
Several System Responses

1 Introduction

We are going to continue with examples of constant coefficient first-order
linear DE’s. We remind you that our formula for the general solution to
ẏ + ky = q(t) is:

y = e−kt
(∫

ektq(t)dt + c
)

. (1)

We want to get some feeling for how the system response is related to
the input. The temperature model will be a good guide. In two notations
– suggestive and neutral, respectively – the ODE is:

Ṫ + kT = kTe(t) ẏ + ky = kqe(t) = q(t). (2)

Note that the neutral notation writes the input in two different forms: the
q(t) we have been using, and also the form kqe(t) with the k factored out.
This corresponds to the way the input normally appears in physical prob-
lems and offers some advantages: for instance, qe and y have the same
units, whereas q and y do not. In trying to relate reponse with input, the
relation will be clearer if we relate y with qe, rather than with q. We will
use for qe the generic name physical input, or if we have a specific model
in mind, the temperature input, concentration input, and so on. Is “relate with”
correct usage? I’m tempted to change to “relate to”. – HB

The expected behavior of the temperature model suggests general ques-
tions such as:

• Is the response the same type of function as the physical input?

• What controls its size?

• Does the graph of the response lag behind that of the physical input?

• What controls the size of the lag?

Our plan is to get some feeling for the situation by answering these ques-
tions for several simple physical inputs. Throughout, keep the tempera-
ture model in mind to guide your intuition.
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2 Simple Inputs

Example 1: Find the response of the system described by (??) to the phys-
ical inputs qe(t) = 1 and qe(t) = t.

Solution: The ODE is ẏ + ky = kqe.

If qe = 1, a solution by inspection is y = 1. We can use superposition to
combine this with the solution Ce−kt to the homogenous equation ẋ+ kx =
0. The general solution to our ODE is y = 1 + Ce−kt.

If qe = t, the ODE is ẏ + ky = kt. We use the integrating factor ekt and
integrate by parts:

y = e−kt
(∫

ktektdt + c
)

= ke−kt

(
tekt

k
− ekt

k2 + c

)

= t − 1
k
+ ce−kt.

The simplest solution is y = t− 1
k . Since ce−kt goes to 0, we’ll call y = t− 1

k
a steady-state solution.

Thus the response of (??) is identical to the physical input t, but with a
time lag 1

k . This is reasonable when one thinks of the temperature model:
the internal temperature increases linearly at the same rate as the temper-
ature of the exterior, but with a time lag dependent on the conductivity:
the higher the conductivity, the shorter the time lag. Have we used the word
conductivity? Might want to refer directly to k. – HB

Using the superposition principle for inputs, it follows from Example
(1) that for the ODE ẏ + ky = kqe, the response to a general first order
physical input is described by:

linear input

physical input: qe = a + bt reponse: a + b
(

t − 1
k

)
. (3)

Replaced “linear” with “first order” in response to Haynes’ remark. – HB
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In the previous example, we paid no attention to initial values. If
they are important one cannot just give the steady-state solution as the
response. One has to take account of them, either by using a definite in-
tegral or by giving the value of the arbitrary constant c. Examples in the
next section will illustrate.

3 Response to Discontinuous Inputs, k > 0

The most basic discontinuous function is the unit-step function at a point
a, defined by:

ua(t) =

{
0 t < a
1 t > a.

(4)

(We leave its value at a undefined, though some books give it the value 0
there, others the value 1 there.)

Example 2: It’s a nice, cool morning with constant temperature. Sud-
denly the sun comes out and the air warms up to a higher constant tem-
perature. What’s the response of my cooler to this signal?

To simplify, let me take a pretty unrealistic but numerically simple case:
y(t) = 0 for t < a, qe(t) is given by ua(t). So our IVP is ẏ + ky = kua(t),
with y(a) = 0.

Replaced math and comma salad with Haynes’ description. – HB

Solution: For t < a the input is 0, so the response is 0. For t ≥ a the
solution for the physical input ua(t) is the function 1 + ce−kt, according to
Example 1.

We still need to fit the value y(a) = 0 to the response for t ≥ a. We get
1 + ce−kt = 0, so that c = −eka. We now assemble the results for t < a and
t ≥ a into one expression; for the latter, we also put the exponent into a
more suggestive form. We get finally:

unit-step input

physical input: ua(t), a ≥ 0 response: y(t) =

{
0 0 ≤ t < a;
1 − e−k(t−a) t ≥ a.

(5)
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Note that the response is just the translation a units to the right of the
response to the unit-step input at 0.

We next use the temperature model to explore another example of dis-
continuous input. In this case, the physical input is an external bath which
is initially ice-water at 0 degrees, then replaced by water held at a fixed
temperature for a time interval, then replaced once more by ice-water.

Example 4: Find the response of ẏ + ky = kqe to the physical input:

unit-box function on [a, b]

uab =

{
1 a ≤ t ≤ b
0 otherwise

0 ≤ a < b; (6)

Solution: There are at least three ways to do this:

a) Express uab as a sum of unit step functions and use (4) together with
superposition of inputs;

b) Use the function uab directly in a definite integral expression for the
response;

c) Find the response in two steps: first use (4) to get the response y(t) for
the physical input ua(t); this will be valid up till the point t = b.

Then, to continue the response for values t > b, evaluate y(b) and find
the response for t > b to the input 0, with initial condition y(b).

We will follow (c), leaving the first two as exercises.

By (??), the response to the physical input ua(t) is:

y(t) =

{
0 0 ≤ t < a
1 − e−k(t−a) t ≥ a.

This is valid up to t = b, since uab(t) = ua(t) for t ≤ b. Evaluating at b,

y(b) = 1 − e−k(b−a). (7)
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Using (??) to find the solution for t ≥ b we note first that the steady-state
solution will be 0, since uab = 0 for t > b. Thus by (??) the solution for
t > b will have the form:

y(t) = 0 + ce−kt (8)

where c is determined from the initial value (??). Equating the initial val-
ues y(b) from (??) and (??), we get:

ce−kb = 1 − e−kb+ka

from which:
c = ekb − eka.

By (??):
y(t) = (ekb − eka)e−kt, t ≥ b. (9)

After combining exponents in (??) to give an alternative form for the re-
sponse we assemble the parts, getting the response:
unit-box input uab

y(t) =


0 0 ≤ t ≤ a;
1 − e−k(t−a) a < t < b
e−k(t−b) − e−k(t−a) t ≥ b.

(10)
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