
Complex Exponentials
Because of the importance of complex exponentials in differential equa-

tions, and in science and engineering generally, we go a little further with
them. Euler’s formula defines the exponential to a pure imaginary power.
The definition of an exponential to an arbitrary complex power is:

ea+ib = eaeib = ea(cos b + i sin b). (1)

We stress that the equation (1) is a definition, not a self-evident truth, since
up to now no meaning has been assigned to the left-hand side. From (1)
we see that

Re(ea+ib) = ea cos b, Im(ea+ib) = ea sin b. (2)

The complex exponential obeys the usual law of exponents:

ez+z′ = ezez′ , (3)

as is easily seen by combining (1) with the multiplication rule for complex
numbers.

The complex exponential is expressed in terms of the sine and cosine
by Euler’s formula. Conversely, the sin and cos functions can be expressed
in terms of complex exponentials. There are two important ways of doing
this, both of which you should learn:

cos x = Re(eix), sin x = Im(eix); (4)

cos x =
1
2
(eix + e−ix), sin x =

1
2i
(eix − e−ix). (5)

The equations in (5) follow easily from Euler’s formula; their derivation is
left for the exercises. Here are some examples of their use. Do our exercises
include this derivation? If not, change to “...is left as an exercise”. – HB

Example. Express cos3 x in terms of the functions cos nx, for suitable n.

Solution. We use (5) and the binomial theorem, then (5) again:

cos3 x =
1
8
(eix + e−ix)3

=
1
8
(e3ix + 3eix + 3e−ix + e−3ix)

=
1
4

cos 3x +
3
4

cos x.
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I left out the little square “end of proof” sybmol here and below. – HB

As a preliminary to the next example, we note that a function like

eix = cos x + i sin x

is a complex-valued function of the real variable x. Such a function may be
written as

u(x) + iv(x) u, v real-valued

and its derivative and integral with respect to x are defined to be

a) D(u + iv) = Du + iDv b)
∫
(u + iv)dx =

∫
udx + i

∫
vdx. (6)

From this it follows by a calculation that

D(e(a+ib)x) = (a + ib)e(a+ib)x,

and therefore ∫
e(a+ib)xdx =

1
a + ib

e(a+ib)x. (7)

Example. Calculate
∫

ex cos 2x dx by using complex exponentials.

Solution. The usual method is a tricky use of two successive integration
by parts. Using complex exponentials instead, the calculation is straight-
forward. We have

ex cos 2x = Re(e(1+2i)x), by (1) or (2); therefore∫
ex cos 2x dx = Re(

∫
e(1+2i)xdx), by (6)b.

Calculating the integral,∫
e(1+2i)xdx =

1
1 + 2i

e(1+2i)x by (7)

=

(
1
5
− 2

5
i
)
(ex cos 2x + iex sin 2x),
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using (1) and complex division. According to the second line above, we
want the real part of this last expression. Multiply and take the real part;
you get

1
5

ex cos 2x +
2
5

ex sin 2x.

In this differential equations course, we will make free use of complex
exponentials in solving differential equations, and in doing formal calcu-
lations like the ones above. This is standard practice in science and engi-
neering, and you need to get used to it. I’m worried that Mattuck’s phrases like
“and you need to get used to it” are going to clash badly with Haynes’ announcements
like “the sum of two sinusoids is another sinusoid!”. I shall deal with this concern by
pointing out phrases like the one here. – HB
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