Exercises on orthogonal vectors and subspaces

Problem 16.1: (4.1 #7. *Introduction to Linear Algebra:* Strang) For every system of *m* equations with no solution, there are numbers $y_1, ..., y_m$ that multiply the equations so they add up to 0 = 1. This is called *Fredholm's Alternative*:

Exactly one of these problems has a solution: $A\mathbf{x} = \mathbf{b} \text{ OR } A^T \mathbf{y} = \mathbf{0} \text{ with } \mathbf{y}^T \mathbf{b} = 1.$

If **b** is not in the column space of *A* it is not orthogonal to the nullspace of A^T . Multiply the equations $x_1 - x_2 = 1$, $x_2 - x_3 = 1$ and $x_1 - x_3 = 1$ by numbers y_1 , y_2 and y_3 chosen so that the equations add up to 0 = 1.

Problem 16.2: (4.1#32.) Suppose I give you four nonzero vectors \mathbf{r} , \mathbf{n} , \mathbf{c} and \mathbf{l} in \mathbb{R}^2 .

- a) What are the conditions for those to be bases for the four fundamental subspaces $C(A^T)$, N(A), C(A), and $N(A^T)$ of a 2 by 2 matrix?
- b) What is one possible matrix *A*?