Exercises on similar matrices and Jordan form

Problem 1.1: (6.6 \#12. Introduction to Linear Algebra: Strang) These Jordan matrices have eigenvalues $0,0,0,0$. They have two eigenvectors; one from each block. However, their block sizes don't match and they are not similar:

$$
J=\left[\begin{array}{ll|ll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \text { and } K=\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]
$$

For a generic matrix M, show that if $J M=M K$ then M is not invertible and so J is not similar to K.

Problem 1.2: (6.6 \#20.) Why are these statements all true?
a) If A is similar to B then A^{2} is similar to B^{2}.
b) A^{2} and B^{2} can be similar when A and B are not similar $(\operatorname{try} \lambda=0,0$.)
c) $\left[\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right]$ is similar to $\left[\begin{array}{ll}3 & 1 \\ 0 & 4\end{array}\right]$.
d) $\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ is not similar to $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$.
e) Given a matrix A, let B be the matrix obtained by exchanging rows 1 and 2 of A and then exchanging columns 1 and 2 of A. Show that A is similar to B.

