Exercises on factorization into $A=L U$

Problem 4.1: What matrix E puts A into triangular form $E A=U$? Multiply by $E^{-1}=L$ to factor A into $L U$.

$$
A=\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

Problem 4.2: (2.6 \#13. Introduction to Linear Algebra: Strang) Compute L and U for the symmetric matrix

$$
\mathbf{A}=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

Find four conditions on a, b, c, d to get $A=L U$ with four pivots.

