## Exercises on Markov matrices; Fourier series

Problem 24.1: (6.4 \#7. Introduction to Linear Algebra: Strang)
a) Find a symmetric matrix $\left[\begin{array}{ll}1 & b \\ b & 1\end{array}\right]$ that has a negative eigenvalue.
b) How do you know it must have a negative pivot?
c) How do you know it can't have two negative eigenvalues?

Problem 24.2: (6.4 \#23.) Which of these classes of matrices do $A$ and $B$ belong to: invertible, orthogonal, projection, permutation, diagonalizable, Markov?

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad B=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Which of these factorizations are possible for $A$ and $B: L U, Q R, S \Lambda S^{-1}$, or $Q \wedge Q^{T}$ ?

Problem 24.3: (8.3 \#11.) Complete $A$ to a Markov matrix and find the steady state eigenvector. When $A$ is a symmetric Markov matrix, why is $\mathbf{x}_{1}=(1, \ldots, 1)$ its steady state?

$$
A=\left[\begin{array}{ccc}
.7 & .1 & .2 \\
.1 & .6 & .3 \\
- & - & -
\end{array}\right]
$$

