Exercises on column space and nullspace

Problem 6.1: (3.1 \#30. Introduction to Linear Algebra: Strang) Suppose S and \mathbf{T} are two subspaces of a vector space \mathbf{V}.
a) Definition: The sum $\mathbf{S}+\mathbf{T}$ contains all sums $\mathbf{s}+\boldsymbol{t}$ of a vector \mathbf{s} in \mathbf{S} and a vector \mathbf{t} in \mathbf{T}. Show that $\mathbf{S}+\mathbf{T}$ satisfies the requirements (addition and scalar multiplication) for a vector space.
b) If \mathbf{S} and \mathbf{T} are lines in \mathbf{R}^{m}, what is the difference between $\mathbf{S}+\mathbf{T}$ and $\mathbf{S} \cup \mathbf{T}$? That union contains all vectors from \mathbf{S} and \mathbf{T} or both. Explain this statement: The span of $\mathbf{S} \cup \mathbf{T}$ is $\mathbf{S}+\mathbf{T}$.

Problem 6.2: (3.2\#18.) The plane $x-3 y-z=12$ is parallel to the plane $x-3 y-x=0$. One particular point on this plane is $(12,0,0)$. All points on the plane have the form (fill in the first components)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]+y\left[\begin{array}{l}
1 \\
0
\end{array}\right]+z\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Problem 6.3: (3.2 \#36.) How is the nullspace $\mathbf{N}(C)$ related to the spaces $\mathbf{N}(A)$ and $\mathbf{N}(B)$, if $C=\left[\begin{array}{c}A \\ B\end{array}\right]$?

