Exercises on differential equations and $e^{A t}$

Problem 23.1: (6.3 \#14.a Introduction to Linear Algebra: Strang) The matrix in this question is skew-symmetric $\left(A^{T}=-A\right)$:

$$
\frac{d \mathbf{u}}{d t}=\left[\begin{array}{rrr}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{array}\right] \mathbf{u} \quad \text { or } \quad \begin{aligned}
& u_{1}^{\prime}=c u_{2}-b u_{3} \\
& u_{2}^{\prime}=a u_{3}-c u_{1} \\
& u_{3}^{\prime}=b u_{1}-a u_{2}
\end{aligned}
$$

Find the derivative of $\|\mathbf{u}(t)\|^{2}$ using the definition:

$$
\|\mathbf{u}(t)\|^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2} .
$$

What does this tell you about the rate of change of the length of \mathbf{u} ? What does this tell you about the range of values of $\mathbf{u}(t)$?

Problem 23.2: (6.3\#24.) Write $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right]$ as $S \Lambda S^{-1}$. Multiply $S e^{\Lambda t} S^{-1}$ to find the matrix exponential $e^{A t}$. Check your work by evaluating $e^{A t}$ and the derivative of $e^{A t}$ when $t=0$.

