Exercises on graphs, networks, and incidence matrices

Problem 12.1: (8.2 \#1. Introduction to Linear Algebra: Strang) Write down the four by four incidence matrix A for the square graph, shown below. (Hint: the first row has -1 in column 1 and +1 in column 2.) What vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ are in the nullspace of A ? How do you know that $(1,0,0,0)$ is not in the row space of A ?

Solution: The incidence matrix A is written as:

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 1
\end{array}\right]
$$

To find the vectors in the nullspace, we solve $A \mathbf{x}=\mathbf{0}$:

$$
\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{2}-x_{1} \\
x_{3}-x_{2} \\
x_{3}-x_{4} \\
x_{4}-x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

so $x_{1}=x_{2}=x_{3}=x_{4}$. Therefore, the nullspace consists of vectors of the form (a, a, a, a).

Finally, $(1,0,0,0)$ is not in the row space of A because it is not orthogonal to the nullspace.

Problem 12.2: (8.2 \#7.) Continuing with the network from problem one, suppose the conductance matrix is

$$
C=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Multiply matrices to find $A^{T} C A$. For $\mathbf{f}=(1,0,-1,0)$, find a solution to $A^{T} C A \mathbf{x}=\mathbf{f}$. Write the potentials \mathbf{x} and currents $\mathbf{y}=-C A \mathbf{x}$ on the square graph (see above) for this current source \mathbf{f} going into node 1 and out from node 3.

Solution: From the previous question, we know that the incidence matrix is:

$$
A=\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 1
\end{array}\right]
$$

Multiply to obtain $A^{T} C A$:

$$
\left[\begin{array}{rrrr}
-1 & 0 & 0 & -1 \\
1 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
2 & -1 & 0 & -1 \\
-1 & 3 & -2 & 0 \\
0 & -2 & 4 & -2 \\
-1 & 0 & -2 & 3
\end{array}\right] .
$$

Solving the equation $A^{T} C A \mathbf{x}=\mathbf{f}$ by performing row reduction on the augmented matrix

$$
\left[\begin{array}{rrrr|r}
-1 & 0 & 0 & -1 & 1 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]
$$

and choosing $x_{3}=0$ to represent a grounded node gives:

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
3 / 4 \\
\mathbf{1} / 4 \\
\mathbf{0} \\
\mathbf{1} / 4
\end{array}\right]
$$

We know $\mathbf{y}=-C A \mathbf{x}$, so

$$
\mathbf{y}=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 2 & -2 & 0 \\
0 & 0 & -2 & 2 \\
1 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{r}
3 / 4 \\
1 / 4 \\
0 \\
1 / 4
\end{array}\right]=\left[\begin{array}{l}
\mathbf{1} / \mathbf{2} \\
\mathbf{1} / \mathbf{2} \\
\mathbf{1} / \mathbf{2} \\
\mathbf{1} / \mathbf{2}
\end{array}\right]
$$

We draw these values on the square graph:

