Exercises on the geometry of linear equations

Problem 1.1: (1.3 \#4. Introduction to Linear Algebra: Strang) Find a combination $x_{1} \mathbf{w}_{1}+x_{2} \mathbf{w}_{2}+x_{3} \mathbf{w}_{3}$ that gives the zero vector:

$$
\mathbf{w}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \mathbf{w}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \mathbf{w}_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

Those vectors are (independent)(dependent).
The three vectors lie in a \qquad The matrix W with those columns is not invertible.

Solution: We might observe that $\mathbf{w}_{1}+\mathbf{w}_{3}-2 \mathbf{w}_{2}=0$, or we might simultaneously solve the system of equations:

$$
\begin{aligned}
& 1 x_{1}+4 x_{2}+7 x_{3}=0 \\
& 2 x_{1}+5 x_{2}+8 x_{3}=0 \\
& 3 x_{1}+6 x_{2}+9 x_{3}=0
\end{aligned}
$$

Subtracting twice equation 1 from equation 2 gives us $-3 x_{2}-6 x_{3}=0$. Subtracting thrice equation 1 from equation 3 gives us $-6 x_{2}-12 x_{3}=0$, which is equivalent to the previous equation and so leads us to suspect that the vectors are dependent. At this point we might guess $x_{2}=-2$ and $x_{3}=1$ which would lead us to the answer we observed above:

$$
x_{1}=1, x_{2}=-2, x_{3}=1 \text { and } \mathbf{w}_{1}-2 \mathbf{w}_{2}+\mathbf{w}_{3}=0
$$

Those vectors are dependent because there is a combination of the vectors that gives the zero vector.

The three vectors lie in a plane.
Problem 1.2: Multiply: $\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 0 & 3 \\ 4 & 1 & 1\end{array}\right]\left[\begin{array}{r}3 \\ -2 \\ 1\end{array}\right]$.
Solution: $\left[\begin{array}{c}1 \cdot 3+2 \cdot(-2)+0 \cdot 1 \\ 6+0+3 \\ 12-2+1\end{array}\right]=\left[\begin{array}{r}-1 \\ 9 \\ 11\end{array}\right]$.

Problem 1.3: \quad True or false: A 3 by 2 matrix A times a 2 by 3 matrix B equals a 3 by 3 matrix $A B$. If this is false, write a similar sentence which is correct.

Solution: The statement is true. In order to multiply two matrices, the number of columns of A must equal the number of rows of B. The product $A B$ will have the same number of rows as the first matrix and the same number of columns as the second:

$$
A(m \text { by } n) \text { times } B(n \text { by } p) \text { equals } A B(m \text { by } p)
$$

