Exercises on eigenvalues and eigenvectors

Problem 21.1: (6.1 \#19. Introduction to Linear Algebra: Strang) A three by three matrix B is known to have eigenvalues 0,1 and 2 . This information is enough to find three of these (give the answers where possible):
a) The rank of B
b) The determinant of $B^{T} B$
c) The eigenvalues of $B^{T} B$
d) The eigenvalues of $\left(B^{2}+I\right)^{-1}$

Solution:

a) B has 0 as an eigenvalue and is therefore singular (not invertible). Since B is a three by three matrix, this means that its rank can be at most 2. Since B has two distinct nonzero eigenvalues, its rank is exactly 2.
b) Since B is singular, $\operatorname{det}(B)=0$. Thus $\operatorname{det}\left(B^{T} B\right)=\operatorname{det}\left(B^{T}\right) \operatorname{det}(B)=0$.
c) There is not enough information to find the eigenvalues of $B^{T} B$. For example:

If $B=\left[\begin{array}{lll}0 & & \\ & 1 & \\ & & 2\end{array}\right]$ then $B^{T} B=\left[\begin{array}{lll}0 & & \\ & 1 & \\ & & 4\end{array}\right]$ and B has eigenvalues $0,1,4$.
If $B=\left[\begin{array}{lll}0 & 1 & \\ & 1 & \\ & & 2\end{array}\right]$ then $B^{T} B=\left[\begin{array}{lll}0 & & \\ & 2 & \\ & & 4\end{array}\right]$ and B has eigenvalues $0,2,4$.
d) If $p(t)$ is a polynomial and if \mathbf{x} is an eigenvector of A with eigenvalue λ, then

$$
p(A) \mathbf{x}=p(\lambda) \mathbf{x}
$$

We also know that if λ is an eigenvalue of A then $1 / \lambda$ is an eigenvalue of A^{-1}. Hence the eigenvalues of $\left(B^{2}+I\right)^{-1}$ are $\frac{1}{0^{2}+1}, \frac{1}{1^{2}+1}$ and $\frac{1}{2^{2}+1}$, or $1,1 / 2$ and $1 / 5$.

Problem 21.2: (6.1 \#29.) Find the eigenvalues of A, B, and C when

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right], B=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 0 \\
3 & 0 & 0
\end{array}\right] \text { and } C=\left[\begin{array}{lll}
2 & 2 & 2 \\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

Solution: Since the eigenvalues of a triangular matrix are its diagonal entries, the eigenvalues of A are 1,4 , and 6 . For B we have:

$$
\begin{aligned}
\operatorname{det}(B-\lambda I) & =(-\lambda)(2-\lambda)(-\lambda)-3(2-\lambda) \\
& =\left(\lambda^{2}-3\right)(2-\lambda)
\end{aligned}
$$

Hence the eigenvalues of B are $\pm \sqrt{3}$ and 2. Finally, for C we have:

$$
\begin{aligned}
\operatorname{det}(C-\lambda I) & =(2-\lambda)\left[(2-\lambda)^{2}-4\right]-2[2(2-\lambda)-4]+2[4-2(2-\lambda)] \\
& =\lambda^{3}-6 \lambda^{2}=\lambda^{2}(\lambda-6)
\end{aligned}
$$

The eigenvalues of C are 6,0 , and 0 .
We can quickly check our answers by computing the determinants of A and B and by noting that C is singular.

