Exercises on singular value decomposition

Problem 29.1: (Based on 6.7 \#4. Introduction to Linear Algebra: Strang) Verify that if we compute the singular value decomposition $A=U \Sigma V^{T}$ of the Fibonacci matrix $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$,

$$
\Sigma=\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{\sqrt{5}-1}{2}
\end{array}\right]
$$

Solution:

$$
A^{T} A=A A^{T}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

The eigenvalues of this matrix are the roots of $x^{2}-3 x+1$, which are $\frac{3 \pm \sqrt{5}}{2}$. Thus we have:

$$
\sigma_{1}^{2}=\frac{3+\sqrt{5}}{2} \quad \text { and } \quad \sigma_{2}^{2}=\frac{3-\sqrt{5}}{2} .
$$

To check that $\Sigma=\left[\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2}\end{array}\right]$, we will square the entries of the matrix Σ given above.

$$
\begin{aligned}
& \left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{1+2 \sqrt{5}+5}{4}=\frac{3+\sqrt{5}}{2} \cdot \\
& \left(\frac{\sqrt{5}-1}{2}\right)^{2}=\frac{5-2 \sqrt{5}+1}{4}=\frac{3-\sqrt{5}}{2}
\end{aligned}
$$

Problem 29.2: (6.7 \#11.) Suppose A has orthogonal columns $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots$, \mathbf{w}_{n} of lengths $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$. Calculate $A^{T} A$. What are U, Σ, and V in the SVD?

Solution: Since the columns of A are orthogonal, $A^{T} A$ is a diagonal matrix with entries $\sigma_{1}{ }^{2}, \ldots, \sigma_{n}{ }^{2}$. Since $A^{T} A=V \Sigma^{2} V^{T}$, we find that Σ^{2} is the matrix with diagonal entries $\sigma_{1}{ }^{2}, \ldots, \sigma_{n}{ }^{2}$ and thus that Σ is the matrix with diagonal entries $\sigma_{1}, \ldots, \sigma_{n}$.

Referring again to the equation $A^{T} A=V \Sigma^{2} V^{T}$, we conclude also that $V=I$.

The equation $A=U \Sigma V^{T}$ then tells us that U must be the matrix whose columns are $\frac{1}{\sigma_{i}} \mathbf{w}_{i}$.

