Exercises on differential equations and $e^{A t}$

Problem 23.1: (6.3 \#14.a Introduction to Linear Algebra: Strang) The matrix in this question is skew-symmetric $\left(A^{T}=-A\right)$:

$$
\frac{d \mathbf{u}}{d t}=\left[\begin{array}{rrr}
0 & c & -b \\
-c & 0 & a \\
b & -a & 0
\end{array}\right] \mathbf{u} \quad \text { or } \quad \begin{aligned}
& u_{1}^{\prime}=c u_{2}-b u_{3} \\
& u_{2}^{\prime}=a u_{3}-c u_{1} \\
& u_{3}^{\prime}=b u_{1}-a u_{2}
\end{aligned}
$$

Find the derivative of $\|\mathbf{u}(t)\|^{2}$ using the definition:

$$
\|\mathbf{u}(t)\|^{2}=u_{1}^{2}+u_{2}^{2}+u_{3}^{2} .
$$

What does this tell you about the rate of change of the length of \mathbf{u} ? What does this tell you about the range of values of $\mathbf{u}(t)$?

Solution:

$$
\begin{aligned}
\frac{d\|\mathbf{u}(t)\|^{2}}{d t} & =\frac{d\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)}{d t} \\
& =2 u_{1} u_{1}^{\prime}+2 u_{2} u_{2}^{\prime}+2 u_{3} u_{3}^{\prime} \\
& =2 u_{1}\left(c u_{2}-b u_{3}\right)+2 u_{2}\left(a u_{3}-c u_{1}\right)+2 u_{3}\left(b u_{1}-a u_{2}\right) \\
& =0 .
\end{aligned}
$$

This means $\|\mathbf{u}(t)\|^{2}$ stays equal to $\|\mathbf{u}(0)\|^{2}$. Because $\mathbf{u}(t)$ never changes length, it is always on the circumference of a circle of radius $\|\mathbf{u}(0)\|$.

Problem 23.2: (6.3\#24.) Write $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 3\end{array}\right]$ as $S \Lambda S^{-1}$. Multiply $S e^{\Lambda t} S^{-1}$ to find the matrix exponential $e^{A t}$. Check your work by evaluating $e^{A t}$ and the derivative of $e^{A t}$ when $t=0$.

Solution: The eigenvalues of A are $\lambda_{1}=1$ and $\lambda_{2}=3$, with corresponding eigenvectors $\mathbf{x}_{\mathbf{1}}=(1,0)$ and $\mathbf{x}_{\mathbf{2}}=(1,2)$. This gives us the following values for S, Λ, and S^{-1} :

$$
S=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right], \Lambda=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right], S^{-1}=\left[\begin{array}{lr}
1 & -1 / 2 \\
0 & 1 / 2
\end{array}\right]
$$

We use these to find $e^{A t}$:

$$
S e^{\Lambda t} S^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right]\left[\begin{array}{rr}
e^{t} & 0 \\
0 & e^{3 t}
\end{array}\right]\left[\begin{array}{rr}
1 & -1 / 2 \\
0 & 1 / 2
\end{array}\right]=\left[\begin{array}{rr}
e^{t} & .5 e^{3 t}-.5 e^{t} \\
0 & e^{3 t}
\end{array}\right]=e^{A t} .
$$

Check:

$$
\begin{gathered}
e^{A t}=\left[\begin{array}{cr}
e^{t} & .5 e^{3 t}-.5 e^{t} \\
0 & e^{3 t}
\end{array}\right] \text { equals } I \text { when } t=0 . \\
\frac{d e^{A t}}{d t}=\left[\begin{array}{rr}
e^{t} & 1.5 e^{3 t}-.5 e^{t} \\
0 & 3 e^{3 t}
\end{array}\right] \\
\left.\frac{d e^{A t}}{d t}\right|_{t=0}=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]=A . \checkmark
\end{gathered}
$$

