Exercises on properties of determinants

Problem 18.1: (5.1 \#10. Introduction to Linear Algebra: Strang) If the entries in every row of a square matrix A add to zero, solve $A \mathbf{x}=\mathbf{0}$ to prove that $\operatorname{det} A=0$. If those entries add to one, show that $\operatorname{det}(A-I)=0$. Does this mean that $\operatorname{det} A=1$?

Problem 18.2: (5.1 \#18.) Use row operations and the properties of the determinant to calculate the three by three "Vandermonde determinant":

$$
\operatorname{det}\left[\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right]=(b-a)(c-a)(c-b)
$$

