
Finding n-th Roots
To solve linear differential equations with constant coefficients, we need

to be able to find the real and complex roots of polynomial equations.
Though a lot of this is done today with calculators and computers, one
still has to know how to do an important special case by hand: finding the
roots of

zn = α,

where α is a complex number, i.e., finding the n-th roots of α. Polar repre-
sentation will be a big help in this.

Let’s begin with a special case: the n-th roots of unity: the solutions to

zn = 1.

To solve this equation, we use polar representation for both sides, setting
z = reiθ on the left, and using all possible polar angles on the right; using
the exponential law to multiply, the above equation then becomes

rneinθ = 1 · e(2kπi), k = 0,±1,±2, · · · .

Equating the absolute values and the polar angles of the two sides gives

rn = 1, nθ = 2kπ, k = 0,±1,±2, · · · ,

from which we conclude that

r = 1, θ =
2kπ

n
, k = 0, 1, · · · , n− 1. (1)

In the above, we get only the value r = 1, since r must be real and non-
negative. We don’t need any integer values of k other than 0, · · · , n − 1,
since they would not produce a complex number different from the above
n numbers. That is, if we add an, an integer multiple of n, to k, we get the
same complex number:

θ′ =
2(k + an)π

n
= θ + 2aπ; and eiθ′ = eiθ, since e2aπi = (e2πi)a = 1.

We conclude from (1) therefore that

the n-th roots of 1 are the numbers e2kπi/n, k = 0, · · · , n− 1. (2)
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This shows there are n complex n-th roots of unity. They all lie on the
unit circle in the complex plane, since they have absolute value 1; they are
evenly spaced around the unit circle, starting with 1; the angle between
two consecutive ones is 2π/n. These facts are illustrated in Figure 1 for
the case n = 6.

Figure 1: The six solutions to the equation z6 = 1 lie on a unit circle in the
complex plane.

From (2), we get another notation for the roots of unity (ζ is the Greek
letter “zeta”):

the n-th roots of 1 are 1, ζ, ζ2, · · · , ζn−1, where ζ = e2πi/n. (3)

We now generalize the above to find the n-th roots of an arbitrary com-
plex number w. We begin by writing w in polar form:

w = reiθ; θ = Argw, 0 ≤ θ < 2π,

i.e., θ is the principal value of the polar angle of w. Then the same reason-
ing as we used above shows that if z is an n-th root of w, then

zn = w = reiθ so z = n
√

rei(θ+2kπ)/n, k = 0, 1, · · · , n− 1. (4)

Comparing this with (3), we see that these n roots can be written in the
suggestive form

n
√

w = z0, z0ζ, z0ζ2, · · · , z0ζn−1, where z0 = n
√

reiθ/n. (5)

As a check, we see that all of the n complex numbers in (5) satisfy zn = w :

(z0ζ i)n = zn
0 ζni = zn

0 · 1i, since ζn = 1, by (3);
= w, by the definition (5) of z0 and (4).

Example. Find in Cartesian form all values of a) 3
√

1 b) 4
√

1
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Solution. a) According to (3), the cube roots of 1 are 1, ω, and ω2, where

ω = e2πi/3 = cos
2π

3
+ i sin

2π

3
= −1

2
+ i
√

3
2

ω2 = e−2πi/3 = cos
−2π

3
+ i sin

−2π

3
= −1

2
− i
√

3
2

.

The greek letter ω (“omega”) is traditionally used for this cube root.
Note that for the polar angle of ω2 we used −2π/3 rather than the equiv-
alent angle 4π/3, in order to take advantage of the identities

cos(−x) = cos x sin(−x) = − sin x.

Note that ω2 = ω. Another way to do this problem would be to draw the
position of ω2 and ω on the unit circle and use geometry to figure out their
coordinates.

b) To find 4
√

i, we can use (5). We know that 4
√

1 = 1, i,−1,−i (either by
drawing the unit circle picture or by using (3)). Therefore by (5), we get

4
√

i = z0, z0i,−z0,−z0i, where z0 = eπi/8 = cos
π

8
+ i sin

π

8
;

= a + ib,−b + ia,−a− ib, b− ia where z0 = a + ib = cos
π

8
+ i sin

π

8
.

Example. Solve the equation x6 − 2x3 + 2 = 0.

Solution. Treating this as a quadratic equation in x3, we solve the quadratic
by using the quadratic formula; the two roots are 1 + i and 1− i (check
this!), so the roots of the original equation satisfy either

x3 = 1 + i or x3 = 1− i.

This reduces the problem to finding the cube roots of the two complex
numbers 1± i. We begin by writing them in polar form:

1 + i =
√

2eπi/4, 1− i =
√

2e−πi/4.

(Once again, note the use of the negative polar angle for 1− i, which is
more convenient for calculations.) The three cube roots of the first of these
are (by (4)),
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6
√

2eπi/12 =
6
√

2
(

cos
π

12
+ i sin

π

12

)
6
√

2e3πi/4 =
6
√

2
(

cos
3π

4
+ i sin

3π

4

)
, since

π

12
+

2π

3
=

3π

4
;

6
√

2e−7πi/12 =
6
√

2
(

cos
7π

12
− i sin

7π

12

)
, since

π

12
− 2π

3
= −7π

12
.

The second cube root can also be written as 6
√

2
(
−1 + i√

2

)
=
−1 + i

3
√

2
.

This gives three of the cube roots. The other three are the cube roots
of 1− i, which may be found by replacing i by −i everywhere (i.e., taking
the complex conjugate).

The cube roots can also be described according to (5) as

z1, z1ω, z1ω2 and z2, z2ω, z2ω2 where z1 =
6
√

2eπi/12, z2 =
6
√

2e−πi/12.

Should this have a concluding paragraph? What about subsections? – HB
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