Exercises on determinant formulas and cofactors

Problem 19.1: Compute the determinant of:

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Which method of computing the determinant do you prefer for this problem, and why?

Solution: The preferred method is that of using cofactors. We apply the Big Formula:

$$
\operatorname{det} A=\sum_{P=(\alpha, \beta, \ldots, \omega)}(\operatorname{det} P) a_{1 \alpha} a_{2 \beta} \cdots a_{n \omega}
$$

to A :

$$
\begin{aligned}
\operatorname{det} A & =0\left|\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|-0\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right|+0\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right|-1\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right| \\
& =-1\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=-1
\end{aligned}
$$

This is quicker than row exchange:

$$
\begin{aligned}
\operatorname{det} A & =\operatorname{det}\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=-\operatorname{det}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=-\operatorname{det}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =-1 .
\end{aligned}
$$

Problem 19.2: (5.2 \#33. Introduction to Linear Algebra: Strang) The symmetric Pascal matrices have determinant 1. If I subtract 1 from the n, n entry, why does the determinant become zero? (Use rule 3 or cofactors.)
$\operatorname{det}\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20\end{array}\right]=1$ (known) $\quad \operatorname{det}\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & \mathbf{1 9}\end{array}\right]=\mathbf{0}$ (to explain).

Solution: The difference in the n, n entry (in the example, the difference between 19 and 20) multiplies its cofactor, the determinant of the $n-1$ by $n-1$ symmetric Pascal matrix. In our example this matrix is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right]
$$

We're told that this matrix has determinant 1 . Since the n, n entry multiplies its cofactor positively, the overall determinant drops by 1 to become 0 .

