Exercises on Cramer's rule, inverse matrix, and volume

Problem 20.1: (5.3 \#8. Introduction to Linear Algebra: Strang) Suppose

$$
A=\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 2 & 2 \\
1 & 2 & 5
\end{array}\right]
$$

Find its cofactor matrix C and multiply $A C^{T}$ to find $\operatorname{det}(A)$.

$$
C=\left[\begin{array}{rrr}
6 & -3 & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right] \text { and } A C^{T}=
$$

If you change $a_{1,3}=4$ to 100 , why is $\operatorname{det}(A)$ unchanged?
Problem 20.2: (5.3 \#28.) Spherical coordinates ρ, ϕ, θ satisfy

$$
x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta \text { and } z=\rho \cos \phi .
$$

Find the three by three matrix of partial derivatives:

$$
\left[\begin{array}{lll}
\partial x / \partial \rho & \partial x / \partial \phi & \partial x / \partial \theta \\
\partial y / \partial \rho & \partial y / \partial \phi & \partial y / \partial \theta \\
\partial z / \partial \rho & \partial z / \partial \phi & \partial z / \partial \theta
\end{array}\right] .
$$

Simplify its determinant to $J=\rho^{2} \sin \phi$. In spherical coordinates,

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

is the volume of an infinitesimal "coordinate box."

