Exercises on the four fundamental subspaces

Problem 10.1: (3.6 #11. *Introduction to Linear Algebra:* Strang) *A* is an *m* by *n* matrix of rank *r*. Suppose there are right sides **b** for which A**x** = **b** has *no solution*.

- a) What are all the inequalities ($< \text{ or } \le$) that must be true between *m*, *n*, and *r*?
- b) How do you know that $A^T \mathbf{y} = \mathbf{0}$ has solutions other than $\mathbf{y} = \mathbf{0}$?

Problem 10.2: (3.6 #24.) $A^T \mathbf{y} = \mathbf{d}$ is solvable when \mathbf{d} is in which of the four subspaces? The solution \mathbf{y} is unique when the ______ contains only the zero vector.