periodic deposits to a bank account, the graph of Q(t) is a
step function.
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Figure 3: With continuous deposits to a bank account, the graph of Q(t) is
a straight line.

So (assuming q(t) is continuous),

x(t + ∆t) ≈ x(t) + Ix(t)∆t + q(t)∆t.

Now subtract x(t) and divide by ∆t:

x(t + ∆t)− x(t)
∆t

≈ Ix + q

Next, let the interest period ∆t tend to zero:

ẋ = Ix + q.

Note: q(t) can certainly vary in time. The interest rate can too. In
fact the interest rate might depend upon x as well: a larger account will
probably earn a better interest rate. Neither feature affects the derivation
of this equation, but if I does depend upon x as well as t , then the equation
we are looking at is no longer linear. So let’s say I = I(t) and q = q(t).
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We can put the ODE into standard form:

ẋ− Ix = q.

Each symbol represents a function of t.
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