Finding n-th Roots

To solve linear differential equations with constant coefficients, we need
to be able to find the real and complex roots of polynomial equations.
Though a lot of this is done today with calculators and computers, one
still has to know how to do an important special case by hand: finding the
roots of

2" =,

where « is a complex number, i.e., finding the n-th roots of a. Polar repre-
sentation will be a big help in this.

Let’s begin with a special case: the n-th roots of unity: the solutions to
Z' =1.

To solve this equation, we use polar representation for both sides, setting
z = re'? on the left, and using all possible polar angles on the right; using
the exponential law to multiply, the above equation then becomes

ren? = 1.2k =0,41,£2,- .
Equating the absolute values and the polar angles of the two sides gives
't =1, nf = 2krn, k=0,+1,£2,---,

from which we conclude that

2k

r=1, 9:7”, k=0,1,---,n—1. (1)
In the above, we get only the value r = 1, since r must be real and non-
negative. We don’t need any integer values of k other than 0,--- ,n — 1,
since they would not produce a complex number different from the above
n numbers. That is, if we add an, an integer multiple of 7, to k, we get the
same complex number:
o 2(k+an)m

n

L . . :
=0+ 2ar; and e = ¢l since 27 = (2M)" =1,

We conclude from (1) therefore that

the n-th roots of 1 are the numbers e2kmiin e —0,... n—1. (2)



This shows there are n complex n-th roots of unity. They all lie on the
unit circle in the complex plane, since they have absolute value 1; they are
evenly spaced around the unit circle, starting with 1; the angle between
two consecutive ones is 271 /n. These facts are illustrated in Figure [1| for
the case n = 6.

Figure 1: The six solutions to the equation z® = 1 lie on a unit circle in the
complex plane.

From (2), we get another notation for the roots of unity ( is the Greek
letter “zeta”):

the n-th roots of 1 are 1, , Cz,- . ,C”fl, where { = e2mi/n, 3)

We now generalize the above to find the n-th roots of an arbitrary com-
plex number w. We begin by writing w in polar form:

w = re'?; 0 = Argw, 0 <0 <2,

i.e., 0 is the principal value of the polar angle of w. Then the same reason-
ing as we used above shows that if z is an n-th root of w, then

M=w=re? so z=rdTHO/M —-01,-. n-1. (4

Comparing this with (3), we see that these 1 roots can be written in the
suggestive form

Vw = z9, 200, oG, 200", where zg = {/re?/". (5)

As a check, we see that all of the n complex numbers in (5) satisfy z" = w :

(zogi)” = zgg"i =zg - 1/, since (" = 1, by H
= w, by the definition (5) of zo and (4).

Example. Find in Cartesian form all values of a)% b) V1



Solution. a) According to H the cube roots of 1 are 1, w, and w?, where

: 27 27 1 V3
27mi/3 : o3 _ _ = ;
w=ce —cos—3 —|—zsm—3 = 2—|—z >
, —27 —27 1 V3
2 —27i/3 s _ T
w-=e = cos + isin 3 = 5 12.

The greek letter w (“omega”) is traditionally used for this cube root.
Note that for the polar angle of w? we used —27t/3 rather than the equiv-
alent angle 47t/3, in order to take advantage of the identities

cos(—x) = cosx sin(—x) = —sinx.

Note that w? = @. Another way to do this problem would be to draw the
position of w? and w on the unit circle and use geometry to figure out their
coordinates.

b) To find v/i, we can use . We know that v1=1,i,—1, —i (either by
drawing the unit circle picture or by using (3)). Therefore by (5), we get

. . . ; T T
Vi = z,20i, —20, — 20, where zg = ¢™/8 = cos 8 +isin g
. . . . . mw .. T
=a-+ib,—b+ia,—a—ib,b —ia wherezp =a+ib = COSg +lsm§.
Example. Solve the equation x® — 2x3 + 2 = 0.
Solution. Treating this as a quadratic equation in x3, we solve the quadratic

by using the quadratic formula; the two roots are 1 +i and 1 — i (check
this!), so the roots of the original equation satisfy either

=147 or x¥*=1-1

This reduces the problem to finding the cube roots of the two complex
numbers 1 + i. We begin by writing them in polar form:

14i=2e"4, 1—i=+2e /4

(Once again, note the use of the negative polar angle for 1 — i, which is
more convenient for calculations.) The three cube roots of the first of these

are (by (4)),



/2em/12 — {2 (COS i + isin 1)

12 12
V2634 = /2 (cos%—[ + isin %) , since % + 2?7[ = %Tn;
- 77 77 T 271 77
6/~ —7mi/12 __ 6 MG P : o=
V2e =2 (cos 1; —isin 12) , since -5 — — T

-1+ —1+1
The second cube root can also be written as v/2 ( + Z> = ot

V2 V2

This gives three of the cube roots. The other three are the cube roots
of 1 — i, which may be found by replacing i by —i everywhere (i.e., taking
the complex conjugate).

The cube roots can also be described according to (5) as

6 1 6 — 771
21, 21w, z1w? and zy, Zpw, zpw? where z; = /26712 7 — /212,

Should this have a concluding paragraph? What about subsections? — HB



