
Linear First Order ODE’s

1 First Order Linear Equations

Definition: A linear ODE is one that can be put in the form:

r(t)ẋ + p(t)x = q(t), x = x(t).

Here r(t) and p(t) are the coefficients of the ODE. The left hand side rep-
resents the system and the right hand side arises from an input signal. A
solution x(t) is a system response or output signal.

We can always divide through by r(t) to get an equation of the stan-
dard form:

ẋ + p(t)x = q(t), x = x(t). (1)

2 Homogeneous equations

The equation is homogeneous if q is the null signal q(t) = 0. This corre-
sponds to letting the system evolve in isolation:

• In the bank example, no deposits and no withdrawals.

• In the RC example, the power source is not providing any voltage
increase.

The homogeneous linear equation:

ẋ + p(t)x = 0 (2)

is separable. We can find the solution as follows:

• Separate:
dx
x

= −p(t)dt.
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• Integrate: ln |x| = −
∫

p(t)dt + c.

• Exponentiate: |x| = ece−
∫

p(t)dt.

• Eliminate the absolute value and reintroduce the lost solution:
x = Ce−

∫
p(t)dt.

Example. ẋ + 2tx = 0

• Separate:
dx
x

= −2tdt.

• Integrate: ln |x| = −
∫

2tdt = −t2 + c.

• Exponentiate: |x| = ece−t2
.

• Eliminate the absolute value and reintroduce the lost solution:
x = Ce−t2

.

In the example, we chose a particular anti-derivative of −2t, namely
−t2. That is what I have in mind to do in general; the constant of integra-
tion is taken care of by the constant C.

The general solution to (??) has the form Cxh, where xh is any nonzero
solution:

xh = e−
∫

p(t)dt, x = Cxh.

Below, we see that the inhomogeneous equation (??) can be solved by an
algebraic trick that produces a sequence of two integrations.

3 Inhomogeneous DE’s via Integrating Factors

This method is based on the product rule for integration:

d
dt
(ux)′ = uẋ + u̇x.
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Start with equation (??):

ẋ + p(t)x = q(t).

In order to apply the product rule, we want the sum on the left hand side
of the equation to have the form uẋ+ u̇x for some function u(t). At present
that’s not true unless p(t) = t. We adjust the equation by multiplying both
sides by some function u(t), whose value we will determine later:

uẋ + upx = uq. (3)

There may be (and will be) many functions u for which the left hand side
of this equation is d

dt (ux); we only need to find one of them.

d
dt
(ux) = uẋ + u̇x = uẋ + upx

u̇ = up.

This is separable:
du
u

= p(t) dt

and so:
ln |u| =

∫
p(t) dt

u = e
∫

p dt.

Any choice of antiderivative for p(t) will do - we are just looking for one
u that works and don’t need the general solution.

Now replace the left-hand side of (??) by d
dt (ux) and solve for x:

uẋ + upx = uq
d
dt
(ux) = uq

u(t)x(t) =
∫

u(t)q(t)dt + c

x(t) =
1

u(t)

(∫
u(t)q(t)dt + c

)
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We have the general solution:

x(t) =
1

u(t)

∫
u(t)q(t)dt +

c
u(t)

. (4)

The function u is called an integrating factor.

Example. Heat Diffusion

Let’s carry out the method in an explicit example.

About this time of year I start to think about summer. I put my root
beer in a cooler, but it still gets warm. Let’s model its temperature by an
ODE:

x(t) = root beer temperature at time t.

The greater the temperature difference between inside and outside, the
faster x(t) changes. The simplest (linear) model of this is:

ẋ(t) = k(Text(t)− x(t)),

where Text(t) is the external temperature. This makes sense: when the
outside temperature Text is greater than the inside temperature x(t), then
ẋ(t) > 0 (assuming k > 0).

If time permits, add a table showing

Text > x ==> x′ > 0

Text < x ==?x′ < 0

and then drawing a graph of x′ against x − Text and deciding that as long as the
difference is small it’s well approximated by k(Text− x). – HB

We get the linear equation:

ẋ− kx = kText. (5)

This is Newton’s law of cooling; k could depend upon t and we would
still have a linear equation, but let’s suppose that we are not watching the
process for so long that the insulation of the cooler starts to break down!1

1On the other hand, if you plot ẋ against x over a larger range of temperatures x, you’ll
discover that the graph isn’t a straight line forever: the cooler melts or the crystal lattice
rearranges and the the cooling properties change. If you include these effects then the
equation is no longer linear.
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Systems and signals analysis:

• The system is the cooler.

• The input signal is the external temperature Text(t).

• The output signal or system response is x(t), the temperature in the
cooler.

Note that the right-hand side of equation (??) is k times the input signal,
not the input signal itself. What constitutes the input and output signals
is a matter of the interpretation of the equation, not of the equation itself.

To be specific, let x(0) = 32 degrees Farenheit, k = 1
3 and Text = 60 +

6t, where t denotes hours after 10AM. (The outside temperature is rising
linearly.) We get the following differential equation and initial value:

ẋ +
1
3

x = 20 + 2t, x(0) = 32. (6)

Solution. We could just plug in to (??), but I never do. Instead I apply the
method of integrating factors to the differential equation I’m given.

Multiply both sides by u:

uẋ +
1
3

ux = u(20 + 2t). (7)

Next, set the left hand side equal to d
dt (ux) and find the integrating factor

u:

uẋ +
1
3

ux = uẋ + u̇x

u̇ =
1
3

u

u(t) = e
1
3 t.

Since any nonzero solution will do, we may choose to let C = 1 in the
general solution u(t) = Ce

1
3 t. Deleted sentence about exponential growth equation.

– HB
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Now replace the right hand side of (??) by d
dt (ux) and solve for x. We

chose u so that d
dt (ux) = uẋ + 1

3 ux, so:

u(ẋ +
1
3

x) = u(20 + 20t)

d
dt
(e

1
3 tx) = e

1
3 t(20 + 2t)

e
1
3 tx =

∫
e

1
3 t(20 + 2t) dt

= 60e
1
3 t + 6te

1
3 t − 18e

1
3 t + c (integration by parts)

x(t) = 60 + 6t− 18 + ce−
1
3 t

= 42 + 6t + ce−
1
3 t.

This is the general solution to (??). If we let c = 0 we get a particular
solution which is a polynomial (we’ll see later that this is quite easy to
determine by other methods). All that remains is to find the value of c that
describes the particular behavior of my cooler.

We plug in t = 0 and use the initial condition to find c:

x(0) = 42 + c ⇒ c = −10.

The equation describing the temperature inside my cooler is:

x(t) = 42 + 6t− 10e−
1
3 t.

4 The Integrating Factor and xh

Comparing the formula for the integrating factor u = e
∫

p(t)dt to the solu-
tion xh = e−

∫
p(t)dt to the homogenous equation (??), we get the following

expression for xh:

xh(t) =
1

u(t)
.

The significance of xh is (partially) described in the next section. Double
check previous sentence. – HB
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5 General = Particular + Homogeneous

I guessed which equation to refer to here. – HB

Note the structure of the general solution (??):

x = xp + cu−1,

where xp is a solution, any solution of (??). It’s called a particular solution,
but this is a very poor name because there is nothing particular about it.
In this example we chose one with a pretty simple formula:

xp = 42 + 6t.

Since xh = 1
u(t) , we can rewrite the general solution as x = xp + cxh.

Very often xh approaches zero with time, as happens here. It is then
called a transient. All solutions come to look more and more alike as time
goes on. This is a funnel!
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