Exercises on the geometry of linear equations

Problem 1.1: (1.3 \#4. Introduction to Linear Algebra: Strang) Find a combination $x_{1} \mathbf{w}_{1}+x_{2} \mathbf{w}_{2}+x_{3} \mathbf{w}_{3}$ that gives the zero vector:

$$
\mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \mathbf{w}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \mathbf{w}_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

Those vectors are (independent)(dependent).
The three vectors lie in a \qquad The matrix W with those columns is not invertible.

Problem 1.2: Multiply: $\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 3 \\ 4 & 1 & 1\end{array}\right]\left[\begin{array}{r}3 \\ -2 \\ 1\end{array}\right]$.

Problem 1.3: \quad True or false: A 3 by 2 matrix A times a 2 by 3 matrix B equals a 3 by 3 matrix $A B$. If this is false, write a similar sentence which is correct.

