Exercises on symmetric matrices and positive definiteness

Problem 25.1: (6.4 \#10. Introduction to Linear Algebra: Strang) Here is a quick "proof" that the eigenvalues of all real matrices are real:

False Proof: $A \mathbf{x}=\lambda \mathbf{x}$ gives $\mathbf{x}^{T} A \mathbf{x}=\lambda \mathbf{x}^{T} \mathbf{x}$ so $\lambda=\frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$ is real.
There is a hidden assumption in this proof which is not justified. Find the flaw by testing each step on the 90° rotation matrix:

$$
\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

with $\lambda=i$ and $\mathbf{x}=(i, 1)$.
Solution: We can esily confirm that $A \mathbf{x}=\lambda \mathbf{x}=\left[\begin{array}{r}-1 \\ i\end{array}\right]$. Next, check if $\mathbf{x}^{\mathbf{T}} A \mathbf{x}=\lambda \mathbf{x}^{\mathbf{T}} \mathbf{x}$ is true for the 90° rotation matrix:

$$
\begin{aligned}
& \mathbf{x}^{T} A \mathbf{x}=\left[\begin{array}{ll}
i & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
i
\end{array}\right]=0 \\
& \lambda \mathbf{x}^{T} \mathbf{x}=i\left[\begin{array}{ll}
i & 1
\end{array}\right]\left[\begin{array}{c}
i \\
1
\end{array}\right]=0 \\
& \mathbf{x}^{T} A \mathbf{x}=\lambda \mathbf{x}^{T} \mathbf{x} \cdot \checkmark
\end{aligned}
$$

Note that $\mathbf{x}^{\mathbf{T}} \mathbf{x}=0$. Since the next and last step involves dividing by this term, the hidden assumption must be that $\mathbf{x}^{\mathrm{T}} \mathbf{x} \neq 0$. If $x=(a, b)$ then

$$
\mathbf{x}^{\mathrm{T}} \mathbf{x}=\left[\begin{array}{ll}
a & b
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=a^{2}+b^{2}
$$

The "proof" assumes that the squares of the components of the eigenvector cannot sum to zero: $a^{2}+b^{2} \neq 0$. This may be false if the components are complex.

Problem 25.2: (6.5 \#32.) A group of nonsingular matrices includes $A B$ and A^{-1} if it includes A and B. "Products and inverses stay in the group." Which of these are groups?
a) Positive definite symmetric matrices A.
b) Orthogonal matrices Q.
c) All exponentials $e^{t A}$ of a fixed matrix A.
d) Matrices D with determinant 1 .

Solution:

a) The positive definite symmetric matrices A do not form a group. To show this, we provide a counterexample in the form of two positive definite symmetric matrices A and B whose product is not a positive definite symmetric matrix.
If $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1\end{array}\right]$ then $A B=\left[\begin{array}{cc}2.5 & 2 \\ 1.5 & 1.5\end{array}\right]$ is not symmetric.
b) The orthogonal matrices Q form a group. If A and B are orthogonal matrices, then:

$$
\begin{aligned}
& A^{T} A=I \Rightarrow A^{-1}=A^{T} \Rightarrow A^{-1} \text { is orthogonal, and } \\
& B^{T} B=I \Rightarrow(A B)^{T} A B=B^{T} A^{T} A B=B^{T} B=I \Rightarrow A B \text { is orthogonal. }
\end{aligned}
$$

c) The exponentials $e^{t A}$ of a fixed matrix A form a group. For the elements $e^{p A}$ and $e^{q A}$:

$$
\begin{aligned}
& \left(e^{p A}\right)^{-1}=e^{-p A} \text { is of the form } e^{t A} \\
& e^{p A} e^{q A}=e^{(p+q) A} \text { is of the form } e^{t A}
\end{aligned}
$$

d) The matrices D with determinant 1 form a group. If $\operatorname{det} A=1$ then $\operatorname{det} A^{-1}=1$. If matrices A and B have determinant 1 then their product also has determinant 1 :

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1
$$

