Exercises on determinant formulas and cofactors

Problem 19.1: Compute the determinant of:

$$A = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right].$$

Which method of computing the determinant do you prefer for this problem, and why?

Solution: The preferred method is that of using **cofactors.** We apply the Big Formula:

$$\det A = \sum_{P=(\alpha,\beta,\dots,\omega)} (\det P) a_{1\alpha} a_{2\beta} \cdots a_{n\omega}$$

to A:

$$\det A = 0 \begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} - 0 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix} + 0 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} - 1 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= -1 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = -1.$$

This is quicker than row exchange:

$$\det A = \det \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = -\det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$= \det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = -\det \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= -1.$$

Problem 19.2: (5.2 #33. *Introduction to Linear Algebra:* Strang) The symmetric Pascal matrices have determinant 1. If I subtract 1 from the n, n entry, why does the determinant become zero? (Use rule 3 or cofactors.)

$$\det\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{bmatrix} = 1 \text{ (known)} \qquad \det\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 19 \end{bmatrix} = \mathbf{0} \text{ (to explain)}.$$

Solution: The difference in the n, n entry (in the example, the difference between 19 and 20) multiplies its cofactor, the determinant of the n-1 by n-1 symmetric Pascal matrix. In our example this matrix is

$$\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{array}\right].$$

We're told that this matrix has determinant 1. Since the n, n entry multiplies its cofactor positively, the overall determinant drops by 1 to become 0.