Exercises on orthogonal vectors and subspaces

Problem 16.1: (4.1 \#7. Introduction to Linear Algebra: Strang) For every system of m equations with no solution, there are numbers y_{1}, \ldots, y_{m} that multiply the equations so they add up to $0=1$. This is called Fredholm's Alternative:

Exactly one of these problems has a solution:
$A \mathbf{x}=\mathbf{b}$ OR $A^{T} \mathbf{y}=\mathbf{0}$ with $\mathbf{y}^{T} \mathbf{b}=1$.
If \mathbf{b} is not in the column space of A it is not orthogonal to the nullspace of A^{T}. Multiply the equations $x_{1}-x_{2}=1, x_{2}-x_{3}=1$ and $x_{1}-x_{3}=1$ by numbers y_{1}, y_{2} and y_{3} chosen so that the equations add up to $0=1$.

Problem 16.2: (4.1\#32.) Suppose I give you four nonzero vectors $\mathbf{r}, \mathbf{n}, \mathbf{c}$ and 1 in \mathbb{R}^{2}.
a) What are the conditions for those to be bases for the four fundamental subspaces $C\left(A^{T}\right), N(A), C(A)$, and $N\left(A^{T}\right)$ of a 2 by 2 matrix?
b) What is one possible matrix A ?

