Exercises on singular value decomposition

Problem 29.1: (Based on 6.7 \#4. Introduction to Linear Algebra: Strang) Verify that if we compute the singular value decomposition $A=U \Sigma V^{T}$ of the Fibonacci matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$,

$$
\Sigma=\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{\sqrt{5}-1}{2}
\end{array}\right]
$$

Problem 29.2: (6.7 \#11.) Suppose A has orthogonal columns $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots$, \mathbf{w}_{n} of lengths $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$. Calculate $A^{T} A$. What are U, Σ, and V in the SVD?

