Exercises on column space and nullspace

Problem 6.1: (3.1 #30. *Introduction to Linear Algebra:* Strang) Suppose **S** and **T** are two subspaces of a vector space **V**.

- a) **Definition:** The sum S + T contains all sums s + t of a vector s in S and a vector t in T. Show that S + T satisfies the requirements (addition and scalar multiplication) for a vector space.
- b) If **S** and **T** are lines in \mathbb{R}^m , what is the difference between $\mathbf{S} + \mathbf{T}$ and $\mathbf{S} \cup \mathbf{T}$? That union contains all vectors from **S** and **T** or both. Explain this statement: *The span of* $\mathbf{S} \cup \mathbf{T}$ *is* $\mathbf{S} + \mathbf{T}$.

Problem 6.2: (3.2 #18.) The plane x - 3y - z = 12 is parallel to the plane x - 3y - x = 0. One particular point on this plane is (12,0,0). All points on the plane have the form (fill in the first components)

$\begin{bmatrix} x \end{bmatrix}$		Γ 1		- 1		Γ 1	
y y	=	0	+y	1	+z	0	.
		0		0		1	

Problem 6.3: (3.2 #36.) How is the nullspace $\mathbf{N}(C)$ related to the spaces $\mathbf{N}(A)$ and $\mathbf{N}(B)$, if $C = \begin{bmatrix} A \\ B \end{bmatrix}$?