Exercises on properties of determinants

Problem 18.1: (5.1 \#10. Introduction to Linear Algebra: Strang) If the entries in every row of a square matrix A add to zero, solve $A \mathbf{x}=\mathbf{0}$ to prove that $\operatorname{det} A=0$. If those entries add to one, show that $\operatorname{det}(A-I)=0$. Does this mean that $\operatorname{det} A=1$?

Solution: If the entries of every row of A sum to zero, then $A \mathbf{x}=0$ when $\mathbf{x}=(1, \ldots, 1)$ since each component of $A \mathbf{x}$ is the sum of the entries in a row of A. Since A has a non-zero nullspace, it is not invertible and $\operatorname{det} A=0$.

If the entries of every row of A sum to one, then the entries in every row of $A-I$ sum to zero. Hence $A-I$ has a non-zero nullspace and $\operatorname{det}(A-I)=0$.

If $\operatorname{det}(A-I)=0$ it is not necessarily true that $\operatorname{det} A=1$. For example, the rows of $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ sum to one but $\operatorname{det} A=-1$.

Problem 18.2: (5.1 \#18.) Use row operations and the properties of the determinant to calculate the three by three "Vandermonde determinant":

$$
\operatorname{det}\left[\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right]=(b-a)(c-a)(c-b)
$$

Solution: Using row operations and properties of the determinant, we have:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right] & =\operatorname{det}\left[\begin{array}{ccc}
1 & a & a^{2} \\
0 & b-a & b^{2}-a^{2} \\
1 & c & c^{2}
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{ccc}
1 & a & a^{2} \\
0 & b-a & b^{2}-a^{2} \\
0 & c-a & c^{2}-a^{2}
\end{array}\right] \\
& =(b-a) \operatorname{det}\left[\begin{array}{ccc}
1 & a & a^{2} \\
0 & 1 & b+a \\
1 & c-a & c^{2}-a^{2}
\end{array}\right] \\
& =(b-a) \operatorname{det}\left[\begin{array}{ccc}
1 & a & a^{2} \\
0 & 1 & b+a \\
0 & 0 & (c-a)(c-b)
\end{array}\right] \\
& =(b-a)(c-a)(c-b) \operatorname{det}\left[\begin{array}{ccc}
1 & a & a^{2} \\
0 & 1 & b+a \\
0 & 0 & 1
\end{array}\right] \\
& =(b-a)(c-a)(c-b) \operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =(b-a)(c-a)(c-b) \cdot \checkmark
\end{aligned}
$$

